簡易檢索 / 詳目顯示

研究生: 陳語涵
Chen, Yu-Han
論文名稱: 水文乾旱隱藏式馬可夫模式序率模擬
Stochastic simulation of hydrologic droughts using the hidden Markov model
指導教授: 蕭政宗
Shiau, Jenq-Tzong
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 105
中文關鍵詞: 水文乾旱標準化流量指數序率模擬隱藏式馬可夫模式
外文關鍵詞: Hydrological Drought, Standardized Streamflow Index, Stochastic Simulation, Hidden Markov Model
相關次數: 點閱:51下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乾旱是一個備受水資源規劃與管理關注的天然災害,因其會對社會和環境產生嚴重的影響,而近年來的氣候變遷可能加劇乾旱的嚴重性及發生頻率。因此,了解和研究乾旱的特性成為水資源管理重要的課題之一,本研究以歷史流量資料為基礎,並以標準化流量指數(Standardized Streamflow Index, SSI)定義水文乾旱,其次建立隱藏式馬可夫(hidden Markov model, HMM)乾旱模式,以進行水文乾旱序率模擬。流量資料本研究選用台灣北部區域蘭陽溪流域的蘭陽大橋測站1950到2021年的觀測月流量資料及台灣南部區域急水溪流域的新營測站1961到2021年的觀測月流量作為分析案例,先利用各月份流量資料擬合機率分佈,再計算一個月時間尺度的標準化流量指數,並通過隱藏的狀態轉換機制來模擬水文乾旱情況。使用標準化流量指數作為水文乾旱的代表指標,本研究所考慮的流量序列繁衍次數有5組、50組及300組,而繁衍乾旱資料以決定係(R^2)、平均百分相對誤差(MPE)和均方根誤差(RMSE)探討繁衍資料與觀測資料的統計特性差異。研究結果顯示,模擬次數越多,模擬性能越好,乾旱特性也會高於歷史流量資料SSI之乾旱特性。

    Drought is a critical natural disaster affecting water resource planning and management due to its severe societal and environmental impacts Climate change potentially exacerbates frequency and severity of droughts. This study uses historical streamflow data and the Standardized Streamflow Index (SSI) to define hydrologic droughts. A Hidden Markov Model (HMM) is employed to stochastic simulate hydrologic drought series. Monthly streamflow data from the Lanyang Bridge station (1950-2021) in northern Taiwan and the Shinying station (1961-2021) in southern Taiwan were analyzed. Probability distributions were fitted to monthly streamflow data, and one-month SSI values were calculated. The HMM simulated drought series through hidden state transitions. Simulations were run with five, fifty, and three hundred streamflow sequences. Statistical characteristics of simulated and observed hydrologic drought data are compared in terms of R^2, MPE, and RMSE. The results indicate that increased simulations have consistent drought characteristics with historical data and have higher probabilities to generate extreme drought events, which are rarely observed in historical data.

    摘要 I Extended Abstract II 致謝 XIX 目錄 XX 表目錄 XXIII 圖目錄 XXIV 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 文獻回顧 2 1.3.1 水文乾旱之相關文獻 2 1.3.2 序率模式 3 1.3.3 隱藏式馬可夫模式相關文獻 4 1.3.4 隱藏式馬可夫模式在水文領域中的應用 4 1.4 論文架構 5 第二章 研究方法 6 2.1 標準化流量指數 (SSI) 6 2.2 標準化流量指數之狀態數 7 2.3 隱藏式馬可夫模式 (HMM) 8 2.3.1 模式特性 8 2.3.2 參數推估 10 2.3.3 前向後向演算法 12 2.3.4 維特比動態演算法(Viterbi algorithm) 13 2.4 序率模擬 14 2.5 評估指標 14 2.5.1 決定係數(R^2) 15 2.5.2 平均百分相對誤差(MPE) 15 2.5.3 均方根誤差(RMSE) 15 2.6 水文乾旱趨勢 16 2.6.1 乾旱特性介紹 17 第三章 研究區域及研究資料 18 3.1 研究區域概述 18 3.1.1 蘭陽溪流域 18 3.1.2 急水溪流域 19 3.2 流量測站之流量資料統計特性 20 第四章 研究結果及討論 24 4.1 流量資料擬合 24 4.2 標準化流量指數對應之狀態 27 4.3 模擬之標準化流量指數序列之基本統計量 32 4.4 評估指標 39 4.5 乾旱特性分析 43 第五章 結論與建議 48 5.1 結論 48 5.2 建議 49 參考文獻 50 附錄A 蘭陽大橋測站、新營測站流量機率分佈 53 附錄B 蘭陽大橋測站原始數據及模擬5、50及300次之盒狀圖 56 附錄C 新營測站原始數據及模擬5、50及300次之盒狀圖 68

    1.Baum, L. E., Petrie, T., Soules, G., Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The annals of mathematical statistics, 41(1), 164-171
    2.Box, G. E., Jenkins, G. M. (1976). Time series analysis. Forecasting and control. Holden-Day Series in Time Series Analysis.
    3.Chambers, D. W., Baglivo, J. A., Ebel, J. E., & Kafka, A. L. (2012). Earthquake forecasting using hidden Markov models. Pure and Applied Geophysics, 169, 625-639.
    4.Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Se-ries B (Methodological), 39(1), 1-22.
    5.Do, C. B., Batzoglou, S. (2008). What is the expectation maximization algorithm? Nature Biotechnology, 26(8), 897-899.
    6.Durbin, R., Eddy, S. R., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press.
    7.Erkyihun, S. T., Rajagopalan, B., Zagona, E., Lall, U., & Nowak, K. (2016). Wavelet‐based time series bootstrap model for multidecadal streamflow simulation using climate indicators. Water Resources Research, 52(5), 4061- 4077.
    8.Goswami, P., Peterson, T. J., Mondal, A., & Rüdiger, C. (2024). On the existence of multiple states of low flows in catchments in southeast Australia. Advances in Water Resources, 187, 104675.
    9.Hughes, J. P., & Guttorp, P. (1994). A class of stochastic models for relating syn-optic atmospheric patterns to regional hydrologic phenomena. Water Resources Research, 30(5), 1535-1546.
    10.Hughes, J. P., Guttorp, P., & Charles, S. P. (1999). A non-homogeneous hidden Markov model for precipitation occurrence. Journal of the Royal Statistical Society Series C: Applied Statistics, 48(1), 15-30.
    11.Jenkins, D. P., Patidar, S., Simpson, S. A. (2014). Synthesising electrical demand profiles for UK dwellings. Energy and Buildings, 76, 605-614.
    12.Khadr, M. (2016). Forecasting of meteorological drought using Hidden Markov Model (case study: The upper Blue Nile river basin, Ethiopia). Journal of Hydrol-ogy: Regional Studies, 7(1), 47-56.
    13.McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Ap-plied Climatology, Boston, MA, USA.
    14.Nalbantis, I., & Tsakiris, G. (2009). Assessment of Hydrological Drought Revisited. Hydrological Sciences Journal, 23(7), 881–897.
    15.Nguyen, N. (2018). Hidden Markov model for stock trading. International Journal of Financial Studies, 6(2), 36.
    16.Pender, D., Patidar, S., Pender, G., & Haynes, H. (2016). Stochastic simulation of daily streamflow sequences using a hidden Markov model. Hydrology Research, 47(1), 75-88.
    17.Porto, V. C., de Souza Filho, F. d. A., Carvalho, T. M. N., de Carvalho Studart,T. M., & Portela, M. M. (2021). A GLM copula approach for multisite annual streamflow generation. Journal of Hydrology, 598, 126226.
    18.Rabiner, L. R., Levinson, S. E., & Sondhi, M. M. (1983). On the application of vector quantization and hidden Markov models to speaker‐independent, isolated word recognition. Bell System Technical Journal, 62(4), 1075-1105.
    19.Salas, J., & Obeysekera, J. (1982). ARMA model identification of hydrologic time series. Water Resources Research, 18(4), 1011-1021.
    20.Stoner, O., Economou, T. (2020). An advanced hidden Markov model for hourly rainfall time series. Computational Statistics & Data Analysis, 152, 107045.
    21.Telesca, Lovallo, Lopez-Moreno and Vicente-Serrano, (2012). Investigation of scaling properties in monthly streamflow and Standardized Streamflow Index time series in the Ebro Basin (Spain). Physica A: Statistical Mechanics and its Applica-tions, 391(4), 1662-1678
    22.Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically op-timum decoding algorithm. IEEE Transactions on Information Theory, 13(2), 260-269.
    23.Wang, H., Wang, C., Lin, X., & Kang, J. (2014). An improved ARIMA model for precipitation simulations. Nonlinear Processes in Geophysics, 21(6), 1159- 1168.
    24.Wilhite, D. A., & Glantz, M. H. (1985). Understanding the Drought Phenomenon: The Role of Definitions. Water International, 10(3), 111–120.
    25.Zhao, Q., Cai, X. (2020). Deriving representative reservoir operation rules using a hidden Markov-decision tree model. Advances in Water Resources, 146, 103753.
    26.Zucchini, W., & Guttorp, P. (1991). A hidden Markov model for space‐time precip-itation. Water Resources Research, 27(8), 1917-1923.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE