簡易檢索 / 詳目顯示

研究生: 朱韻文
Chu, Yun-Wen
論文名稱: CuInS2奈米管-氧化鋅複合薄膜之製備與其應用於全固態無機太陽能電池之研究
Formation of CuInS2 Nanotube-ZnO Nanoparticle Composite Films for Use in Solid-state Inorganic Solar Cells
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: CuInS2 奈米管陣列氧化鋅複合薄膜全固態無機太陽能電池
外文關鍵詞: CuInS2 nanotube arrays, ZnO composite films, Solid-state inorganic solar cells
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以連續離子吸附與反應法合成CuInS2奈米管,並在CuInS2奈米管間隙之間成長氧化鋅奈米粒,以形成一CuInS2 奈米管-氧化鋅奈米粒複合薄膜。其中成長氧化鋅複合薄膜的製程有兩種,分別為金屬有機化學氣相沉積法和無鹼化學浴法。本研究嘗試找出兩種製程成長氧化鋅複合薄膜之最佳化參數,再經由一道退火處理改善複合薄膜內氧化鋅奈米粒的結晶性。進一步組裝固態無機的ITO/CuInS2 奈米管/氧化鋅奈米粒複合薄膜/Al 太陽能電池。結果顯示,以化學浴法形成氧化鋅薄膜所組裝之電池具有較佳之表現。目前所得CuInS2 奈米管-氧化鋅奈米粒複合薄膜電池之最高效率為0.033 %。

    In this study, CuInS2 nanotube arrays have been synthesized using successive ionic layer adsorption and reaction(SILAR) method. ZnO nanoparticles (NPs) are deposited in the interstices of CuInS2 nanotubes to form a CuInS2 nanotube-ZnO nanoparticle composite films. Formation of the ZnO nanoparticle composite films have been achieved using metalorganic chemical vapor deposition (MOCVD) and base-free chemical bath deposition(CBD) method. The optimal growth conditions are found for the growing ZnO composite films using both processes.Annealing of the ZnO composite films, is needed to improve the film quality. The solid-state inorganic ITO/CuInS2 nanotubes/ZnO nanoparticle composite film/Al solar cells are further fabricated. The CuInS2 nanotube-ZnO nanoparticle solar cell has an efficency of 0.033% by using the CBD ZnO process.

    摘要.......................................................I Abstract..................................................II 致謝.....................................................III 目錄......................................................IV 表目錄....................................................IX 圖目錄.....................................................X 第一章緒論..................................................1 1-1 前言...................................................1 1-2 CuInS2材料.............................................2 1-3 氧化鋅(ZnO)材料.........................................3 1-4 CuInS2薄膜式太陽能電池簡介...............................4 1-5 研究動機與目的..........................................4 第二章 文獻回顧與理論基礎.....................................6 2-1太陽能電池發展概況........................................6 2-1.1結晶矽太陽能電池(Crystalline silicon solar cells).......6 2-1.2薄膜太陽能電池(Thin film solar cells)..................7 2-1.3染料敏化太陽能電池(Dye sensitized solar cell, DSSC).....9 2-2 CuInS2材料性質.........................................10 2-2.1 晶體結構.............................................10 2-2.2化學組成與光電性質.....................................12 2-3成長CuInS2薄膜之方法....................................14 2-3.1真空製程..............................................14 2-3.2 非真空製程...........................................15 2-4無鹼化學浴沉積法成長氧化鋅複合薄膜.........................21 2-5金屬有機化學氣相沉積法(MOCVD)成長氧化鋅薄膜................24 2-6 CuInS2薄膜式太陽能電池組成結構與工作原理..................26 2-6.1 基板................................................27 2-6.2吸光層...............................................27 2-6.3緩衝層...............................................28 2-6.4 透光層兼電子傳導層....................................29 2-6.5 金屬/導電玻璃對電極...................................29 2-6.6 CuInS2薄膜式太陽能電池工作原理.........................30 2-7 太陽能電池的電流電壓輸出特性.............................32 2-7.1 太陽光的頻譜照度......................................32 2-7.2 光電轉化效率的計算....................................34 第三章 實驗步驟與研究方法....................................37 3-1 實驗材料...............................................37 3-2 實驗流程..........................................39 3-2.1基板前處理............................................40 3-2.2基板親水性處理與氧化鋅晶種層之披覆.......................40 3-2.3氧化鋅奈米線成長.......................................41 3-2.4以連續式離子層吸附與反應法製備CuInS2吸收層...............41 3-2.5硫氣氛退火處理........................................43 3-2.6氣相氧化鋅複合薄膜之成長................................44 3-2.6.1化學氣相沉積法成長氧化鋅複合薄膜..................44 3-2.6.2氧化鋅複合薄膜退火處理..................45 3-2.7液相氧化鋅複合薄膜之成長...............................45 3-2.7.1以化學浴成長氧化鋅界面層於CuInS2奈米管表 面上...........................................45 3-2.7.2 無鹼化學浴成長氧化鋅複合薄膜............45 3-2.7.3溶劑熱法成長氧化鋅複合薄膜...............45 3-2.7.4氧化鋅複合薄膜退火處理...............................46 3-2.8組裝CuInS2奈米管/氧化鋅全固態無機太陽能電池..............46 3-3 分析及鑑定........................................48 3-3.1掃描式電子顯微鏡.......................................48 3-3.2紫外光/可見光光譜儀....................................49 3-3.3 X光繞射分析儀........................................51 第四章 結果與討論...........................................54 4-1 氧化鋅奈米線之特性分析..................................54 4-2 CuInS2奈米管之特性分析.............................56 4-3氣相氧化鋅複合薄膜之成長與分析............................60 4-3.1成長溫度對複合結構表面形態之影響.........................60 4-3.2成長溫度對複合結構特性之影響....................62 4-3.3成長時間對複合結構表面形態與特性之影響...................64 4-3.4不同退火條件之效應.....................................69 4-4液相氧化鋅複合薄膜之成長與分析...........................72 4-4.1溶液pH值對CuInS2奈米管表面成長氧化鋅晶種層之影響..72 4-4.2 CuInS2奈米管-氧化鋅複合薄膜表面形態分析.........74 4-4.3 CuInS2奈米管-氧化鋅複合薄膜結構分析....................76 4-4.4 不同成長溫度條件之效應................................78 4-4.5 溶劑熱法成長氧化鋅複合薄膜之表面形態與效能分析...........81 4-4.6化學浴法成長氧化鋅複合薄膜不同退火條件之效應......84 第五章 總結論..............................................86 第六章 未來工作與建議.......................................87 第七章 參考文獻............................................88

    [1] 能源知多少(2004)。能源教育資訊網。2004 年9 月2 日
    [2] M. Grätzel, Nature 2001, vol 414, p.338
    [3] Hans Joachim Möller, “Semiconductor for Solar Cells" ,Artech House 1993
    [4] Y. Hamakawa, “thin film solar cells-Next Generation Photovoltaic and its Application”, Springer-Verlag Berlin Heidelberg 2004
    [5] B. Tell, J. L. Shay, Physical review B 1971 ,vol 4, p. 8
    [6] A. Goetzberger et al, Materials Science and Engineering 2003, p.1–46
    [7] L. L. Kazmerski, Journal of Electron Spectroscopy and Related Phenomena 2006, vol 150, p.105–135
    [8] M. A. Green, K. Emery, D. L. King et al., Prog. Photovoltaics , vol 15, p.35
    [9] B. Oregan, M. Gratzel, Nature 1991, vol 353, p.737
    [10] H. Yunbin, “CuInS2 Thin Films for Photovoltaic:RF Reactive Sputter Deposition and Characterization”, Dissertation Justus-Liebig -Universität Gießen 2003
    [11] R. S. Roth, H. S. Parker, W. S . Brower, Mater. Res. Bull 1973, vol 8, p.333
    [12] M. T. Ng, C. B. Boothroyd, J. J. Vittal , J. Am. Chem. Soc 2006,vol 128, p.7118
    [13] M. E. Norako, R.L. Brutchey, Chem. Mater 2010, vol 22, p.1613–1615
    [14] Y. Qi, Q.Liu, K.Tang, J. Phys. Chem. C 2009, vol 113, p.3939-3944
    [15] A. Luque, S. Hegedus, ”Handbook of photovoltaic science and engineering “, Wiley 2003
    [16] T. Yamamoto, I. V. Luck, R. Scheer, Applied Surface Science 2000, vol 159–160, p.350–354
    [17] B. Tell, J. L. Shay, and H. M. Kasper, J. Appl. Phys 1972, vol 43,p.2469
    [18] H. J. Lewerenz, Sol. Energy Mater. Sol. Cells 2004, vol 83, p.39589
    [19] A. Rockett, R.W. Birkmire, J. Appl. Phys 1991 , vol 70, p.8
    [20] M. Ranzaril , M. Abaab, B. Rezig, M. Brunei, Mater. Res. Bull 1997, vol 32, p.10094015
    [21] D. S. Su, W. Neumann, R. Hunger, P. Schubert-Bischoff, M.Giersig , H. J. Lewerenz, R. Scheer, E. Zeitler, Applied Physics Letters 1998, vol 73, p.785-787
    [22] C. Guill´en, Semicond. Sci. Technol 2006, vol 21, p.709
    [23] J. Eberhardt, H. Metzner, R. Goldhahn, F. Hudert, U. Reislfhner,C.Hqlsen, J. Cieslak, Th. Hahn, M. Gossla, A. Dietz, G. Gobsch, W.Witthuhn, Thin Solid Films 2005, vol 415, p.480–481
    [24] K. Kenchi, S. Nakamura, Sol. Energy Mater. Sol. Cells 1997, vol 49, p.327
    [25] G. P. Matthew, A. Vahid, G. Brian, P. S. Johanna, D. Lawrence, D.Ananth, P. F. Barbara, J. Am. Chem. Soc 2008, vol 49,p.16770-16777
    [26] Q. J. Guo, S. J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire,E.A.Stach, R. Agrawal, H.W. Hillhouse, Nano Lett 2008,p.2982–2987
    [27] W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. Jay Chey, O.Gunawan, Chem. Mater 2010, vol 22, p.1010–1014
    [28] D. B. Mitzi, Adv.Mater 2009, vol 21, p.3141-3158
    [29] L. Li, N. Coates, D. Moses, J. Am. Chem. Soc 2010, vol 132,p.22–23
    [30] T. Terasako, U. Yuji, I. Seiki, K. Tetsuya, S. Shirakata, Phys. stat.sol 2006, vol 3, p.2588
    [31] M. Krunksa, O. Bijakina, T. Varema, V. Mikli, E. Mellikov, Thin Solid Films 1999, vol 338, p.125
    [32] B. Berenguier, H. J. Lewerenz, Electrochem. Comm 2006 , vol 8,p.16590
    [33] T.Wilhelm, B. Berenguier, M. Aggour, M. Kanis, H. J. Lewerenz,C. R.Chimie 2006, vol 9, p.294
    [34] O. Frederick, Adurodija, J. Song, D. K. Sang, K. K. Seok, H.Y.Kyung, Jap. J. App. Phys 1998, vol 37, p.4248
    [35] M. Gossla, H. Metzner, H. E. Mahnke, Jap. J. App. Phys 1999, vol 86, p.3624
    [36] Y. Onuma, K.Takeuchi, S.Ichikawa, M.Harada, H.Tanaka,
    A.Koizumi , Y.Miyajima, Sol. Energy Mater.Sol.Cells 2001, vol 69,p.261
    [37] M. Krunksa, O. Bijakina, T. Varema, V. Mikli, E. Mellikov, Thin Solid Films 1999, vol 338, p.125
    [38] B. Berenguier, H. J. Lewerenz, Electrochem. Comm 2006 , vol 8,p.165
    [39] T.Wilhelm, B. Berenguier, M. Aggour, M. Kanis, H. J. Lewerenz,C. R.Chimie 2006, vol 9, p.294
    [40] T. Negami, Y. Hashimoto, M. Nishitani, T. Wada, Sol. Energy Mater. Sol. Cell 1997, vol 49, p.343
    [41] C. H. Ku, H. H. Yang, G. R. Chen, J. J. Wu, Crystal Growth & Design 2008, vol. 8, p.283-290
    [42] C. H. Ku, J. J. Wu, Nanotechnology 2007, vol 18, p.505706
    [43] 古鎮豪,博士論文(國立成功大學,2007)
    [44] E. Hosono, Journal of Colloid and Interface Science 2004, vol 272,p.391–398
    [45] M. Gossla, H. Metzner, H. E. Mahnke, Jap. J. App. Phys 1999, vol 86, p.3624
    [46] Z. Yong, A. E. Rodrigues, Energy Conversion and Management 2002 , vol 43, p.1865–1876
    [47] H. O. Pierson,” Handbook of chemical vapor deposition”, William Andrew 1999
    [48] A. Janotti, C. G. Van deWalle ,Rep. Prog. Phys 2009, vol 72,p.12650191
    [49] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H. W. Schock, Thin Solid Films 2000, vol 361-362, p.161-p166
    [50] http://www.pvresources.com/en/technologies.php
    [51] M. Kemell, M. Ritala, M. Leskelä, Critical Reviews in Solid State and Materials Sciences 2005, vol 30, p.1–31
    [52] S. Sadewasser, W. Bremsteller, T. Plake, C. A. Kaufmann, Ch.Pettenkofer , J. Vac. Sci. Technol. B 2008, vol 26, p.3
    [53] N. Barreau ,Solar Energy 2009, vol 83, p.363–371
    [54] F. Lenzmann, M. Nanu, O. Kijatkina, A. Belaidi, Thin Solid Films 2004, vol 451, p.639
    [55] A. Luque, S. Hegedus, “Handbook of Photovoltaic Science and Engineering “, Wiley 2003, p.63
    [56] http://www.newport.com/store/genproduct.aspx?id=411919&lang=1033 §ion=Detail
    [57] J. Nelson, “The Physics of Solar Cells”, Imperial College Press 2003
    [58] 汪建民, 材料分析, 民全書局2004
    [59] JASCO V-670 60 mm ψ integrating Sphere Handware/Function Manual
    [60] R. T. Zaera, M. A. Ryan, A. Katty, G. Hodes, S. bastide, C. L.Clement,C.R. Chimie 2005, article in press
    [61] 賴致遠,碩士論文(國立成功大學,2006)
    [62] 蔣婉婷,碩士論文(國立成功大學,2009)
    [63] K. W. Chang, J. J. Wu, J. Phys. Chem. B 2005, vol.109,
    p.13572-13577
    [64] H. Morioka, H. Tagaya, M. Karasu et al., Inorg. Chem 1999, vol 38,p.4211
    [65] R. Q. Song, A. W. Xu, B. Deng et al., Adv. Funct. Mater 2007, vol 17, p.296

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE