| 研究生: |
盧文中 Lu, Wen-Chung |
|---|---|
| 論文名稱: |
水溶液製備功能性氧化薄膜及其壓電與光觸媒相關性能之研究 Preparation of Functional Oxide Films Using Solution-based Synthesis and Study of Their Piezo- and Photo-related Performance |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 水溶液 、鉻-氮共摻雜二氧化鈦奈米柱 、二氧化鈦-還原氧化石墨烯奈米柱成份梯度 、BaZnO2薄膜 、BiFeO3薄膜 、組合式水熱法 、壓電性質 、壓電光催化 |
| 外文關鍵詞: | soft solution processing, Cr and N doped TiO2 nanorod, TiO2−rGO nanorod library, BaZnO2 film, BiFeO3 film, combinatorial hydrothermal synthesis, piezoelectricity, piezophotocatalysis |
| 相關次數: | 點閱:158 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用水溶液製備四種功能性的氧化物薄膜及研究其壓電或光催化之效能,重點摘要如下。
(1) Cr-N codoped TiO2 nanorods
首次使用聚合絡合物反應與水熱法合成單晶二氧化鈦奈米柱,研究其兩種溶液的絡合物反應於成長機制的影響。在鉻-氮共摻雜二氧化鈦奈米柱,氮的摻雜可以抑制六價鉻和氧空缺的產生,因此提升二氧化鈦奈米柱的光催化性能。7% 鉻和0.0021% 氮共摻雜二氧化鈦奈米柱及3%鉻摻雜二氧化鈦奈米柱的奈米複合材料在光降解亞甲基藍得到很高的效率。
(2) TiO2-reduced graphene oxide (rGO) nanorod libraries
組合式水熱法及旋轉塗佈法的開發用於製備二氧化鈦-還原氧化石墨烯奈米柱成份梯度的樣品,其中樣品5 (7% 二氧化鈦-93% 還原氧化石墨烯)表現出最佳的光降解性能及可靠性,同時也擁有優異的光電化學穩定性及光電流密度,其原因為兩個成份梯度間的強耦合。
(3) BaZnO2
透過中性條件(pH 8)的兩階段水熱法合成BaZnO2薄膜在ITO及Si基板上,其合成的反應機制為PEG上的O原子與Ba2+ 及Zn2+離子間的耦合。藉由量測施加壓力所產生的壓電勢確認其相關的壓電性質(壓力為1.9 和 2.9 GPa分別產生2和3 mV)。結果指出BaZnO2薄膜在壓電光降解及PEC水分解的應用具有很好的未來性。
(4) BiFeO3
BFO薄膜透過溫和的水熱法成長在具有BFO晶種層的ITO基板上,將其施加約0.6 GPa的壓力得到約2.0 mV的壓電勢。經由不同的壓力觀察I–V曲線的變化並確認其相關的壓電效應。結果指出BFO薄膜在壓電光降解應用有很好的前景。
This study focused on the preparation of four types of functional oxide films using solution-based synthesis and their piezo- and photo-related performance. The highlights are summarized as follows.
(1) Cr-N codoped TiO2 nanorods
Polymerized complex reactions and hydrothermal synthesis were developed the first time to synthesize single-crystalline TiO2 nanorods. A growth model on the basis of complex species was proposed to study the positive impacts of the two solution processing. In Cr and N doping TiO2, N2 doping was able to inhibit the production of Cr6+ ions and oxygen vacancies, thus enhancing photocatalysis of TiO2 nanorods. High photodegradation efficiency was achieved for methylene blue (MB) by a nanocomposite of 7% Cr and 0.0021% N doped and 3% Cr doped TiO2 nanorods.
(2) TiO2-reduced graphene oxide (rGO) nanorod libraries
Combinatorial hydrothermal processing and spin coating were developed to fabricate TiO2–rGO nanorod libraries. Spot 5 (7% TiO2–93% rGO) on the library exhibited the most promising photodegradation ability and reliability. The sample also exhibited excellent PEC stability and photocurrent density without further treatment, which was attributable to the strong coupling between the two gradient components.
(3) BaZnO2
Two-step solvothermal synthesis was adopted to synthesize BaZnO2 films on ITO and Si substrates using a moderate chemical condition (pH 8). The probable formation mechanism was the desirable coordination of O atoms in PEG with the ions of Ba2+ and Zn2+. The associated piezoelectricity was determined through the stress-induced piezopotential measurement (approximately 2 and 3 mV at 1.9 and 2.9 GPa, respectively). Our results indicate great promise for the use of BaZnO2 films in piezophotodegradation and PEC water splitting applications.
(4) BiFeO3
Pure BFO films were fabricated on BFO seed-layer-coated ITO substrates through a moderate hydrothermal condition. A stress-induced piezopotential of 2.0 mV was determined under 0.6 GPa. The associated piezotronic effect was determined by the observation of the asymmetrical I–V curves under various pressures. Our results indicate the promise of the BFO films in piezophotodegradation.
[1] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, "Environmental Applications of Semiconductor Photocatalysis," Chemical Reviews 95 (1), 69-96 (1995).
[2] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, "Nano-photocatalytic Materials: Possibilities and Challenges," Advanced Materials 24 (2), 229-251 (2012).
[3] A.O. Ibhadon, P. Fitzpatrick, "Heterogeneous Photocatalysis: Recent Advances and Applications," Catalysts 3 (1), 189-218 (2013).
[4] X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, Z.L. Wang, "Piezo-potential Enhanced Photocatalytic Degradation of Organic Dye Using ZnO Nanowires," Nano Energy 13, 414-422 (2015).
[5] A. Fujishima, K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature 238 (5358), 37-38 (1972).
[6] C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, "Photocatalytic Organic Pollutants Degradation in Metal–Organic Frameworks," Energy & Environmental Science 7 (9), 2831-2867 (2014).
[7] X. Fan, L. Zang, M. Zhang, H. Qiu, Z. Wang, J. Yin, H. Jia, S. Pan, C. Wang, "A Bulk Boron-Based Photocatalyst for Efficient Dechlorination: K3B6O10Br," Chemistry of Materials 26 (10), 3169-3174 (2014).
[8] S. Ohzu, T. Ishizuka, Y. Hirai, S. Fukuzumi, T. Kojima, "Photocatalytic Oxidation of Organic Compounds in Water by Using Ruthenium(II)–Pyridylamine Complexes as Catalysts with High Efficiency and Selectivity," Chemistry – A European Journal 19 (5), 1563-1567 (2013).
[9] G. Liao, S. Chen, X. Quan, H. Yu, H. Zhao, "Graphene Oxide Modified g-C3N4 Hybrid with Enhanced Photocatalytic Capability under Visible Light Irradiation," Journal of Materials Chemistry 22 (6), 2721-2726 (2012).
[10] N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, P. Vaziri, "Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles," International Journal of Molecular Sciences 13 (10), 12242-12258 (2012).
[11] M.Y. Guo, A.M.C. Ng, F. Liu, A.B. Djurišić, W.K. Chan, H. Su, K.S. Wong, "Effect of Native Defects on Photocatalytic Properties of ZnO," The Journal of Physical Chemistry C 115 (22), 11095-11101 (2011).
[12] L.-W. Zhang, Y.-J. Wang, H.-Y. Cheng, W.-Q. Yao, Y.-F. Zhu, "Synthesis of Porous Bi2WO6 Thin Films as Efficient Visible-Light-Active Photocatalysts," Advanced Materials 21 (12), 1286-1290 (2009).
[13] F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.-M. Liu, "Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles," Advanced Materials 19 (19), 2889-2892 (2007).
[14] H. Weller, "Quantized Semiconductor Particles: A Novel State of Matter for Materials Science," Advanced Materials 5 (2), 88-95 (1993).
[15] A. Mills, S. Le Hunte, "An Overview of Semiconductor Photocatalysis," Journal of Photochemistry and Photobiology A: Chemistry 108 (1), 1-35 (1997).
[16] D.W. Bahnemann, C. Kormann, M.R. Hoffmann, "Preparation and Characterization of Quantum Size Zinc Oxide: a Detailed Spectroscopic Study," The Journal of Physical Chemistry 91 (14), 3789-3798 (1987).
[17] K. Sivula, F.L. Formal, M. Grätzel, "WO3−Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach," Chemistry of Materials 21 (13), 2862-2867 (2009).
[18] B. O'Regan, M. Grätzel, "A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal Tio2 Films," Nature 353 (6346), 737-740 (1991).
[19] M. Grätzel, "Photoelectrochemical Cells," Nature 414 (6861), 338-344 (2001).
[20] C. Euvananont, C. Junin, K. Inpor, P. Limthongkul, C. Thanachayanont, "TiO2 Optical Coating Layers for Self-Cleaning Applications," Ceramics International 34 (4), 1067-1071 (2008).
[21] S. Yodyingyong, X. Zhou, Q. Zhang, D. Triampo, J. Xi, K. Park, B. Limketkai, G. Cao, "Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 Nanotubes," The Journal of Physical Chemistry C 114 (49), 21851-21855 (2010).
[22] K. Das, S.K. De, "Optical Properties of the Type-II Core−Shell TiO2@CdS Nanorods for Photovoltaic Applications," The Journal of Physical Chemistry C 113 (9), 3494-3501 (2009).
[23] K. Hashimoto, H. Irie, A. Fujishima, "TiO2 Photocatalysis: A Historical Overview and Future Prospects," Japanese Journal of Applied Physics 44 (12), 8269-8285 (2005).
[24] D.V. Bavykin, J.M. Friedrich, F.C. Walsh, "Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications," Advanced Materials 18 (21), 2807-2824 (2006).
[25] J.-Z. Chen, W.-Y. Ko, Y.-C. Yen, P.-H. Chen, K.-J. Lin, "Hydrothermally Processed TiO2 Nanowire Electrodes with Antireflective and Electrochromic Properties," ACS Nano 6 (8), 6633-6639 (2012).
[26] A.A. Nada, M.H. Barakat, H.A. Hamed, N.R. Mohamed, T.N. Veziroglu, "Studies on the Photocatalytic Hydrogen Production Using Suspended Modified TiO2 Photocatalysts," International Journal of Hydrogen Energy 30 (7), 687-691 (2005).
[27] K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, A. Fujishima, "Antireflection and Self-Cleaning Properties of a Moth-Eye-Like Surface Coated with TiO2 Particles," Langmuir 27 (7), 3275-3278 (2011).
[28] J.C. Yu, W. Ho, J. Lin, H. Yip, P.K. Wong, "Photocatalytic Activity, Antibacterial Effect, and Photoinduced Hydrophilicity of TiO2 Films Coated on a Stainless Steel Substrate," Environmental Science & Technology 37 (10), 2296-2301 (2003).
[29] B. Zhang, F. Li, F. Yu, X. Wang, X. Zhou, H. Li, Y. Jiang, L. Sun, "Electrochemical and Photoelectrochemical Water Oxidation by Supported Cobalt–Oxo Cubanes," ACS Catalysis 4 (3), 804-809 (2014).
[30] X. Chen, S. Shen, L. Guo, S.S. Mao, "Semiconductor-based Photocatalytic Hydrogen Generation," Chemical Reviews 110 (11), 6503-6570 (2010).
[31] R. Marschall, "Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity," Advanced Functional Materials 24 (17), 2421-2440 (2014).
[32] X.H. Xia, Y. Liang, Z. Wang, J. Fan, Y.S. Luo, Z.J. Jia, "Synthesis and Photocatalytic Properties of TiO2 nanostructures," Materials Research Bulletin 43 (8), 2187-2195 (2008).
[33] X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, "Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications," Nano Letters 8 (11), 3781-3786 (2008).
[34] X. Chen, S.S. Mao, "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications," Chemical Reviews 107 (7), 2891-2959 (2007).
[35] C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout, J.L. Gole, "Enhanced Nitrogen Doping in TiO2 Nanoparticles," Nano Letters 3 (8), 1049-1051 (2003).
[36] X. Chen, C. Burda, "The Electronic Origin of the Visible-Light Absorption Properties of C-, N- and S-Doped TiO2 Nanomaterials," Journal of the American Chemical Society 130 (15), 5018-5019 (2008).
[37] Z. Adriana, "Doped-TiO2: A Review," Recent Patents on Engineering 2 (3), 157-164 (2008).
[38] Z. Zhang, Z. Luo, Z. Yang, S. Zhang, Y. Zhang, Y. Zhou, X. Wang, X. Fu, "Band-gap Tuning of N-Doped TiO2 Photocatalysts for Visible-Light-Driven Selective Oxidation of Alcohols to Aldehydes in Water," RSC Advances 3 (20), 7215-7218 (2013).
[39] H. Li, Y. Zhou, W. Tu, J. Ye, Z. Zou, "State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance," Advanced Functional Materials 25 (7), 998-1013 (2015).
[40] Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A.-R.O. Raji, C. Kittrell, R.H. Hauge, J.M. Tour, "A Seamless Three-Dimensional Carbon Nanotube Graphene Hybrid Material," Nature Communications 3 (1), 1225 (2012).
[41] S. Morales-Torres, L.M. Pastrana-Martínez, J.L. Figueiredo, J.L. Faria, A.M.T. Silva, "Design of Graphene-based TiO2 Photocatalysts—a Review," Environmental Science and Pollution Research 19 (9), 3676-3687 (2012).
[42] M.B. Starr, X. Wang, "Coupling of Piezoelectric Effect with Electrochemical Processes," Nano Energy 14, 296-311 (2015).
[43] Y. Hu, Y. Chang, P. Fei, R.L. Snyder, Z.L. Wang, "Designing the Electric Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling Piezoelectric and Photoexcitation Effects," ACS Nano 4 (2), 1234-1240 (2010).
[44] Q. Yang, W. Wang, S. Xu, Z.L. Wang, "Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect," Nano Letters 11 (9), 4012-4017 (2011).
[45] Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D.H. Lien, Z.L. Wang, "Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect," ACS Nano 4 (10), 6285-6291 (2010).
[46] Y. Liu, Y. Zhang, Q. Yang, S. Niu, Z.L. Wang, "Fundamental Theories of Piezotronics and Piezo-phototronics," Nano Energy 14, 257-275 (2015).
[47] Z.L. Wang, "Piezotronic and Piezophototronic Effects," The Journal of Physical Chemistry Letters 1 (9), 1388-1393 (2010).
[48] J. Kou, Y. Liu, Y. Zhu, J. Zhai, "Progress in Piezotronics of Transition-Metal Dichalcogenides," Journal of Physics D: Applied Physics 51 (49), 493002 (2018).
[49] Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, "Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (III)," The Journal of Physical Chemistry C 111 (28), 10618-10623 (2007).
[50] Y. Lin, Z. Jiang, C. Zhu, X. Hu, X. Zhang, H. Zhu, J. Fan, "Enhanced Optical Absorption and Photocatalytic Activity of Anatase TiO2 through (Si,Ni) Codoping," Applied Physics Letters 101 (6), 062106 (2012).
[51] I.S. Cho, C.H. Lee, Y. Feng, M. Logar, P.M. Rao, L. Cai, D.R. Kim, R. Sinclair, X. Zheng, "Codoping Titanium Dioxide Nanowires with Tungsten and Carbon for Enhanced Photoelectrochemical Performance," Nature Communications 4 (1), 1723 (2013).
[52] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, "Improved Synthesis of Graphene Oxide," ACS Nano 4 (8), 4806-4814 (2010).
[53] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science 306 (5696), 666 (2004).
[54] A.C. Ferrari, F. Bonaccorso, V. Fal'ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret, "Science and Technology Roadmap for Graphene, Related Two-dimensional Crystals, and Hybrid Systems," Nanoscale 7 (11), 4598-4810 (2015).
[55] S. Pei, H.-M. Cheng, "The Reduction of Graphene Oxide," Carbon 50 (9), 3210-3228 (2012).
[56] W.S. Hummers, R.E. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society 80 (6), 1339-1339 (1958).
[57] D. Chen, H. Feng, J. Li, "Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications," Chemical Reviews 112 (11), 6027-6053 (2012).
[58] C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C.-H. Tsai, Y. Huang, L.-J. Li, "Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors," ACS Nano 4 (9), 5285-5292 (2010).
[59] K.S. Chang, W.C. Lu, C.Y. Wu, H.C. Feng, "High-throughput Identification of Higher-κ Dielectrics from an Amorphous N2-doped HfO2–TiO2 Library," Journal of Alloys and Compounds 615, 386-389 (2014).
[60] T.H. Muster, A. Trinchi, T.A. Markley, D. Lau, P. Martin, A. Bradbury, A. Bendavid, S. Dligatch, "A Review of High Throughput and Combinatorial Electrochemistry," Electrochimica Acta 56 (27), 9679-9699 (2011).
[61] M. Woodhouse, B.A. Parkinson, "Combinatorial Approaches for the Identification and Optimization of Oxide Semiconductors for Efficient Solar Photoelectrolysis," Chemical Society Reviews 38 (1), 197-210 (2009).
[62] B. Liu, E.S. Aydil, "Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells," Journal of the American Chemical Society 131 (11), 3985-3990 (2009).
[63] H. Cheng, J. Ma, Z. Zhao, L. Qi, "Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles," Chemistry of Materials 7 (4), 663-671 (1995).
[64] W.-C. Lu, H.-D. Nguyen, C.-Y. Wu, K.-S. Chang, M. Yoshimura, "Modulation of Physical and Photocatalytic Properties of (Cr, N) Codoped TiO2 Nanorods Using Soft Solution Processing," Journal of Applied Physics 115 (14), 144305 (2014).
[65] H. Lin, Z. Wu, Y. Jia, W. Li, R.-K. Zheng, H. Luo, "Piezoelectrically Induced Mechano-catalytic Effect for Degradation of Dye Wastewater through Vibrating Pb(Zr0.52Ti0.48)O3 Fibers," Applied Physics Letters 104 (16), 162907 (2014).
[66] S. Tu, H. Huang, T. Zhang, Y. Zhang, "Controllable Synthesis of Multi-responsive Ferroelectric Layered Perovskite-like Bi4Ti3O12: Photocatalysis and Piezoelectric-catalysis and Mechanism Insight," Applied Catalysis B: Environmental 219, 550-562 (2017).
[67] S. Singh, N. Khare, "Coupling of Piezoelectric, Semiconducting and Photoexcitation Properties in NaNbO3 Nanostructures for Controlling Electrical Transport: Realizing an Efficient Piezo-photoanode and Piezo-photocatalyst," Nano Energy 38, 335-341 (2017).
[68] H. You, Z. Wu, L. Wang, Y. Jia, S. Li, J. Zou, "Highly Efficient Pyrocatalysis of Pyroelectric NaNbO3 Shape-controllable Nanoparticles for Room-temperature Dye Decomposition," Chemosphere 199, 531-537 (2018).
[69] K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J.L. Kang, Z.L. Wang, K.J. Lee, "Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates," Nano Letters 10 (12), 4939-4943 (2010).
[70] Y.-T. Wang, K.-S. Chang, "Piezopotential-Induced Schottky Behavior of Zn1−xSnO3 Nanowire Arrays and Piezophotocatalytic Applications," Journal of the American Ceramic Society 99 (8), 2593-2600 (2016).
[71] M.-K. Lo, S.-Y. Lee, K.-S. Chang, "Study of ZnSnO3-Nanowire Piezophotocatalyst Using Two-Step Hydrothermal Synthesis," The Journal of Physical Chemistry C 119 (9), 5218-5224 (2015).
[72] A.-J. Hsu, K.-S. Chang, "Physical, Photochemical, and Extended Piezoelectric Studies of Orthorhombic ZnSnN2 Nanocolumn Arrays," Applied Surface Science 470, 19-26 (2019).
[73] Y. Zeng, Y. Zheng, J. Xin, E. Shi, "First-principle Study the Piezoelectricity of a New Quartz-Type Crystal BaZnO2," Computational Materials Science 56, 169-171 (2012).
[74] Y. Wang, Y. Cheng, X. He, G. Ji, X. Chen, "Pressure Effects on Structural, Elastic and Electronic Properties of BaZnO2: First-Principles Study," Philosophical Magazine 95 (1), 64-78 (2015).
[75] U. Spitsbergen, "The crystal structures of BaZnO2, BaCoO2 and BaMnO2," Acta Crystallogr. 13, 197 (1960).
[76] H.G. McAdie, The Pyrosynthesis of Alkaline Earth Zincates, in: R.F. Schwenker, P.D. Garn (Eds.) Thermal Analysis, Academic Press, New York, pp. 717-725, 1969.
[77] R.V. Rodrigues, J.R. Matos, Synthesis and Characterization of BaZnO2 Nanocrystals, 8th Brazilian/German Workshop on Appl. Surf. Sci. Sep. 15–20, Bamberg/Germany, 2013.
[78] Y.-C. Chiang, K.-S. Chang, "Fabrication of Ba1−xZnO2 Nanowires Using Solvothermal Synthesis: Piezotronic and Piezophototronic Performance Characterization," Applied Surface Science 445, 71-76 (2018).
[79] G. Catalan, J.F. Scott, "Physics and Applications of Bismuth Ferrite," Advanced Materials 21 (24), 2463-2485 (2009).
[80] S. Li, Y.-H. Lin, B.-P. Zhang, Y. Wang, C.-W. Nan, "Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors," The Journal of Physical Chemistry C 114 (7), 2903-2908 (2010).
[81] Z.H. Jaffari, S.M. Lam, J.C. Sin, A.R. Mohamed, "Constructing magnetic Pt-loaded BiFeO3 Nanocomposite for Boosted Visible Light Photocatalytic and Antibacterial Activities," Environmental Science and Pollution Research 26 (10), 10204-10218 (2019).
[82] K.Y. Yun, M. Noda, M. Okuyama, "Prominent Ferroelectricity of BiFeO3 Thin Films Prepared by Pulsed-Laser Deposition," Applied Physics Letters 83 (19), 3981-3983 (2003).
[83] S.Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D.G. Schlom, Y.J. Lee, Y.H. Chu, M.P. Cruz, Q. Zhan, T. Zhao, R. Ramesh, "Metalorganic Chemical Vapor Deposition of Lead-Free Ferroelectric BiFeO3 Films for Memory Applications," Applied Physics Letters 87 (10), 102903 (2005).
[84] Y. Li, T. Sritharan, S. Zhang, X. He, Y. Liu, T. Chen, "Multiferroic Properties of Sputtered BiFeO3 Thin Films," Applied Physics Letters 92 (13), 132908 (2008).
[85] M. Tyagi, R. Chatterjee, P. Sharma, "Structural, Optical and Ferroelectric Behavior of Pure BiFeO3 Thin Films Synthesized by the Sol–Gel Method," Journal of Materials Science: Materials in Electronics 26 (3), 1987-1992 (2015).
[86] B. Liu, B. Hu, Z. Du, "Hydrothermal Synthesis and Magnetic Properties of Single-Crystalline BiFeO3 Nanowires," Chemical Communications 47 (28), 8166-8168 (2011).
[87] T. Tong, W. Cao, H. Zhang, J. Chen, D. Jin, J. Cheng, "Controllable Phase Evolution of Bismuth Ferrite Oxides by an Organic Additive Modified Hydrothermal Method," Ceramics International 41, S106-S110 (2015).
[88] M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran, H.J. Whitfield, "Energetics of Nanocrystalline TiO2," Proceedings of the National Academy of Sciences 99 (suppl 2), 6476 (2002).
[89] K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology, William Andrew, Norwich, 2001.
[90] J.-J. Wu, W.-P. Liao, M. Yoshimura, "Soft Processing of Hierarchical Oxide Nanostructures for Dye-Sensitized Solar Cell Applications," Nano Energy 2 (6), 1354-1372 (2013).
[91] A. Robin, J.P. Meirelis, "Influence of Fluoride Concentration and pH on Corrosion Behavior of Ti-6Al-4V and Ti-23Ta Alloys in Artificial Saliva," Materials and Corrosion 58 (3), 173-180 (2007).
[92] Q. Zhang, L. Gao, "Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method: Insights from Rutile TiO2," Langmuir 19 (3), 967-971 (2003).
[93] Y. Li, M. Guo, M. Zhang, X. Wang, "Hydrothermal Synthesis and Characterization of TiO2 Nanorod Arrays on Glass Substrates," Materials Research Bulletin 44 (6), 1232-1237 (2009).
[94] S.E. Lohse, N.D. Burrows, L. Scarabelli, L.M. Liz-Marzán, C.J. Murphy, "Anisotropic Noble Metal Nanocrystal Growth: The Role of Halides," Chemistry of Materials 26 (1), 34-43 (2014).
[95] R. Bechstein, M. Kitta, J. Schütte, A. Kühnle, H. Onishi, "Evidence for Vacancy Creation by Chromium Doping of Rutile Titanium Dioxide (110)," The Journal of Physical Chemistry C 113 (8), 3277-3280 (2009).
[96] L. Meng, A. Ma, P. Ying, Z. Feng, C. Li, "Sputtered Highly Ordered TiO2 Nanorod Arrays and Their Applications as the Electrode in Dye-Sensitized Solar Cells," Journal of Nanoscience and Nanotechnology 11 (2), 929-934 (2011).
[97] W. Zhu, X. Qiu, V. Iancu, X.-Q. Chen, H. Pan, W. Wang, N.M. Dimitrijevic, T. Rajh, H.M. Meyer, M.P. Paranthaman, G.M. Stocks, H.H. Weitering, B. Gu, G. Eres, Z. Zhang, "Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity," Physical Review Letters 103 (22), 226401 (2009).
[98] J.S. Lee, K.H. You, C.B. Park, "Highly Photoactive, Low Bandgap TiO2 Nanoparticles Wrapped by Graphene," Advanced Materials 24 (8), 1084-1088 (2012).
[99] S. Wang, L. Yi, J.E. Halpert, X. Lai, Y. Liu, H. Cao, R. Yu, D. Wang, Y. Li, "A Novel and Highly Efficient Photocatalyst Based on P25–Graphdiyne Nanocomposite," Small 8 (2), 265-271 (2012).
[100] W.-C. Lu, L.-C. Tseng, K.-S. Chang, "Fabrication of TiO2-Reduced Graphene Oxide Nanorod Composition Spreads Using Combinatorial Hydrothermal Synthesis and Their Photocatalytic and Photoelectrochemical Applications," ACS Combinatorial Science 19 (9), 585-593 (2017).
[101] Y.H. Ding, P. Zhang, Q. Zhuo, H.M. Ren, Z.M. Yang, Y. Jiang, "A Green Approach to the Synthesis of Reduced Graphene Oxide Nanosheets under UV Irradiation," Nanotechnology 22 (21), 215601 (2011).
[102] K. Kakiuchi, E. Hosono, H. Imai, T. Kimura, S. Fujihara, "{111}-Faceting of Low-Temperature Processed Rutile TiO2 rods," Journal of Crystal Growth 293 (2), 541-545 (2006).
[103] J. Zhang, P. Liu, Z. Lu, G. Xu, X. Wang, L. Qian, H. Wang, E. Zhang, J. Xi, Z. Ji, "One-Step Synthesis of Rutile Nano-TiO2 with Exposed {111} Facets for High Photocatalytic Activity," Journal of Alloys and Compounds 632, 133-139 (2015).
[104] X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, "Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications," Nanoscale 5 (9), 3601-3614 (2013).
[105] J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, "Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity," Solar Energy Materials and Solar Cells 90 (12), 1773-1787 (2006).
[106] W.-C. Lu, C.M. Quezada, K.-S. Chang, "Two-Step Solvothermal Synthesis of BaZnO2 Films on Indium Tin Oxide Substrates and Their Piezo-Related and Photoelectrochemical Performance," Materials Chemistry and Physics 247, 122880 (2020).
[107] M. Aliofkhazraei, Handbook of nanoparticles, in: J. Li, Q. Wu, J. Wu (Eds.), Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods, Springer, Switzerland, 2016.
[108] N. Takeno, Atlas of Eh-pH Diagrams Intercomparison of Thermodynamic Databases, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan, 2005.
[109] S. Yamabi, H. Imai, "Growth Conditions for Wurtzite Zinc Oxide Films in Aqueous Solutions," Journal of Materials Chemistry 12 (12), 3773-3778 (2002).
[110] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, "Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation," APL Materials 1 (1), 011002 (2013).
[111] Y.-X. Wang, C.-E. Hu, Y.-M. Chen, Y. Cheng, G.-F. Ji, "First-Principles Study of the Structural, Optical, Dynamical and Thermodynamic Properties of BaZnO2 under Pressure," International Journal of Thermophysics 37, 106 (2016).
[112] S. Lan, J. Feng, Y. Xiong, S. Tian, S. Liu, L. Kong, "Performance and Mechanism of Piezo-Catalytic Degradation of 4-Chlorophenol: Finding of Effective Piezo-Dechlorination," Environmental Science & Technology 51 (11), 6560-6569 (2017).
[113] H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, Z.L. Wang, "Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect," Nano Letters 15 (4), 2372-2379 (2015).
[114] Z. Cai, Y. Yan, L. Liu, S. Lin, X. Hu, "Enhanced Charge Transfer by Passivation Layer in 3DOM Ferroelectric Heterojunction for Water Oxidation in HCO3−/CO2 System," Small 15 (17), 1804930 (2019).
[115] Z. Chen, H.N. Dinh, E. Miller, Photoelectrochemical Water Splitting, Springer, New York, 2013.
[116] W.-C. Lu, C.-C. Wu, K.-S. Chang, "Mild Hydrothermal Synthesis of BiFeO3 films on BiFeO3 Seed-Layer-Coated Indium Tin Oxide Substrates and their Piezo-Related Applications," Journal of Materials Science: Materials in Electronics 31 (16), 13376-13381 (2020).
[117] P.S. Pinto, G.D. Lanza, J.D. Ardisson, R.M. Lago, "Controlled Dehydration of Fe(OH)3 to Fe2O3: Developing Mesopores with Complexing Iron Species for the Adsorption of β-Lactam Antibiotics," Journal of the Brazilian Chemical Society 30, 310-317 (2019).
[118] P.S. Pinto, T.P.V. Medeiros, J.D. Ardisson, R.M. Lago, "Role of [FeOx(OH)y] Surface Sites on the Adsorption of β-lactamic Antibiotics on Al2O3 Supported Fe Oxide," Journal of Hazardous Materials 317, 327-334 (2016).
[119] A.P.R. Arazas, C.-C. Wu, K.-S. Chang, "Hydrothermal Fabrication and Analysis of Piezotronic-Related Properties of BiFeO3 Nanorods," Ceramics International 44 (12), 14158-14162 (2018).
[120] C. Zhao, G. Tan, W. Yang, C. Xu, T. Liu, Y. Su, H. Ren, A. Xia, "Fast Interfacial Charge Transfer in α-Fe2O3−δCδ/FeVO4−x+δCx−δ@C Bulk Heterojunctions with Controllable Phase Content," Scientific Reports 6 (1), 38603 (2016).
[121] R.B. Peterson, C.L. Fields, B.A. Gregg, "Epitaxial Chemical Deposition of ZnO Nanocolumns from NaOH Solutions," Langmuir 20 (12), 5114-5118 (2004).
[122] J. Zhao, Z.-G. Jin, X.-X. Liu, Z.-F. Liu, "Growth and Morphology of ZnO Nanorods Prepared from Zn(NO3)2/NaOH Solutions," Journal of the European Ceramic Society 26 (16), 3745-3752 (2006).
[123] M. Fan, Y. Liang, F. Zhou, W. Liu, "Dramatically Improved Friction Reduction and Wear Resistance by in Situ Formed Ionic Liquids," RSC Advances 2 (17), 6824-6830 (2012).
[124] S. Kumari, R. Gusain, N. Kumar, O.P. Khatri, "PEG-Mediated Hydrothermal Synthesis of Hierarchical Microspheres of MoS2 Nanosheets and their Potential for Lubrication Application," Journal of Industrial and Engineering Chemistry 42, 87-94 (2016).
[125] S. Akhtar, W. An, X. Niu, K. Li, S. Anwar, K. Maaz, M. Maqbool, L. Gao, "Toxicity of PEG-Coated CoFe2O4 Nanoparticles with Treatment Effect of Curcumin," Nanoscale Research Letters 13 (1), 52 (2018).
[126] Z. Zhao, L. Zhang, H. Dai, Y. Du, X. Meng, R. Zhang, Y. Liu, J. Deng, "Surfactant-assisted Solvo- or Hydrothermal Fabrication and Characterization of High-Surface-Area Porous Calcium Carbonate with Multiple Morphologies," Microporous and Mesoporous Materials 138 (1), 191-199 (2011).