簡易檢索 / 詳目顯示

研究生: 何哈法
Ilmy, Hafsah Fatihul
論文名稱: 天氣狀態與網室栽培文心蘭(Oncidium)產量及質量之空間相關性
The Effect of Weather Conditions on Oncidium Orchid Production and Quality in Shading-Net Greenhouse using Spatial Analysis
指導教授: 郭佩棻
Kuo, Pei-Fen
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 56
中文關鍵詞: 文心蘭空間面板模型天氣影響
外文關鍵詞: Oncidium, Spatial Panel Model, Weather Effects
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 依據農業貿易統計,2016年台灣文心蘭的出口額約為1200萬美元(COA,2016),說明它是台灣最重要、最有價值的觀賞作物和切花之一。鑑於氣候變遷日趨嚴重,其相對應的極端氣候可能會影響全球農業市場,並減少未來文心蘭的產量,因此,維持文心蘭的產量和質量非常重要。
    為了定義天氣狀況與文心蘭產量與質量之間的相關性,本研究使用了台中九座文心蘭網室中自2015年到2018年的天氣條件(例如溫度、相對濕度、氣壓、降雨、風速、颱風和空氣污染)。但由於溫室內沒有過去氣象資料,故本研究採用了溫室附近18個中央氣象站的天氣狀況並以Kriging內插法估算網室天氣條件。同時依據文心蘭生長週期,計算由種植日起算24週的每週累積溫度,並使用決策樹選擇最重要的過往溫度條件。結果顯示,選擇切花日前24週和6週的累積高溫(ACHTW24和ACHTW6)作為產量的預測變量,切花日前23週和8週的累積低溫(ACLTW23和ACLTW8)作為質量的預測變量。再利用四個空間面板模型(最小平方法、空間誤差、空間滯後、空間自迴歸模型,後三者採用固定/隨機效應),以定義天氣條件對文心蘭產量和質量的相關性。基於赤池信息量準則(AIC),隨機效應的空間自迴歸模型(SAR-RE)在文心蘭的產量預測方面優於其他模型。而質量預測模型中,固定效應的空間滯後模型(SLM-FE)表現最好。結果顯示,在切花日前的23週內,夜晚溫度較低的區域其文心蘭產量較高。另一方面,文心蘭質量與切花日前六週的累積日高溫呈正相關,並與切花日前24週的累積日間溫度呈負相關。質量模型顯示極端天氣變量(例如颱風)和降雨分別對文心蘭的產量和質量產生負面影響。相對濕度和氣壓對文心蘭的產量和質量有正面影響。本研究的結果可用於評估天氣變化對文心產業的潛在影響,並有助於未來優化文心蘭網室的環境。

    According to the agricultural trade statistics, Taiwan’s Oncidium export volume was valued at around US$12 million in 2016 (COA, 2016), making it one of the most important and valuable ornamental crops and cut flowers in Taiwan. Therefore, maintaining the quality and productivity of this flower becomes important. However, this work is difficult because of climate change, which results in extreme weather that significantly reduces Oncidium harvests. This study intends to define the relationship between several weather conditions (such as temperature, relative humidity, pressure, precipitation, and typhoon) to Oncidium production and quality.
    Our study area includes nine Oncidium greenhouses in Taichung from 2015 to 2018. Since there are no weather stations inside greenhouses, Kriging interpolation has been used to estimate the weather conditions from 18 weather stations near the greenhouses. Based on the previous study execute by Chen and Hsu in 2003, the accumulation of historical temperature is important for Oncidium growth. Therefore, the accumulation of weekly temperature was calculated from planting day and up until the cutting day (24th weeks). This process generates 72 accumulation temperature variables. In order to choose the important historical temperature variables, a decision tree has developed. The selected variables were the 24th and 6th weeks for the accumulation of high temperatures and the 8th and 23rd weeks for the accumulation of low temperatures. Ordinary regression model (LM) and three spatial panel models (Spatial Error, Spatial Lag, and Spatial Autoregressive with fixed/random effect extensions) were utilized to capture the impact of weather conditions on Oncidium production and quality. Based on the Akaike Information Criterion (AIC): The Spatial Autoregressive with random effects (SAR-RE) model performed better than the other models for Oncidium productivity, and the Spatial Lag model with fixed effects (SLM-FE) perform the best for Oncidium quality. The results of the models have shown that areas with high accumulate night temperatures during the 23 weeks and lower accumulate day temperature during the six weeks before cutting day tend to have a larger amount of Oncidium production. On the other hand, the accumulated night temperature during eight weeks before cutting day has shown positive correlation while the accumulated day temperature during 24 weeks before cutting the flower has shown a negative correlation in terms of Oncidium quality. The quality models have shown that extreme weather variables (such as typhoons) and precipitation have a negative effect on Oncidium quality and statistically significant, but relative humidity and air pressure have a positive impact on Oncidium production and quality. The results of this study can be used to evaluate the potential future impacts of climate change on the Oncidium industries and help to optimize the environmental settings in Oncidium greenhouses.

    CONTENTS ABSTRACT i ACKNOWLEDGMENT iv CONTENTS v LIST OF TABLES vii LIST OF FIGURES viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Study Goals 4 Chapter 2 Literature Review 5 2.1 Oncidium Growth 5 2.2 Weather Variables Related to Plants Growth 7 2.3 Kriging Interpolation 10 2.4 Spatial Panel Model 11 Chapter 3 Data and Methodology 12 3.1 Data Collection 14 3.1.1 Greenhouses Oncidium Production Data 14 3.1.2 Weather and Air Pollution Monitoring Database 19 3.2 Data Preprocessing 22 3.2.1 Ordinary Kriging Method 22 3.2.2 Historical Temperature 23 3.2.2 Decision Tree Method 25 3.3 Model Building 26 3.3.1 Spatial Panel Model 26 Chapter 4 Results and Discussion 29 4.1 Spatial Distribution of Weather Variables from Kriging Interpolation 29 4.2 Historical Temperature Selection from The Decision Tree 39 4.3 Model Fitting for Oncidium Production and Quality from Spatial Panel Model 41 4.4 Discussion 44 Chapter 5 Conclusion 46 5.1 Conclusion 46 5.2 Study Limitation 47 REFERENCES 48

    REFERENCES
    Adams, R. M. (1989). Global Climate Change and Agriculture: An Economic Perspective. American Journal of Agricultural Economics, 71(5), 1272–1279. https://doi.org/10.2307/1243120
    Adams, R. M., Fleming, R. A., Chang, C. C., McCarl, B. A., & Rosenzweig, C. (1995). A reassessment of the economic effects of global climate change on U.S. agriculture. Climatic Change, 30(2), 147–167. https://doi.org/10.1007/BF01091839
    Adams, R. M., Rosenzweig, C., Peart, R. M., Ritchie, J. T., Mc Carl, B. A., Glyer, J. D., Allen, L. H. (1990). Global climate change and US agriculture. Nature, 345(6272), 219–224. https://doi.org/10.1038/345219a0
    Anselin, L., Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). A Spatial Econometric Approach to the Economics of Site-Specific Nitrogen Management in Corn Production. American Journal of Agricultural Economics, 86(3), 675–687. Retrieved from http://www.jstor.org/stable/3697808
    Auffhammer, M., Hsiang, S. M., Schlenker, W., & Sobel, A. (2013). Using Weather Data and Climate Model Output in Economic Analyses of Climate Change. National Bureau of Economic Research Working Paper Series, No. 19087. https://doi.org/10.3386/w19087
    Baylis, K., Paulson, N. D., & Piras, G. (2011). Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application. Journal of Agricultural and Applied Economics, 43(3), 325–338. https://doi.org/10.1017/S1074070800004326
    Bivand, R., Müller, W. G., & Reder, M. (2009). Power calculations for global and local Moran’s I. Computational Statistics and Data Analysis (Vol. 53). https://doi.org/10.1016/j.csda.2008.07.021
    Blanchard, M. G., & Runkle, E. S. (2006). Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids. Journal of Experimental Botany, 57(15), 4043–4049. https://doi.org/10.1093/jxb/erl176
    Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Classification and Regression Trees. https://doi.org/10.1201/9781315139470
    Chang C. Y. (2009). Oncidium Health Management 文心蘭之健康管理. Retrieved from http://ir.tari.gov.tw:8080/ir/handle/345210000/2603
    Chang, Y. C., & Lee, N. (1998). 光度對文心蘭(Oncidium ’Gower Ramsey ’) 假球莖生長及開花品質之影 響 Effect of Light Level on Pseudobulb Growth and Flowering Quality of Oncidium ‘ Gower Ramsey ’.
    Chen, C. C., & Hsu, Y. M. (2003). Effect of Accumulation Temperature on the Flower Quality of Oncidium. 農林學報, 52(1), 33–48.
    Chen, J. T., &Chang, W. C. (2000). Efficient plant regeneration through somatic embryogenesis from callus cultures of Oncidium (Orchidaceae). Plant Science, 160(1), 87–93. https://doi.org/https://doi.org/10.1016/S0168-9452(00)00367-8
    Chen, X. W. (2007). 環境因子對文心蘭光合作用之影響 TT - Effects of Environmental Factors on Photosynthesis of Oncidium Alliance. 臺灣大學園藝學研究所學位論文. 臺灣大學. https://doi.org/10.6342/NTU.2007.02311
    Cheng, Z. Y. (2006). Effect of Day/Night Temperature and Simulated Dark Transport on Growth and Flowering quality of Oncidium. National Taiwan University.
    Council of Agriculture Taiwan (COA). (2012). Oncidium Industry Actively Expands International Market by Establishing First Industry Development Reserve System. Retrieved from https://eng.coa.gov.tw
    Council of Agriculture Taiwan (COA). (2016). COA 2016 Annual Report. Retrieved from https://kmweb.coa.gov.tw/files/ebook
    Council of Agriculture Taiwan (COA). (2018). Oncidium orchid cut flowers export from Taiwan overcoming SPS obstacles in New Zealand.
    Cressie, N. A. C. (1993). Statistics for spatial data. J. Wiley. Retrieved from https://books.google.com.tw/books?id=4SdRAAAAMAAJ
    Croissant, Y., & Millo, G. (2008). Panel Data Econometrics in R: The plm Package. Journal of Statistical Software, Articles, 27(2), 1–43. https://doi.org/10.18637/jss.v027.i02
    Darley, E. F. (1960). Use of Plants for Air Pollution Monitoring. Journal of the Air Pollution Control Association, 10(3), 198–199. https://doi.org/10.1080/00022470.1960.10467919
    Daunicht, H. J., & Brinkjans, H. J. (1996). Plant responses to reduced air pressure: Advanced techniques and results. Advances in Space Research, 18(4–5), 273–281. https://doi.org/10.1016/0273-1177(95)00889-M
    Elhorst, J. P. (2003). Specification and Estimation of Spatial Panel Data Models. International Regional Science Review, 26(3), 244–268. Retrieved from https://econpapers.repec.org/RePEc:sae:inrsre:v:26:y:2003:i:3:p:244-268
    Elhorst, J. P. (2008). Serial and spatial error correlation. Economics Letters, 100(3), 422–424. https://doi.org/DOI: ,
    Espindola, G. M. de, Pebesma, E., & Camara, G. (2008). Spatio-Temporal Regression Model for Deforestation in Brazilian Amazon.
    FAO. (2015). Impact of natural hazards and disasters on agriculture and food security and nutrition. FAO Report, (May), 16. Retrieved from http://www.fao.org/3/a-i4434e.pdf
    Ford, M. A., & Thorne, G. N. (1974). Effects of Atmospheric Humidity on Plant Growth. Acta Horticulturae, (229), 143–158. https://doi.org/10.17660/actahortic.1988.229.12
    Gräler, B., Pebesma, E., & Heuvelink, G. (2016). Spatio-temporal interpolation using gstat. R Journal, 8(1), 204–218. https://doi.org/10.32614/rj-2016-014
    Hausman, J. A. (1978). Specification Tests in Econometrics. Econometrica, 46(6), 1251–1271. https://doi.org/10.2307/1913827
    Hew, C. S., & Yong, J. W. H. (1994). Growth and photosynthesis of Oncidium “Goldiana.” Journal of Horticultural Science, 69(5), 809–819. https://doi.org/10.1080/14620316.1994.11516517
    Hew, C. S., & Yong, J. W. H. (2004). A Brief Introduction to Orchid Morphology and Nomenclature. The Physiology of Tropical Orchids in Relation to the Industry. https://doi.org/10.1142/9789812567215_0002
    Holdaway, M. R. (1996). Spatial modeling and interpolation of monthly temperature using kriging. Climate Research, 06(3), 215–225. Retrieved from https://www.int-res.com/abstracts/cr/v06/n3/p215-225/
    Hunt, E. B. (1966). Experiments in induction / Earl B. Hunt, Janet Marin, Philip J. Stone. (P. J.Stone &J.Marin, Eds.). New York: Academic Press.
    IPCC. (2007). Climate change 2007: The Physical Basis. Summary for Policy Makers. Proceedings of the Alpine Snow Workshop, Munich, October 5-6, Germany | HeBIS-Verbundkatalog, 8, 142. Retrieved from http://bluemarble.nasa.gov.
    Isaaks, E. H., & Srivastava, R. M. (1989). An Introduction to Applied Geostatistics. Oxford University Press. Retrieved from https://books.google.com.tw/books?id=t62mtgAACAAJ
    Krige, D. G. (1951). A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand. publisher not identified. Retrieved from https://books.google.com.tw/books?id=M6jASgAACAAJ
    Lee, H. K., Khaine, I., Kwak, M. J., Jang, J. H., Lee, T. Y., Lee, J. K.,Woo, S. Y. (2017). The relationship between SO2 exposure and plant physiology: A mini review. Horticulture Environment and Biotechnology, 58(6), 523–529. https://doi.org/10.1007/s13580-017-0053-0
    Lee, P. H., Liao, C. H., & Yuan, S. (2007). Surveying of the Agrometeorological Disasters and Mitigation Techniques for Wax Apples in Kaohsiung-Pingtung Area and Custard Apples in Taitung Area. Crop, Environment & Bioinformatics, 4, 89–108. https://doi.org/10.30061/CEB.200706.0001
    Legendre, P., & Legendre, L. F. J. (1998). Numerical Ecology - Legendre, L, Legendre, P. Quarterly Review of Biology, 59(1), 852. https://doi.org/Doi 10.1086/413741
    Liu, H., Feng, C. L., Luo, Y. B., Chen, B. S., Wang, Z. S., & Gu, H. Y. (2010). Potential challenges of climate change to orchid conservation in a Wild Orchid Hotspot in Southwestern China. Botanical Review, 76(2), 174–192. https://doi.org/10.1007/s12229-010-9044-x
    Lobell, D. B., & Burke, M. B. (2010). On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 150(11), 1443–1452. https://doi.org/10.1016/j.agrformet.2010.07.008

    Lu, Y. C. (2010). 環境因子對文心蘭光合作用及Rubisco活性之影響 TT - Effects of Environmental Factors on Photosynthesis and Rubisco Activity of Oncidium Gower Ramsey. 臺灣大學園藝學研究所學位論文. 臺灣大學. https://doi.org/10.6342/NTU.2010.02798
    Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246
    McGrath, D., Zhang, C., & Carton, O. T. (2004). Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution, 127(2), 239–248. https://doi.org/https://doi.org/10.1016/j.envpol.2003.07.002
    Millo, G., & Piras, G. (2012). Journal of Statistical Software splm: Spatial Panel Data Models in R. Journal of Statistical Software, 47(1). Retrieved from http://www.jstatsoft.org/
    Morgan, J. N., & Messenger, R. C. (1973). THAID, a sequential analysis program for the analysis of nominal scale dependent variables,. Ann Arbor : Survey Research Center.
    Morgan, J. N., & Sonquist, J. A. (1963). Problems in the Analysis of Survey Data, and a Proposal. Journal of the American Statistical Association, 58(302), 415–434.
    Mortensen, L. M. (1986). Effect of relative humidity on growth and flowering of some greenhouse plants. Scientia Horticulturae, 29(4), 301–307. https://doi.org/10.1016/0304-4238(86)90013-0
    Mozo, H. G., Galan, C., Casero, M. T. G., & Vilches, E. D. (2000). A comparative study of different temperature accumulation methods for predicting the start of the Quercus pollen season in Córdoba (South West Spain). Grana, 39(4), 194–199. https://doi.org/10.1080/00173130051084322
    Murthy, S. K., Kasif, S., & Salzberg, S. (1994). A System for Induction of Oblique Decision Trees. Journal of Artificial Intelligence Research, 2, 1–32. https://doi.org/10.1613/jair.63
    Mutl, J., & Pfaffermayr, M. (2011). The Hausman test in a Cliff and Ord panel model. The Econometrics Journal, 14(1), 48–76. Retrieved from http://www.jstor.org/stable/23127219
    Park, H. M. (2011). Practical Guides To Panel Data Modeling : A Step by Step Analysis Using Strata. Public Management and Public Analysis Program, 1–53.
    Quinlan, J R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. https://doi.org/10.1007/BF00116251
    Quinlan, J Ross. (1993). C4.5: Programs for Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
    Rind, D., Goldberg, R., Hansen, J., Rosenzweig, C., & Ruedy, R. (1990). Potential evapotranspiration and the likelihood of future drought. Journal of Geophysical Research: Atmospheres, 95(D7), 9983–10004. https://doi.org/10.1029/JD095iD07p09983
    Runkle, E. (2015). Interactions of Light, CO2 and Temperature on Photosynthesis. Gnp, (June), 2015.
    Sharma, R., Ghosh, A., & Joshi, P. K. (2013). Decision tree approach for classification of remotely sensed satellite data using open source support. Journal of Earth System Science, 122(5), 1237–1247. https://doi.org/10.1007/s12040-013-0339-2
    Snyder, R. L. (2017). Climate change impacts on water use in horticulture. Horticulturae, 3(2). https://doi.org/10.3390/horticulturae3020027

    Solomon, S., Plattner, G.K., Knutti, R., & Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences, 106(6), 1704 LP – 1709. https://doi.org/10.1073/pnas.0812721106
    Sumner, M., & Hijmans, R. (2019). Package “rgdal” Title Bindings for the “Geospatial” Data Abstraction Library, 0(March 2012). Retrieved from http://www.kyngchaos.com/
    Takeishi, H., Hayashi, J., Okazawa, A., Harada, K., Hirata, K., Kobayashi, A., & Akamatsu, F. (2013). Effects of elevated pressure on rate of photosynthesis during plant growth. Journal of Biotechnology, 168(2), 135–141. https://doi.org/10.1016/j.jbiotec.2013.08.012
    Tanaka, M., Yamada, S., & Goi, M. (1986). Morphological observation on vegetative growth and flower bud formation in Oncidium Boissiense. Scientia Horticulturae, 28(1), 133–146. https://doi.org/https://doi.org/10.1016/0304-4238(86)90133-0
    Tsay, T. M., & Lay, S. L. (2018). 設施內文心蘭盆花栽培技術—營養期栽培管理. 符合輸美文心蘭盆花規範之系統性技術栽培手冊, 24–31.
    Varshney, C. K., Garg, J. K., Lauenroth, W. K., & Heitschmidt, R. K. (1979). Plant responses to sulfur dioxide pollution. C R C Critical Reviews in Environmental Control, 9(1), 27–49. https://doi.org/10.1080/10643387909381667
    Vibat, A. S. (2008). Orchid Care. Retrieved December5, 2018, from http://www.beautifulorchids.com/orchids/orchid_care_tips/orchid_introduction/orchid_care_tips.html

    White, J. (2009). Bloom-Again Orchids: 50 Easy-Care Orchids that Flower Again and Again and Again. Timber Press. Retrieved from https://books.google.com.tw/books?id=h3mWINHOWfoC
    Williams, G. (2017). The Rattle Package : Quick Start Guide Sipmle Scenario : Build a Couple of Models, 2–4.
    Wolf, J. (1993). Effect of Climate Change on Wheat and Maize Production Potential in The EC. The Effect of Climate Change on Agricultural and Horticultural potential in Europe.
    Yang, X., & Wang, L. (2008). Spatial analysis and hazard assessment of mercury in soil around the coal-fired power plant: a case study from the city of Baoji, China. Environmental Geology, 53(7), 1381–1388. https://doi.org/10.1007/s00254-007-0747-1
    Yun, S.Do, Gramig, B. M., Delgado, M. S., & Florax, R. J. G. M. (2015). Does Spatial Correlation Matter in Econometric Models of Crop Yield Response and Weather?, (330-2016–13704), 53. Retrieved from http://ageconsearch.umn.edu/record/205465

    下載圖示 校內:2024-02-05公開
    校外:2024-02-05公開
    QR CODE