簡易檢索 / 詳目顯示

研究生: 潘永歷
Pan, Yong-Li
論文名稱: 以基質輔助雷射脫附游離飛行時間質譜術與拉曼散射光譜術鑑定生長初期的病原性麴菌與念珠菌
Identification of Pathogenic Aspergillus and Candida Species at the Early Growth Stages by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry and Raman Spectroscopy
指導教授: 張憲彰
Chang, Hsien-Chang
共同指導教授: 張長泉
Chang, Tsung Chain
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 196
中文關鍵詞: 致病麴菌致病念珠菌基質輔助雷射脫附游離飛行時間質譜術顯微拉曼光譜術
外文關鍵詞: Pathogenic Aspergillus species, Pathogenic Candida species, MALDI-TOF mass spectrometry, Raman microspectroscopy
相關次數: 點閱:209下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   侵犯性真菌病於免疫功能低下、免疫功能抑制以及重症病人有很高的發生率、致死率以及死亡率。受感染病人的低存活率,部分歸咎於早期診斷和治療侵犯性真菌病的困難性;感染侵犯維生器官的各種真菌不但生長緩慢而且具有不同的抗藥性。常見致命真菌菌種有較高的分離率以及致病性,而抗真菌藥物是有效治療這些真菌感染的方法;然而不同的真菌菌種對某些抗真菌藥物具有不同的感受性,而無法以這些藥物治療所有的真菌感染。目前這類疾病的傳統診斷方法(例如臨床症狀、影像診斷以及生化免疫試驗),其特異性仍不足以區別診斷不同的致病真菌至屬或種的層次。顯微鏡下的形態學鑑定可區別診斷某些致病真菌菌屬;然而這些方法需培養較久的時間、鑑定不易、很難準確地診斷致病真菌菌種。
      本論文的研究動機為:解決傳統鑑定/診斷真菌的困境,避免因延遲或不準確的診斷而造成感染致命真菌病人的死亡;本論文的研究目的為:提出質譜與拉曼散射光譜搭配互補的方法,以適用於培養早期之各個分化階段進行致病真菌菌種診斷及抗真菌藥物敏感菌種篩檢;並提供較多樣的分子資訊,以區別診斷不同的致病真菌至種的層次。本論文所使用的真菌為:先以來自台灣或荷蘭菌種中心的參考菌株建立真菌菌種的質譜與拉曼光譜資料庫,再以來自台灣(台南成大醫院、花蓮慈濟醫院)、英國(Leeds 醫院)及法國(Angers 醫院)的臨床檢體,以及其它參考菌株進行測試。本論文的研究過程:首先發展適合真菌培養初期之不同階段檢測的質譜或拉曼光譜感測技術;接著統計分析這些波峰譜線的再現性、特異性與重疊性、偏離容忍度等,以建立不同菌種之特徵峰資料庫並建立峰值比對及菌種診斷準則;然後再以臨床及參考菌株評估其診斷能力。樣本的光譜經品質管制,訊號不佳的樣本需重做實驗或剔除,以避免因訊號不佳所造成的診斷能力下降。本論文之研究成果共分為五項:
      (一)發展質譜感測技術供早期鑑定常見致命麴菌菌種:三氟醋酸蛋白質萃取法適用於麴菌菌種的質譜檢測;其可於孢子形成的第一階段(培養 1–2 天)與第二階段(培養 2–4 天)進行鑑定。孢子形成的第二階段含有較多不同分化細胞的蛋白質分子特徵峰可供比對鑑定。經 16 株來自菌種中心的參考菌株及 10 株來自不同醫院臨床檢體的真實樣本之評估,質譜的重疊峰與特徵峰資料庫搭配合適的鑑定標準(大於 50% 的符合率)可正確地鑑定常見致命麴菌至「種」的分類層次。
      (二)發展非破壞性之單細胞之顯微拉曼光譜感測技術以供孢子開始形成時(培養 2 天)鑑定診斷三種常見致命麴菌菌種(薰煙麴菌、黑麴菌以及黃麴菌):單一孢子經簡單塗抹分離而得,並固定在鍍金的載玻片上。成熟孢子可由亮視野顯微鏡下的深色灰階影像或明顯的共振或一般拉曼光譜鑑別;這些訊號可能來自孢子的天然色素、蛋白質及核酸等分子。經 32 株參考菌株及 19 株臨床檢體等真實樣本評估,光譜的重疊峰與特徵峰資料庫搭配合適的鑑定標準(大於 50% 的符合率)可精確地鑑定念珠菌到「種」的分類層次;其靈敏度為 100%,而特異性為 88%–100%。
      (三)發展 MALDI-TOF 質譜感測技術以供早期(培養 1–2 天)鑑定致命念珠菌菌種:加熱去活化結合甲酸蛋白質萃取法較適用於念珠菌的 MALDI-TOF 質譜檢測。取自菌落的足夠酵母菌細胞(> 106 cells/mL)可以被測出明顯的質譜訊號;而取自陽性血瓶的足夠真菌細胞之質譜訊號則易受血液成分所干擾與抑制。固態培養的念珠菌形態一致(酵母菌型),其質譜的再現性與特異性較高。而陽性血瓶培養的念珠菌型態則不一致(含酵母菌、假菌絲及真菌絲),其質譜的特異性較低。經 19 個參考菌株的階層群集分析,以及 30 株菌種中心樣本與 21 株來自不同醫院的臨床樣本進行評估,質譜資料庫搭配適合的鑑定標準(比對到 8 個特徵峰以上)可鑑定診斷致病念珠菌到「種」的層次。
      (四)發展拉曼光譜感測技術以供增長初期(培養 1–2 天)進行鑑定致命白色念珠菌種:單一酵母菌型態活菌可經由固態培養或是添加 0.125 μg/mL flucytosine 之液態培養(於 63 小時內無細胞毒殺效應)而取得,並固定在鍍金玻片或矽晶片上以避開紅外光雷射對玻璃所產生的螢光。以拉曼光譜圖形結合多變數分析法(主成分分析及階層群集分析),可將具有相似波譜之 6 種酵母菌(共 7 株)分為三群。經 13 個樣本評估,以光譜圖形結合特徵峰比對(比對到 1 個特徵峰以上)之鑑定法,則可鑑定白色念珠菌到「種」的層次。
      (五)發展表面增顯(共振)拉曼光譜感測技術,以供生長初期(培養 1–2 天)篩檢核黃素陽性(fluconazole 敏感性)念珠菌菌種:首先於固態培養早期的可見菌落取得足夠的酵母菌細胞(> 108 cells/mL),並和高濃度的奈米銀粒子混合以快速檢測並增強細胞表面分子的拉曼光譜訊號。接著以多變數分析法(主成分分析及階層群集分析)區別不同菌種的相似光譜;然而,部分菌種可能因為不同的細胞表面分泌物所造成的訊號干擾,而無法清楚地鑑別到「種」的層次。此外,念珠菌被培養於相對厭氧環境及缺鐵培養液中以進行增長與醱酵,並於液態培養的指數增長期取得足夠的菌絲及酵母菌細胞。經去除培養液後,以高濃度奈米銀粒子檢測與增強微量殘留在菌體表面分子的拉曼光譜訊號。然後再和核黃素的特徵峰資料庫比對,並以合適的鑑定標準(大於 50% 的符合率)篩檢出具有明顯核黃素訊號的真菌樣本。經 14 株臨床檢體評估,此二分法可正確地鑑別核黃素陽性(fluconazole 敏感性)念珠菌與核黃素陰性(fluconazole 抗藥性)。
      這個方法可提供豐富的分子資訊,以鑑定致病真菌至種的層次;其亦可於真菌緩慢生長的初期檢測分子表現,以縮短傳統形態學鑑定與藥物感受性試驗所需之冗長培養時間。

      Invasive mycoses have high incidence, fatality, and mortality in immunocompromised, immunosuppressed, and critically ill patients. The low survival rate is partially attributed to the difficulties of early diagnosis and treatment of these diseases; various lethal fungal species invading vital organs not only grow slowly but also have different drug resistance. Common lethal fungi have higher isolation rate and virulence than other fungal species and some of them can be treated by antifungals; however, there are different susceptibilities of different fungal species against certain antifungals. It is difficult to effectively treat all fungal species using these drugs. Current diagnostic methods (such as clinical manifestations, radiological images, and biochemical/immunological tests) are not specific enough to differentially diagnose these pathogenic fungi to the genus or species level. Morphological features of colonies and microscopic images can differentially identify some pathogenic fungi to the genus level; however, they are very time-consuming, and difficult to accurately diagnose these fungi to the species level.
      The motivation of this dissertation is to resolve the dilemma of traditional diagnostic methods and then prevent the death of fungus-infected patients owing to the delayed and inaccurate diagnosis and treatment. The purpose of this dissertation is to propose a complementary method based on MALDI-TOF mass spectrometry and Raman spectroscopy for early identification of different lethal fungal species (Aspergllus and Candida) and screening antifungal-sensitive species at different differentiated phases of the early growth stage; besides, the purpose is to provide plentiful molecular information to accurately identify common pathogenic fungi to the species level. The reference strains for establishing spectral databases were purchased from the collection centers of Taiwan (BCRC) and Netherlands (CBS); clinical specimens were obtained from hospitals in Taiwan (Cheng Kung University Hospital and Tzu Chi General Hospital), UK (Leeds Hospital), and France (Angers Hospital). The research process is briefly described as follows. First, appropriate bio-sensing approaches based on MALDI-TOF spectrometry and Raman spectroscopy were developed to fit the detection of different phenotypes of different fungi at different early growth stages on solid agar plates or liquid media. Then, the strain-to-strain reproducibility, species-to-species specificity/overlap, and the tolerance of deviation were statistically analyzed to characterize and establish spectral databases of different fungal species; besides, the criteria for identifying identical peaks and diagnosing fungal species were established. Furthermore, real samples from collection centers and clinical specimens from hospitals were used to evaluate the diagnostic performance of the criteria. The spectral quality of test samples was controlled. The samples with very weak spectral signals were improved/acquired by appropriate experimental parameters again or deleted in order to prevent the decrease of diagnostic performance owing to the poor signal quality. Major results of this dissertation are divided into five parts:
      (1) Development of mass spectral sensing technologies for early identification of common lethal Aspergillus species: Trifluoroacetic acid is more suitable for extracting fungal proteins of Aspergillus for MALDI-TOF mass detection. These proposed approaches based on MALDI-TOF mass spectra can be used to identify different Aspergillus species at the early growth stage I (culturing for 1–2 days) and stage II (culturing for 2–4 days) of fungal sporulation. There are more species-specific peaks originating from various differentiated cells at the growth stage II of sporulation for comparison and identification. The criteria (> 50% matching rate of overlapping/specific peaks in the database) can be used to identify common lethal Aspergillus to the “species” level from the established spectral database; this was demonstrated by testing 16 reference strains from the collection center and 10 clinical specimens from hospitals.
      (2) Development of nondestructive approaches based on Raman microspectroscopy to detect a single spore at the onset of sporulation (culturing for 2 days) and species diagnosis of A. fumigatus, A. flavus, and A. niger: A single conidiospore was simply prepared by scratching the surface of colonies, diluting them in sterile de-ionized water, smearing the suspension on a gold-coated glass slide, and air drying to immobilize spores. The mature single spores of A. fumigatus, A. flavus, and A. niger can be identified by dark appearances under bright-field microscopes or prominent resonance/normal spectra; the characteristic spectral peaks of these Aspergillus species were tabled to establish the reference database for identification of real samples; these signals may be originating from natural pigments, proteins and nucleic acids. The criteria (> 50% matching rate of overlapping/specific peaks in the database) can identify pathogenic Aspergillus to the “species” level with high sensitivity (100%) and specificity (88–100%) in the evaluation of 32 reference strains from the collection center and 19 clinical specimens from the hospitals.
      (3) Development of MALDI-TOF mass bio-sensing technologies for early identification of lethal Candida species at early growth stages (culturing for 1–2 days): Wet-heating inactivation combined with formic-acid extraction of proteins is more feasible for MALDI-TOF mass detection of Candida species. Enough yeast cells (> 106 cells/mL) acquired from the early stage of visible colonies cultured on agar plates can be detected by MALDI-TOF mass spectrometry; in contrast, MALDI-TOF mass signals of enough fungal cells acquired from the blood bottles are inhibited by the components of blood. There is a uniform phenotype (yeast-like cells) of Candida species culture on agar plates; MALDI-TOF mass signals of them are strain-to-strain reproducible and species-to-species specific. In contrast, there are various phenotypes (yeast, pseudohyphae, and true hyphae) of Candida species culture in the blood bottles. MALDI-TOF mass signals of them have low reproducibility and low specificity. Databases of species-specific mass peak were established to identify different Candida species. The appropriate criteria (> 8 matched peaks of specific peaks in the database) can identify Candida to the “species” level with high sensitivity (100%) and specificity (100%) by the evaluation of 30 reference strains from different collection centers and 21 clinical specimens from different hospitals.
      (4) Development of Raman bio-sensing technologies for early identification of lethal Candida at early growth stages (culturing for 1–2 days): Single yeast cells can be acquired from visible colonies on agar plates and flucytosine-treated Candida. Flucytosine with the concentration of 0.125 μg/mL can prevent the formation of hypha-like cells of Candida species cultured in liquid media without significant cytotoxic effect until the treatment for 63 hours. Single yeast cells were immobilized on silver-coated electrodes on glass slides to avoid strong fluorescence of glass induced by an NIR laser. Six different yeast-like fungal species (7 strains) can be discriminated into three groups by their spectral patterns with multivariate analysis (principal component analysis and hierarchical cluster analysis). By the evaluation of 13 test fungal samples, C. albicans can be further identified by comparing both the spectral pattern and the species-specific peak (> 1 matched peak of specific peaks in the database).
      (5) Development of surface-enhanced (resonance) Raman bio-sensing technologies for screening riboflavin-positive (fluconazole-sensitive) species of Candida at the early growth stages (culturing for 1–2 days): First, enough yeast cells (> 108 cells/mL) acquired from visible colonies on agar plates were mixed with high-concentration silver nanoparticles for rapid detection and enhance Raman signals of molecules on the cell surface. Multivariate data analysis (principal component analysis and hierarchical cluster analysis) was used to discriminate similar spectral patterns of different species; however, partial strains which cannot be clearly discriminated to the “species” level may be due to the interference of various secreted molecules on the surface of yeast-like cells. In addition, Candida was cultured in liquid media (lack of ion) under a relatively anaerobic condition for fermentation and growth. Enough hypha-like and yeast-like cells were acquired from the log phase in liquid media. After washing out growth media, high-concentration silver nanoparticles were used for rapidly probing trace residual molecules on the cell surface and enhancing their Raman signals. Then, these spectral peaks were compared with the database of specific peaks of riboflavin. The fungal sample which has strong SERS signals of riboflavin was identified as riboflavin-positive by the appropriate criterion (> 50% matching rate of SERS peaks of riboflavin). Riboflavin-positive species (fluconazole-sensitive) and riboflavin-negative species (fluconazole-resistant) species of Candida can be correctly classified by the evaluation of 14 clinical specimens cultured in liquid media.
      In conclusion, this new complementary method can provide rich molecular information to identify/diagnose pathogenic fungi to the species level. In addition, this can detect the molecular expression at early stages of the slow fungal growth to effectively shorten the long-term fungal culture of traditional morphological identification and susceptibility testing.

    中文摘要 I Abstract II Acknowledgement IV Table of Contents V List of Tables IX List of Figures XII Chapter 1 Introduction 1 1.1 Superficial, Cutaneous and Subcutaneous Mycoses 1 1.2 Invasive/Systemic Mycoses and Lethal Fungi 3 1.3 Invasive Aspergillosis and Lethal Aspergillus Species 6 1.4 Invasive Candidiasis and Lethal Candida Species 8 1.5 The Importance of Relatively Rapid and Species-Level Diagnoses of Lethal Aspergillus and Lethal Candida 10 1.6 Modern Bio-Sensing Technologies for Microbial Identification and Diagnosis 14 1.6.1 MALDI-TOF Mass Spectrometry 16 1.6.2 Raman Microspectroscopy 18 1.7 Motivation and Purpose 21 1.8 Organization Chart of the Dissertation 23 1.9 Workflow of Development and Diagnostic Process 24 Chapter 2 Materials and Methods 28 2.1 Microorganisms 28 2.1.1 Pathogenic Aspergillus Species 29 2.1.2 Pathogenic Candida Species 36 2.1.3 Other Microorganisms and Host Cells for Raman Spectral Study 43 2.2 Identification of Common Lethal Aspergillus at Early Growth Stages Based on MALDI-TOF Mass Spectrometry 44 2.2.1 Preparing Samples 44 2.2.2 MALDI-TOF MS Detection 45 2.3 Nondestructive Identification of the Most Common Lethal Aspergillus at the Initial Onset of Sporulation Using Raman Spectral Peaks of Single Mature Conidiospores 52 2.3.1 Preparing Single Mature Aspergillus Spores 52 2.3.2 Bright-Field Microscopic and Resonance/Normal Raman Spectral Detection of Single Mature Spores 54 2.3.3 Establishing the Screening Criteria of Mature Spores Both by Their Dark Appearance under the Bright-Field Microscope and by Their Prominent Resonance/Normal Raman Spectra 60 2.3.4 Establishing Species Diagnostic Criteria Based on Reproducible Raman Peaks 60 2.4 Identification of Aspergillus terreus by Surface-Enhanced Raman (Resonance) Spectroscopy 62 2.4.1 Colloid Silver 62 2.4.2 Chemical Extraction and Concentration of Molecules from Aspergillus Species 64 2.4.3 SERS/SERRS Raman Spectral Detection Based on Silver Nanoparticles 64 2.5 Identification of Common Lethal Candida at the Early Growth Stage Based on MALDI-TOF Mass Spectrometry 65 2.5.1 Preparing Samples of Candida Species 65 2.5.2 MALDI-TOF MS Detection of Candida Species 68 2.5.3 Mass Spectral Pattern Analysis of Candida Species 69 2.6 Normal Raman Spectra of Yeast-Like Cells of Candida Species 70 2.6.1 Preparing Single Yeast-Like Cells of Candida Species 70 2.6.2 Normal Raman Spectral Detection of Single Yeast-Like Cells of C. albicans, Other Candida Species and Other Yeast Species 73 2.6.3 Normal/Resonance Raman Spectral Detection of an Oocyst Immobilized by Optical Tweezers or a Host Cell Adhered on a Coverslip Bottom Dish 74 2.7 Surface-Enhanced (Resonance) Raman Spectral Detection of Molecules on the Cell Surface of Candida Species 75 2.7.1 Colloidal Silver 75 2.7.2 SERS/SERRS Raman Detection of Yeast-Like Cells Cultured on SDA Plates 75 2.7.3 SERS/SERRS Raman Detection of Bacterial Cells 76 2.7.4 SERS/SERRS of Molecules on the Cell Surface of Hypha-Like and Yeast-Like Cells Culture in Liquid Media 77 2.8 Determining Diagnostic Criteria and Evaluating Diagnostic Ability 79 Chapter 3 Results and Discussion 82 3.1 Identification of Common Lethal Aspergillus at Early Growth Stages Based on MALDI-TOF Mass Spectrometry 82 3.1.1 MALDI-TOF Mass Spectra of Intact Cells and TFA-Extracted Proteins of A. fumigatus 82 3.1.2 MALDI-TOF Mass Spectra of Extracted Proteins of the Aspergillus Species at Different Growth Stages of Asexual Sporulation 85 3.1.3 Relative Variations of m/z Ratios and Relative Intensities of Strain-to-Strain Reproducible Peaks of Sporulating A. fumigatus 89 3.1.4 Evaluating Diagnostic Ability Using Species-Specific MALDI-TOF Mass Peaks 93 3.2 Nondestructive Identification of the Most Common Lethal Aspergillus at the Initial Onset of Sporulation Using Resonance/Normal Raman Spectral Peaks of Single Mature Conidiospores 94 3.2.1 Nondestructively Identifying a Single Mature Spore Based on the Dark Appearance of the Bright-Field Image and the Prominent Raman Signal 94 3.2.2 Characterizing Aspergillus Spores Based on Bright-Field Images and Resonance/Normal Raman Spectra 100 3.2.3 Evaluating Diagnostic Ability Using Species-Specific Raman Peaks and Images of Mature Dark Spores 106 3.2.4 Discussion of Identifying Single Mature Spores by Resonance/Normal Raman Spectra 112 3.3 Identification of Aspergillus terreus by Surface-Enhanced (Resonance) Raman Spectroscopy 115 3.3.1 SERS/SERRS Raman Spectra of Aspergillus Species and Cluster Analysis 115 3.4 Identification of Common Lethal Candida at the Early Growth Stage Based on MALDI-TOF Mass Spectrometry 116 3.4.1 MALDI-TOF Mass Spectra of Formic Acid-Extracted Proteins from Living Intact Cells and Wet-Heating Inactivated Yeast-Like Cells of C. albicans 116 3.4.2 MALDI-TOF Mass Spectra of Extracted Proteins of Different Phenotypes of C. albicans Cultured in Different Media 119 3.4.3 MALDI-TOF Mass Spectra of 7 Different Candida Species Cultured on SDA Plates and Their Diagnostic Criteria 121 3.4.4 Evaluating Diagnostic Ability Using Specific MALDI-TOF Mass Peaks 121 3.5 Identification of Single Yeast-Like Cells of Common Lethal Candida at the Early Growth Stage Based on Normal Raman Spectra 130 3.5.1 Nondestructively Identification of Single Yeast-Like Cells Prepared by Dried Droplet Coating, Smearing, DEP Force Trapping 130 3.5.2 Characterization of Single Yeast-Like Cells of Different Candida species Based on Scanning Electric Microscopic Images, Bright-Field Images, and Normal Raman Spectra 132 3.5.3 Classification of Yeast Species Using Spectral Patterns and Species-Specific Raman Peaks 136 3.5.4 Identification of Immobilized Single Yeast-Like Cells and Other Cells by Their Normal Raman Spectral Peaks 139 3.5.5 Evaluating the Ability to Identify C. albicans Using Specific Normal Raman Spectral Peaks 139 3.6 Identification of Molecules on the Cell Surface of Lethal Candida Species at Early Growth Stages Based on Surface-Enhanced (Resonance) Raman Spectroscopy 143 3.6.1 Discrimination of Lethal Candida Species from the Visible Colonies on Agar Plates by SERS/SERRS Spectral Patterns 143 3.6.2 Identification of Fluconazole-Sensitive/Riboflavin-Positive Lethal Candida at the Log Phase in Liquid Media Based on Surface-Enhanced Resonance Raman Spectral Peaks 150 3.6.3 Detection of Carotenoid Molecules on the Cell Membrane of Staphylococcus aureus Based on Surface-Enhanced Resonance Raman Spectral Peaks 159 Chapter 4 Conclusions 161 Chapter 5 Prospects 163 References 165 Appendix A (Responses to Commissioners' Comments, Suggestions and Questions) 182 Appendix B (List of Publications) 193 Appendix C (Brief Autobiography) 195 著作權聲明 196

    Aathithan, S., Plant, J.C., Chaudry, A.N., French, G.L., 2001. Diagnosis of bacteriuria by detection of volatile organic compounds in urine using an automated headspace analyzer with multiple conducting polymer sensors. J. Clin. Microbiol. 39, 2590–2593.
    Adams, T.H., Wieser, J.K., Yu, J.H., 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62, 35–54.
    Aebersold, R, Mann, M., 2003. Mass spectrometry-based proteomics. Nature 422, 198–207.
    Aimanianda, V., Bayry, J., Bozza, S., Kniemeyer, O., Perruccio, K., Elluru, S.R., Clavaud, C., Paris, S., Brakhage, A.A., Kaveri, S.V., Romani, L., Latgé, J.P., 2009. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460, 1117–1121.
    Alanio, A., Beretti J.L., Dauphin, B., Mellado, E., Quesne, G., Lacroix, C., Amara, A., Berche, P., Nassif, X., Bougnoux, M.E., 2010. MALDI-TOF Mass Spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clin. Microbiol. Infect. Accepted manuscript, doi: 10.1111/j.1469-0691.2010.03323.x.
    Alispahic, M., Hummel, K., Jandreski-Cvetkovic, D., Nöbauer, K., Razzazi-Fazeli, E., Hess, M., Hess, C., 2010. Species-specific identification and differentiation of Arcobacter, Helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis. J. Med. Microbiol. 59, 295–301.
    Altman, D.G., Bland, J.M., 1994. Diagnostic tests 1: sensitivity and specificity. Br. Med. J. 308, 1552.
    Amiri-Eliasi, B., Fenselau, C., 2001. Characterization of protein biomarkers desorbed by MALDI from whole fungal cells. Anal. Chem. 73, 5228–5231.
    Anderson, I., Brass, A., 1998. Searching DNA databases for similarities to DNA sequences: when is a match significant? Bioinformatics 14, 349–356.
    Arriaga, E.A., 2009. Single cell heterogeneity. In: Anselmetti, D. (Ed.), Single cell analysis: technologies and applications. Wiley-VCH, Weinheim, pp. 224–227.
    Assaff, R.R., Weil, M.L., 1996. The superficial mycoses. Dermatol. Clin. 14, 57–67.
    Bakheshwain, S., El Khizzi, N., Al Rasheed, A.M., Al Ajlan A., Parvez, S., 2011. Isolation of opportunistic fungi from dermatophytic samples. Asian J. Dermatol. 3, 13–19.
    Bantscheff, M., Duempelfeld, B., Kuster, B., 2002. An improved two-step calibration method for matrix-assisted laser desorption/ionization time-of-flight mass spectra for proteomics. Rapid Commun. Mass Spectrom. 16, 1892–1895.
    Barnes, P.D., Marr, K.A., 2006. Aspergillosis: spectrum of disease, diagnosis, and treatment. Infect. Dis. Clin. North Am. 20, 545–561.
    Barns, S.M., Lane, D.J., Sogin, M.L., Bibeau, C., Weisburg, W.G., 1991. Evolutionary relationships among pathogenic Candida species and relatives. J. Bacteriol. 173, 2250–2255.
    Beavis, R.C., Chait, B.T., 1989. Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Commun. Mass Spectrom. 3, 432–435.
    Bell, S.E.J., Sirimuthu, N.M.S., 2008. Quantitative surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37, 1012–1024.
    Bennett, J.W. 2009. Aspergillus: a primer for the novice. Med. Mycol. 47 (Suppl. 1), S5–S12.
    Bennett, J.W., 2010. An overview of the genus Aspergillus. In: Machida, M., Gomi, K. (Eds.), Aspergillus: molecular biology and genomics. Caister Academic Press, Norfolk, pp. 1–17.
    Bhatta, H., Goldys, E.M., Learmonth, R.P., 2006. Use of fluorescence spectroscopy to differentiate yeast and bacterial cells. Appl. Microbiol. Biotechnol. 71, 121–126.
    Bizzini, A., Greub, G., 2010. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin. Microbiol. Infect. 16, 1614–1619.
    Brakhage, A.A., Liebmann, B., 2005. Aspergillus fumigatus conidial pigment and cAMP signal transduction: significance for virulence. Med. Mycol. 43, 75–82.
    Breakspear, A., Momany, M., 2007. The first fifty microarray studies in filamentous fungi. Microbiology. 153, 7–15.
    Brehm-Stecher, B.F., Johnson, E.A., 2004. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538–559.
    Brekenfeld, A., 2010. Calibration curves for time-of-flight mass spectrometers. United States Patent US 7,851,746 B2.
    Brimo, F., Ouad, L., Brodeur, J., Charbonneau, M., Auger, M., 2009. Unusual microbial organisms seen in two cervical smears. Diagn. Cytopathol. 37, 836–838.
    Brinkman, N.E., Haugland, R.A., Wymer, L.J., Byappanahalli, M., Whitman, R.L., Vesper, S.J., 2003. Evaluation of a rapid, quantitative real-time PCR method for enumeration of pathogenic Candida cells in water. Appl. Environ. Microbiol. 69, 1775–1782.
    Brown, D.W., Salvo, J.J., 1994. Isolation and characterization of sexual spore pigments from Aspergillus nidulans. Appl. Environ. Microbiol. 60, 979–983.
    Budich, C., Neugebauer, U., Popp, J., Deckert, V., 2008. Cell wall investigations utilizing tip-enhanced Raman scattering. J. Microsc. 229(Pt3), 533–539.
    Buskirk, A.D., Hettick, J.M., Chipinda, I., Law, B.F., Siegel, P.D., Slaven, J.E., Green, B.J., Beezhold, D.H., 2011. Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi. Anal. Biochem. 411, 122–128.
    Cañamares, M.V., Garcia-Ramos, J.V., Domingo, C., Sanchez-Cortes, S., 2006. Surface-enhanced Raman scattering study of the anthraquinone red pigment carminic acid. Vib. Spectrosc. 40, 161–167.
    Cao, X., Li, S., Chen, L., Ding, H., Xu, H., Huang, Y., Li, J., Liu, N., Cao, W., Zhu, Y., Shen, B., Shao, N., 2009. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res. 37, 4621–4628.
    Cao, Y.Y., Cao, Y.B., Xu, Z., Ying, K., Li, Y., Xie, Y., Zhu, Z.Y., Chen, W.S., Jiang, Y.Y., 2005. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob. Agents Chemother. 49, 584–589.
    Caras, S., Janata, J., 1980. Field effect transistor sensitive to penicillin. Anal. Chem. 52, 1935–1937.
    Carbonnelle, E., Beretti, J.L., Cottyn, S., Quesne, G., Berche, P., Nassif, X., Ferroni, A., 2007. Rapid identification of staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 45, 2156–2161.
    Caro, V., Njamkepo, E., Van Amersfoorth, S.C., Mooi, F.R., Advani, A., Hallander, H.O., He, Q., Mertsola, J., Riffelmann, M., Vahrenholz, C., Von König, C.H., Guiso, N., 2005. Pulsed-field gel electrophoresis analysis of Bordetella pertussis populations in various European countries with different vaccine policies. Microbes Infect. 7, 976–982.
    Chakrabarti, A., Chatterjee, S., Radotra, B.D., 2010. Cutaneous and wound aspergillosis. In: Pasqualotto, A.C. (Ed.), Aspergillosis: from diagnosis to prevention. Springer, Dordrecht, pp. 939–959.
    Chamrad, D.C., Koerting, G., Gobom, J., Thiele, H., Klose, J., Meyer, H.E., Blueggel, M., 2003. Interpretation of mass spectrometry data for high-throughput proteomics. Anal. Bioanal. Chem. 376, 1014–1022.
    Chang, C.W., Liao, J.D., Chang, H.C., Lin, L.K., Lin, Y.Y., Weng, C.C., 2011. Fabrication of nano-indented cavities on Au for the detection of chemically-adsorbed DTNB molecular probes through SERS effect. J. Colloid Interface Sci. 358, 384–391.
    Chang, H.C., Yang, C.C., Yeh, T.M., 1997. Detection of lipopolysaccharide binding peptides by the use of a lipopolysaccharide-coated piezoelectric crystal biosensor. Anal. Chim. Acta 340, 49–54.
    Chao, J.I., Perevedentseva, E., Chung, P.H., Liu, K.K., Cheng, C.Y., Chang, C.C., Cheng, C.L., 2007. Nanometer-sized diamond particle as a probe for biolabeling. Biophys. J. 93, 2199–2208.
    Chen, K.H., Li, M.J., Cheng, W.T., Balic-Zunic, T., Lin, S.Y., 2009. Identification of monoclinic calcium pyrophosphate dihydrate and hydroxyapatite in human sclera using Raman microspectroscopy. Int. J. Exp. Pathol. 90, 74–78.
    Chen, W.J., Tsai, P.J., Chen, Y.C., 2008. Functional nanoparticle-based proteomic strategies for characterization of pathogenic bacteria. Anal. Chem. 80, 9612–9621.
    Chen, H.J.H., Chen, T.F., Huang, S.R.S., Gong, J., Li, J.C., Chen, W.C., Hseu, T.H., Hsu, I.C., 2003. A novel micro-well array chip for liquid phase biomaterial processing and detection. Sens. Actuator A-Phys. 108, 193–200.
    Chen, P.L., Lo, H.J., Wu, C.J., Lee, H.C., Chang, C.M., Lee, N.Y., Wang, A.H., Lin, W.L., Ko, N.Y., Lee, C.C., Ko, W.C., 2011. Species distribution and antifungal susceptibility of blood Candida isolates at a tertiary hospital in southern Taiwan, 1999–2006. Mycoses 54, e17–e23.
    Chen, S.J., Su, Y.D., Hsiu, F.M., Tsou, C.Y., Chen, Y.K., 2005. Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis. J. Biomed. Opt. 10, 034005 (6 pages).
    Chen, Y., Mori, M., Pastusek, A.C., Schug, K.A., Dasgupta, P.K., 2011. On-line electrodialytic salt removal in electrospray ionization mass spectrometry of proteins. Anal. Chem. 83, 1015–1021.
    Chen, Y.C., Eisner, J.D., Kattar, M.M., Rassoulian-Barrett, S.L., Lafe, K., Bui, U., Limaye, A.P., Cookson, B.T., 2001. Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J. Clin. Microbiol. 39, 4042–4051.
    Cheng, I.F., Chang, H.C., Hou, D., Chang, H.C., 2007. An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1, 021503.
    Chernyshev, A.V., Tarasov, P.A., Semianov, K.A., Nekrasov, V.M., Hoekstra, A.G., Maltsev, V.P., 2008. Erythrocyte lysis in isotonic solution of ammonium chloride: theoretical modeling and experimental verification. J. Theor. Biol. 251, 93–107.
    Chi, H.W., Yang, Y.S., Shang, S.T., Chen, K.H., Yeh, K.M., Chang, F.Y., Lin, J.C., 2011. Candida albicans versus non-albicans bloodstream infections: the comparison of risk factors and outcome. J. Microbiol. Immunol. Infect. [Epub ahead of print]
    Choo-Smith, L.P., Edwards, H.G.M., Endtz, H.P., Kros, J.M., Heule, F., Barr, H., Robinson Jr., J.S., Bruining, H.A., Puppels, G.J., 2002. Medical applications of Raman spectroscopy: from proof of principle to clinical implementation. Biopolymers 67, 1–9.
    Choo-Smith, L.P., Maquelin, K., van Vreeswijk, T., Bruining, H.A., Puppels, G.J., Ngo Thi, N.A., Kirschner, C., Naumann, D., Ami, D., Villa, A.M., Orsini, F., Doglia, S.M., Lamfarraj, H., Sockalingum, G.D., Manfait, M., Allouch, P., Endtz, H.P., 2001. Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl. Environ. Microbiol. 67, 1461–1469.
    Christner M., Rohde, H., Wolters, M., Sobottka, I., Wegscheider, K., Aepfelbacher, M., 2010. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J. Clin. Microbiol. 48, 1584–1591.
    Chung, C.C., Cheng, I.F., Lin, C.C., Chang, H.C., 2010. Rapid quantification of bio-particles based on image visualisation in a dielectrophoretic microfluidic chip. Microfluid. Nanofluid. 10, 311–319.
    Chung, C.C., Cheng, I.F., Yang, W.H., Chang, H.C., 2011. Antibiotic susceptibility test based on the dielectrophoretic behavior of elongated Escherichia coli with cephalexin treatment. Biomicrofluidics 5, 021102.
    Cialla, D., Deckert-Gaudig, T., Budich, C., Laue, M., Möller, R., Naumann, D., Deckert, V., Popp, J., 2009. Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. J. Raman Spectrosc. 40, 240–243.
    Costas, M., Cookson, B.D., Talsania, H.G., Owen, R.J., 1989. Numerical analysis of electrophoretic protein patterns of methicillin-resistant strains of Staphylococcus aureus. J. Clin. Microbiol. 27, 2574–2581.
    Cummings, J.R., Jamison, G.R., Boudreaux, J.W., Howles, M.J., Walsh, T.J., Hayden, R.T., 2007. Cross-reactivity of non-Aspergillus fungal species in the Aspergillus galactomannan enzyme immunoassay. Diagn. Microbiol. Infect. Dis. 59, 113–115.
    De Buyser, M.L., Morvan, A., Grimont, F., el Solh, N., 1989. Characterization of Staphylococcus species by ribosomal RNA gene restriction patterns. J. Gen. Microbiol. 135, 989–999.
    De Gelder, J., De Gussem, K., Vandenabeele, P., Moens, L., 2007a. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38, 1133–1147.
    De Gelder, J., Scheldeman, P., Leus, K., Heyndrickx, M., Vandenabeele, P., Moens, L., De Vos, P., 2007b. Raman spectroscopic study of bacterial endospores. Anal. Bioanal. Chem. 389, 2143–2151.
    De Gussem, K., Vandenabeele, P., Verbeken, A., Moens, L., 2005. Raman spectroscopic study of Lactarius spores (Russulales, fungi). Spectrochim. Acta A Mol. Biomol. Spectrosc. 61, 2896–2908.
    De Gussem, K., Vandenabeele, P., Verbeken, A., Moens, L., 2007. Chemotaxonomical identification of spores of macrofungi: possibilities of Raman spectroscopy. Anal. Bioanal. Chem. 387, 2823–2832.
    De Pauw, B., Walsh, T.J., Donnelly, J.P., Stevens, D.A., Edwards, J.E., Calandra, T., Pappas, P.G., Maertens, J., Lortholary, O., Kauffman, C.A., Denning, D.W., Patterson, T.F., Maschmeyer, G., Bille, J., Dismukes, W.E., Herbrecht, R., Hope, W.W., Kibbler, C.C., Kullberg, B.J., Marr, K.A., Muñoz, P., Odds, F.C., Perfect, J.R., Restrepo, A., Ruhnke, M., Segal, B.H., Sobel, J.D., Sorrell, T.C., Viscoli, C., Wingard, J.R., Zaoutis, T., Bennett, J.E., 2008. Revised definitions of invasive fungal disease from the European organization for research and treatment of cancer/invasive fungal infections cooperative group and the national institute of allergy and infectious iiseases mycoses study group (EORTC/MSG) consensus group. Clin. Infect. Dis. 46, 1813–1821.
    De Respinis, S., Vogel, G., Benagli, C., Tonolla, M., Petrini, O., Samuels, G.J., 2009. MALDI-TOF MS of Trichoderma: a model system for the identification of microfungi. Mycol. Prog. 9, 79–100.
    Deisingh, K., Thompson, M., 2004. Biosensors for the detection of bacteria. Can. J. Microbiol. 50, 69–77.
    Demirev, P.A., Ho, Y.P., Ryzhov, V., Fenselau, C., 1999. Microorganism identification by mass spectrometry and protein database searches. Anal. Chem. 71, 2732–2738.
    Diba, K., Kordbacheh, P., Mirhendi, S.H., Rezaie, S., Mahmoudi, M., 2007. Identification of Aspergillus species using morphological characteristics. Pak. J. Med. Sci. 23, 867–872.
    Duthie, R., Denning, D.W., 1995. Aspergillus fungemia: report of two cases and review. Clin. Infect. Dis. 20, 598–605.
    Eckert, D.J., Sampath, R., Li, H., Massire, C., Matthews, H.E., Toleno, D., Hall, T.A., Blyn, L.B., Eshoo, M.W., Ranken, R., Hofstadler, S.A., Tang, Y.W., 2010. New technology for rapid molecular diagnosis of bloodstream infections. Expert Rev. Mol. Diagn. 10, 399–415.
    Efremov, E.V., Ariese, F., Gooijer, C., 2008. Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential. Anal. Chim. Acta 606, 119–134.
    Efrima, S., Zeiri, L., 2009. Understanding SERS of bacteria. J. Raman Spectrosc. 40, 277–288.
    Eggimann, P., Garbino, J., Pittet, D., 2003. Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect. Dis. 3, 685–702.
    Emonet, S., Shah, H.N., Cherkaoui, A., Schrenzel, J., 2010. Application and use of various mass spectrometry methods in clinical microbiology. Clin. Microbiol. Infect. 16, 1604–1613.
    Ertl, P., Mikkelsen, S.R., 2001. Electrochemical biosensor array for the identification of microorganisms based on lectin-lipopolysaccharide recognition. Anal. Chem. 73, 4241–4248.
    Falagas, M.E., Roussos, N., Vardakas, K.Z., 2010. Relative frequency of albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. Int. J. Infect. Dis. 14, e954–e966.
    Fan, S.K., Huang, P.W., Wang, T.T., Peng, Y.H., 2008. Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab Chip 8, 1325–1331.
    Ferrari, A.C., Robertson, J., 2000. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107.
    Ferreira, R.P., Yu, B., Niki, Y., Armstrong, D., 1990. Detection of Candida antigenuria in disseminated candidiasis by immunoblotting. J. Clin. Microbiol. 28, 1075–1078.
    Ferroni, A., Suarez, S., Beretti, J.L., Dauphin, B., Bille, E., Meyer, J., Bougnoux, M.E., Alanio, A., Berche, P., Nassif, X., 2010. Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 48, 1542–1548.
    Filik, J., Stone, N., 2007. Drop coating deposition Raman spectroscopy of protein mixtures. Analyst 132, 544–550.
    Filik, J., Stone, N., 2008. Analysis of human tear fluid by Raman spectroscopy. Anal. Chim. Acta 616, 177–184.
    Fox K., Fox A., Rose J., Walla M., 2011. Speciation of coagulase negative staphylococci, isolated from indoor air, using SDS page gel bands of expressed proteins followed by MALDI TOF MS and MALDI TOF-TOF MS-MS analysis of tryptic peptides. J. Microbiol. Methods 84, 243–250.
    Fricker-Hidalgo, H., Vandapel, O., Duchesne, M.A., Mazoyer, M.A., Monget, D., Lardy, B., Lebeau, B., Freney, J., Ambroise-Thomas, P., Grillot, R., 1996. Comparison of the new API Candida system to the ID 32C system for identification of clinically important yeast species. J. Clin. Microbiol. 34, 1846–1848.
    Gargallo-Viola, D., López, D., 1990. Numerical analysis of electrophoretic periplasmic protein patterns, a possible marker system for epidemiologic studies. J. Clin. Microbiol. 28, 136–139.
    Garon, D., El Kaddoumi, A., Carayon, A., Amiel, C., 2010. FT-IR spectroscopy for rapid differentiation of Aspergillus flavus, Aspergillus fumigatus, Aspergillus parasiticus and characterization of aflatoxigenic isolates collected from agricultural environments. Mycopathologia 170, 131–142.
    Genzen, J.R., Kenney, B., 2009. Central nervous system Aspergillus infection after epidural analgesia: diagnosis, therapeutic challenges, and literature review. Diagn. Microbiol. Infect. Dis. 65, 312–318.
    Ghosh, S., Kaushik, R., Nagalakshmi, K., Hoti, S.L., Menezes, G.A., Harish, B.N., Vasan, H.N., 2010. Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film. Carbohydr. Res. 345, 2220–2227.
    Giebel R., Worden, C., Rust, S.M., Kleinheinz, G.T., Robbins, M., Sandrin, T.R., 2010. Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): applications and challenges. Adv. Appl. Microbiol. 71, 149–184.
    Gill, D., Kilponen, R.G., Rimai, L., 1970. Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature 227, 743–744.
    Gobom, J., Mueller, M., Egelhofer, V., Theiss, D., Lehrach, H., Nordhoff, E., 2002. A calibration method that simplifies and improves accurate determination of peptide molecular masses by MALDI-TOF MS. Anal. Chem. 74, 3915–3923.
    Grow, A.E., Wood, L.L., Claycomb, J.L., Thompson, P.A., 2003. New biochip technology for label-free detection of pathogens and their toxins. J. Microbiol. Methods 53, 221–233.
    Hack, C.A., Benner, W.H., 2002. A simple algorithm improves mass accuracy to 50–100 ppm for delayed extraction linear matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 16, 1304–1312.
    Harz, M., Rösch, P., Popp, J., 2009. Vibrational spectroscopy—a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A 75A, 104–113.
    Hawksworth, D.L., 2011. Naming Aspergillus species: progress towards one name for each species. Med. Mycol. 49, S70–S76.
    Herbrecht, R., Denning, D.W., Patterson, T.F., Bennett, J.E., Greene, R.E., Oestmann, J.W., Kern, W.V., Marr, K.A., Ribaud, P., Lortholary, O., Sylvester, R., Rubin, R.H., Wingard, J.R., Stark, P., Durand, C., Caillot, D., Thiel, E., Chandrasekar, P.H., Hodges, M.R., Schlamm, H.T., Troke, P.F., de Pauw, B., 2002. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N. Engl. J. Med. 347, 408–415.
    Hettick, J.M., Green, B.J., Buskirk, A.D., Kashon, M.L., Slaven, J.E., Janotka, E., Blachere, F.M., Schmechel, D., Beezhold, D.H., 2008. Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Anal. Biochem. 380, 276–281.
    Himmelreich, U., Somorjai, R.L., Dolenko, B., Daniel, H.M., Sorrell, T.C., 2005. A rapid screening test to distinguish between Candida albicans and Candida dubliniensis using NMR spectroscopy. FEMS Microbiol. Lett. 251, 327–332.
    Himmelreich, U., Somorjai, R.L., Dolenko, B., Lee, O.C., Daniel, H.M., Murray, R., Mountford, C.E., Sorrell, T.C., 2003. Rapid identification of Candida species by using nuclear magnetic resonance spectroscopy and a statistical classification strategy. Appl. Environ. Microb. 69, 4566–4574.
    Hao, E., Schatz, G.C., 2004. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366.
    Ho, Y.P., Reddy, P.M., 2008. Mass spectrometry-based approaches for the detection of proteins of Staphylococcus species. Infect. Disord. Drug Targets 8, 166–182.
    Hoda, R.S., Colello, C., Roddy, M., Houser, P.M., 2005. "Fruiting body" of Aspergillus species in a routine cervico-vaginal smear (Pap test). Diagn. Cytopathol. 33, 244–245.
    Hope, W.W., Walsh, T.J., Denning, D.W., 2005. Laboratory diagnosis of invasive aspergillosis. Lancet Infect. Dis. 5, 609–622.
    Hoppe, J.E., Frey, P., 1999. Evaluation of six commercial tests and the germ-tube test for presumptive identification of Candida albicans. Eur. J. Clin. Microbiol. Infect. Dis. 18, 188–191.
    Horká, M., Růžička, F., Kubesová, A., Holá, V., Šlais, K., 2009. Capillary electrophoresis of conidia from cultivated microscopic filamentous fungi. Anal. Chem. 81, 3997–4004.
    Horneffer, V., Haverkamp, J., Janssen, H.G., Notz, R., 2004. MALDI-TOF-MS analysis of bacterial spores: Wet heat-treatment as a new releasing technique for biomarkers and the influence of different experimental parameters and microbiological handling. J. Am. Soc. Mass Spectrom. 15, 1444–1454.
    Hsieh, S.Y., Tseng, C.L., Lee, Y.S., Kuo, A.J., Sun, C.F., Lin, Y.H., Chen, J.K., 2008. Highly efficient classification and identification of human pathogenic bacteria by MALDI-TOF MS. Mol. Cell. Proteomics 7, 448–456.
    Hsiue, H.C., Huang, Y.T., Kuo, Y.L., Liao, C.H., Chang, T.C., Hsueh, P.R., 2010. Rapid identification of fungal pathogens in positive blood cultures using oligonucleotide array hybridization. Clin. Microbiol. Infect. 16, 493–500.
    Hsu, C.K., Hsu, M.M.L., Chang, T.C., Wong, T.W., Lee, J.Y.Y., Liu, C.C., 2007. Congenital candidal onychomycosis-a case report. Dermatol. Sinica 25, 214–218.
    Hsu, M.C., Chen, K.W., Lo, H.J., Chen, Y.C., Liao, M.H., Lin, Y.H., Li, S.Y., 2003. Species identification of medically important fungi by use of real-time Light Cycler PCR. J. Med. Microbiol. 52, 1071–1076.
    Hsu, R.B., Chang, C.I., Fang, C.T., Chang, S.C., Wang, S.S., Chu, S.H., 2011. Bloodstream infection in heart transplant recipients: 12-year experience at a university hospital in Taiwan. Eur. J. Cardiothorac. Surg. [Epub ahead of print].
    Huang, N., Wang, H., Zhao, J., Lui, H., Korbelik, M., Zeng, H., 2010. Single-wall carbon nanotubes assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma. Lasers Surg. Med. 42, 638–648.
    Huang, Y.S., Karashima, T., Yamamoto, M., Ogura, T., Hamaguchi, H., 2004a. Raman spectroscopic signature of life in a living yeast cell. J. Raman Spectrosc. 35, 525–526.
    Huang, Z., Lui, H., Chen, X.K., Alajlan, A., McLean, D.I., Zeng, H., 2004b. Raman spectroscopy of in vivo cutaneous melanin. J. Biomed. Opt. 9, 1198–1205.
    Huang, W.C., Tsai, P.J., Chen, Y.C., 2007. Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomedicine (Lond) 2, 777–787.
    Hutsebaut, D., Vandenabeele, P., Moens, L., 2005. Evaluation of an accurate calibration and spectral standardization procedure for Raman spectroscopy. Analyst 130, 1204–1214.
    Ibelings, M.S., Maquelin, K., Endtz, H.P., Bruining, H.A., Puppels, G.J., 2005. Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy. Clin. Microbiol. Infect. 11, 353–358.
    Iliescu, C., Poenar, D.P., Carp, M., Loe, F.C., 2007. A microfluidic device for impedance spectroscopy analysis of biological samples. Sens. Actuators B Chem. 123, 168–176.
    Ilina, E.N., Borovskaya, A.D., Malakhova, M.M., Vereshchagin, V.A., Kubanova, A.A., Kruglov, A.N., Svistunova, T.S., Gazarian, A.O., Maier, T., Kostrzewa, M., Govorun, V.M., 2009. Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria. J. Mol. Diagn. 11, 75–86.
    Inglis, D.W., Herman, N., Vesey, G., 2010. Highly accurate deterministic lateral displacement device and its application to purification of fungal spores. Biomicrofluidics 4, ID 024109.
    Jackson, J.E., 1991. A user’s guide to principal components. John Wiley & Sons, New York, pp. 4–25.
    Jarvis, R.M., Goodacre, R. 2004. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal. Chem. 76, 40–47.
    Jensen, B.G., Andersen, M.R., Pedersen, M.H., Frisvad, J.C., Søndergaard, I., 2010. Hydrophobins from Aspergillus species cannot be clearly divided into two classes. BMC Res. Notes 3, 344.
    Jetté, N., Quan, H., Hemmelgarn, B., Drosler, S., Maass, C., Moskal, L., Paoin, W., Sundararajan, V., Gao, S., Jakob, R., Ustün, B., Ghali, W.A., 2010. The development, evolution, and modifications of ICD-10: challenges to the international comparability of morbidity data. Med. Care 48, 1105–1110.
    Johari, J., Hubner, Y., Hull, J.C., Dale, J.W., Hughes, M.P., 2003. Dielectrophoretic assay of bacterial resistance to antibiotics. Phys. Med. Biol. 48, N193–N198.
    Johnson, E.M., Borman, A.M., 2009. The importance of conventional methods: Microscopy and culture. In: Pasqualotto, A.C. (Ed.), Aspergillosis: from diagnosis to prevention. Springer, Dordrecht, pp. 54–73.
    Jørgensen, T.R., Park, J., Arentshorst, M., van Welzen, A.M., Lamers, G., vanKuyk, P.A., Damveld, R.A., van den Hondel, C.A.M., Nielsen, K.F., Frisvad, J.C., Ram, A.F.J., 2011. The molecular and genetic basis of conidial pigmentation in Aspergillus niger. Fungal Genet. Biol. 48, 544–553.
    Kaczorowska, A., Szczesna-Antczak, M., Antczak, T., Bielecki, S., Couvrat, P., Kaczorowski, W., Niedzielski, P., Mitura, S., 2002. An influence of microorganisms on surfaces covered with diamond-like coatings. Proceedings of the IEEE-EMBS Special Topic Conference on Molecular, Cellular and Tissue Engineering 163–164. (doi: 10.1109/MCTE.2002.1175056)
    Katz, J.J., 1954. Anhydrous trifluoroacetic acid as a solvent for proteins. Nature 174, 509.
    Kaufman, L., Rousseeuw, P.J., 1990. Finding groups in data. Wiley-Interscience, New York, pp. 224–238.
    Kim, J.W., Shashkov, E.V., Galanzha, E.I., Kotagiri, N., Zharov, V.P., 2007. Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters. Lasers Surg. Med. 39, 622–634.
    Klouche, M., Schröder, U., 2008. Rapid methods for diagnosis of bloodstream infections. Clin. Chem. Lab. Med. 46, 888–908.
    Knight, S.A.B., Lesuisse, E., Stearman, R., Klausner, R.D., Dancis, A., 2002. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiology 148, 29–40.
    Knudsen, L., Johansson, C.K., Philipsen, P.A., Gniadecka, M., Wulf, H.C., 2002. Natural variations and reproducibility of in vivo near-infrared Fourier transform Raman spectroscopy of normal human skin. J. Raman Spectrosc. 33, 574–579.
    Knutsen, A.P., Slavin, R.G.. 2011. Allergic bronchopulmonary aspergillosis in asthma and cystic fibrosis. Clin. Dev. Immunol. 2011, Article ID 843763, 13 pages. (doi:10.1155/2011/843763)
    Kohno, S., 2008. High mortality in invasive aspergillosis: what we need to know for determination of poor prognosis and next countermeasures. Clin. Infect. Dis. 47, 1185–1187.
    Kolosova, Y., Samsonova, J.V., Egorov, A.M., 2000. Competitive ELISA of chloramphenicol: influence of immunoreagent structure and application of the method for the inspection of food of animal origin. Food Agric. Immunol. 12, 115–125.
    Kornberg, H.A., Langdon, R.S., Cheldelin, V.H., 1948. Microbiological assay for riboflavin. Anal. Chem., 20, 81–83.
    Kriznik, A., Bouillot, M., Coulon, J., Gaboriaud, F., 2005. Morphological specificity of yeast and filamentous Candida albicans forms on surface properties. C. R. Biol. 328, 928–935.
    Lakshmipathy, D.T., Kannabiran, K., 2010. Review on dermatomycosis: pathogenesis and treatment. Natural Science 2, 726–731.
    Laín, A., Elguezabal, N., Brena, S., García-Ruiz, J.C., Del Palacio, A., Moragues, M.D., Pontón, J., 2007. Diagnosis of invasive candidiasis by enzyme-linked immunosorbent assay using the N-terminal fragment of Candida albicans hypha wall protein 1. BMC Microbiol. 7, 35.
    Larone, D.H., 1995. Medically important fungi: A guide to identification. ASM Press, Washington, D.C., pp. 190–192.
    Lasch, P., Beyer, W., Nattermann, H., Stämmler, M., Siegbrecht, E., Grunow, R., Naumann, D., 2009. Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks. Appl. Environ. Microbiol. 75, 7229–7242.
    Lasch, P., Nattermann, H., Erhard, M., Stämmler, M., Grunow, R., Bannert, N., Appel, B., Naumann, D., 2008. MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores. Anal. Chem. 80, 2026–2034.
    Lay, J.O., 2001. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom. Rev. 20, 172–194.
    Lee, P.C., Meisel, D., 1982. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86, 3391–3395.
    Lee, W.T., Lee, C.S., Pan, Y.L., Chang, C., 2000. Temporal changes of cerebral metabolites and striatal lesions in acute 3-nitropropionic acid intoxication in the rat. Magn. Reson. Med. 44, 29–34.
    Leinberger, D.M., Schumacher, U., Autenrieth, I.B., Bachmann, T.T., 2005. Development of a DNA microarray for detection and identification of fungal pathogens involved in invasive mycoses. J. Clin. Microbiol. 43, 4943–4953.
    Lenoir, T., Giannella, E., 2006. The emergence and diffusion of DNA microarray technology. J. Biomed. Discov. Collab. 1, 11.
    Levander, F., Rognvaldsson, T., Samuelsson, J., James, P., 2004. Automated methods for improved protein identification by peptide mass fingerprinting. Proteomics 4, 2594–2601.
    Levine, H., Oyaas, J.E., Wasserman, L., Hoogerheide, J.C., Stern, R.M., 1949. Riboflavin Production by Candida Yeasts. Ind. Eng. Chem. 41, 1665–1668.
    Li, J.F., Huang Y.F., Ding, Y., Yang, Z.L., Li, S.B., Zhou, X.S., Fan, F.R., Zhang, W., Zhou, Z.Y., Wu, D.Y., Ren, B., Wang, Z.L., Tian, Z.Q., 2010a. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 18, 464, 392–395.
    Li, L., Garden, R.W., Sweedler, J.V., 2000. Single-cell MALDI: a new tool for direct peptide profiling. Trends Biotechnol. 18, 151–160.
    Li, S.L., Freguia, S., Liu, S.M., Cheng, S.S., Tsujimura, S., Shirai, O., Kano, K., 2010b. Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes. 25, 2651–2656.
    Li, T.Y., Liu B.H., Chen Y.C., 2000. Characterization of Aspergillus spores by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 14, 2393–2400.
    Liang, E.J., Gottges, D., Kiefer, W., 1994. Surface-enhanced resonance Raman spectroscopy of flavins on silver nitrate-modified Cu and Fe as well as Cu-Zn-Pb and Fe-C-Cr-Ni surfaces. Appl. Spectrosc. 48, 1088–1093.
    Lin, C.C., Kuo, M.T., Chang, H.C., 2010. Review: Raman spectroscopy—a novel tool for noninvasive analysis of ocular surface fluid. J. Med. Biol. Eng. 30, 343–354.
    Lin, W.Y., Lin Y.H., Lee, G.B., 2010. Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces. Microfluid. Nanofluid. 8, 217–229.
    Lisdat, F., Schäfer, D., 2008. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 391, 1555–1567.
    Liu, T.T., Lin, Y.H., Hung, C.S., Liu, T.J., Chen, Y., Huang, Y.C., Tsai, T.H., Wang, H.H., Wang, D.W., Wang, J.K., Wang, Y.L., Lin, C.H., 2009. A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall. PLoS One 4, e5470.
    Liu, Y., Han, J.X. Huang, H.Y., Zhu, B., 2005. Development and evaluation of 16S rDNA microarray for detecting bacterial pathogens in cerebrospinal fluid. Exp. Biol. Med. 230, 587–591.
    McMahon, J.M., Henry, A.I., Wustholz, K.L., Natan, M.J., Freeman, R.G., Van Duyne, R.P., Schatz, G.C., 2009. Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 394, 1819–1825.
    Madonna, A.J., Basile, F., Ferrer, I., Meetani, M.A., Rees, J.C., Voorhees, K.J., 2000. On-probe sample pretreatment for the detection of proteins above 15 kDa from whole cell bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 14, 2220–2229.
    Magee, P.T., Bowdin, L., Staudinger, J., 1992. Comparison of molecular typing methods for Candida albicans. J. Clin. Microbiol. 30, 2674–2679.
    Manly, B.F.J., 1994. Multivariate statistical methods: a primer. Chapman & Hall, London, pp. 105–106.
    Marklein, G., Josten, M., Klanke, U., Müller, E., Horré, R., Maier, T., Wenzel, T., Kostrzewa, M., Bierbaum, G., Hoerauf, A., Sahl, H.G., 2009. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J. Clin. Microbiol. 47, 2912–2917.
    Martinetti Lucchini, G., Altwegg, M., 1992. rRNA gene restriction patterns as taxonomic tools for the genus Aeromonas. Int. J. Syst. Bacteriol. 42, 384–389.
    Maquelin, K., Choo-Smith, L.P., Endtz, H.P., Bruining, H.A., Puppels, G.J., 2002. Rapid identification of Candida species by confocal Raman microspectroscopy. J. Clin. Microbiol. 40, 594–600.
    Maquelin, K., Kirschner, C., Choo-Smith, L.P., Ngo-Thi, N.A., van Vreeswijk, T., Stämmler, M., Endtz, H.P., Bruining, H.A., Naumann, D., Puppels, G.J., 2003. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J. Clin. Microbiol. 41, 324–329.
    Marinach-Patrice, C., Fekkar, A., Atanasova, R., Gomes, J., Djamdjian, L., Brossas, J.Y., Meyer, I., Buffet, P., Snounou, G., Datry, A., Hennequin, C., Golmard, J.L., Mazier, D., 2010. Rapid species diagnosis for invasive candidiasis using mass spectrometry. PLoS One 25, e8862.
    Marklein, G., Josten, M., Klanke, U., Müller, E., Horré, R., Maier, T., Wenzel, T., Kostrzewa, M., Bierbaum, G., Hoerauf, A., Sahl, H.G., 2009. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J. Clin. Microbiol. 47, 2912–2917.
    Marot-Leblond, A., Beucher, B., David, S., Nail-Billaud, S., Robert, R., 2006. Development and evaluation of a rapid latex agglutination test using a monoclonal antibody to identify Candida dubliniensis colonies. J. Clin. Microbiol. 44, 138–142.
    Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A., Bond, D.R., 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA. 105, 3968–3973.
    Maschmeyer, G., Haas, A., Cornely, O.A., 2007. Invasive aspergillosis: epidemiology, diagnosis and management in immunocompromised patients. Drugs 67, 1567–1601.
    McCreery, R.L., 2000. Raman spectroscopy for chemical analysis, Wiley-interscience, New York.
    Meetani, M.A., Voorhees, K.J., 2005. MALDI mass spectrometry analysis of high molecular weight proteins from whole bacterial cells: Pretreatment of samples with surfactants. J. Am. Soc. Mass Spectrom. 16, 1422–1426.
    Meletiadis, J., Meis, J.F., Mouton, J.W., Verweij, P.E., 2001. Analysis of growth characteristics of filamentous fungi in different nutrient media. J. Clin. Microbiol. 39, 478–484.
    Mellmann, A., Cloud, J., Maier, T., Keckevoet, U., Ramminger, I., Iwen, P., Dunn, J., Hall, G., Wilson, D., LaSala, P., Kostrzewa, M., Harmsen, D., 2008. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J. Clin. Microbiol. 46, 1946–1954.
    Min, Y.K., Yamamoto, T., Kohda, E., Ito, T., Hamaguchi, H., 2005. 1064 nm near-infrared multichannel Raman spectroscopy of fresh human lung tissues. J. Raman Spectrosc. 36, 73–76.
    Mishra, N.N., Liu, G.Y., Yeaman, M.R., Nast, C.C., Proctor, R.A., McKinnell, J., Bayer, A.S., 2011. Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob. Agents Chemother. 55, 526–531.
    Miyamoto, M., Takase, T., Mitsuda, Y., 1993. Raman spectra of various diamonds, Mineral. J. 16, 246–257.
    Mobili, P., Londero, A., De Antoni, G., Gomez-Zavaglia, A., Araujo-Andrade, C., Avila-Donoso, H., Ivanov-Tzonchev, R., Moreno, I., Frausto-Reyes, C., 2010. Multivariate analysis of Raman spectra applied to microbiology discrimination of microorganisms at the species level. Rev. Mex. Fis. 56, 378–385.
    Morgan, J., Wannemuehler, K.A., Marr, K.A., Hadley, S., Kontoyiannis, D.P., Walsh, T.J., Fridkin, S.K., Pappas, P.G., Warnock, D.W., 2005. Incidence of invasive aspergillosis following hematopoietic stem cell and solid organ transplantation: interim results of a prospective multicenter surveillance program. Med. Mycol. 43, 49–58.
    Morrell, M., Fraser, V.J., Kollef, M.H., 2005. Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob. Agents Chemother. 49, 3640–3645.
    Morris, A.J., Byrne, T.C., Madden, J.F., Reller, L.B., 1996. Duration of incubation of fungal cultures. J. Clin. Microbiol. 34, 1583–1585.
    Morton, C.O., Loeffler, J., De Luca, A., Frost, S., Kenny, C., Duval, S., Romani, L., Rogers, T.R., 2010. Dynamics of extracellular release of Aspergillus fumigatus DNA and galactomannan during growth in blood and serum. J. Med. Microbiol. 59, 408–413.
    Moskovets, E., Chen, H.S., Pashkova, A., Rejtar, T., Andreev, V., Karger, B.L., 2003. Closely spaced external standard: a universal method of achieving 5 ppm mass accuracy over the entire MALDI plate in axial matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 17, 2177–2187.
    Movasaghi, Z., Rehman, S., Rehman, I.U., 2007. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42, 493–541.
    Müller, F.M.C., Trusen, A., Weig, M., 2002. Clinical manifestations and diagnosis of invasive aspergillosis in immunocompromised children. Eur. J. Pediatr. 161, 563–574.
    Mullins, J., Seaton, A., 1978. Fungal spores in lung and sputum. Clin. Allergy 8, 525–533.
    Muñoz, A., Alonso, B., Alvarez, O., Llovo, J., 2003. Lectin typing of five medically important Candida species. Mycoses 46, 85–89.
    Murray, P.R., 2010. Rapid identification of clinical yeast isolates by mass spectrometry. Curr. Fungal Infect. Rep. 4, 145–150.
    Naik, M.T., Chang, C.F., Kuo, I.C., Kung, C.C., Yi, F.C., Chua, K.Y., Huang, T.H., 2008. Roles of structure and structural dynamics in the antibody recognition of the allergen proteins: an NMR study on Blomia tropicalis major allergen. Structure 16, 125–136.
    Negroni, R., 2010. Historical aspects of dermatomycoses. Clin. Dermatol. 28, 125–132.
    Nellimoottil, T.T., Rao, P.N., Ghosh, S.S., Chattopadhyay, A., 2007. Evaporation-induced patterns from droplets containing motile and nonmotile bacteria. Langmuir 23, 8655–8658.
    Nelson, R.D., Shibata, N., Podzorski, R.P., Herron, M.J., 1991. Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action. Clin. Microbiol. Rev. 4, 1–19.
    Neugebauer, U., Schmid, U., Baumann, K., Holzgrabe, U., Ziebuhr, W., Kozitskaya, S., Kiefer, W., Schmitt, M., Popp, J., 2006. Characterization of bacterial growth and the influence of antibiotics by means of UV resonance Raman spectroscopy, Biopolymers 82, 306–311.
    Neuhof, T., Dieckmann, R., Druzhinina, I.S., Kubicek, C.P., Nakari-Setälä, T., Penttilä, M., von Döhren, H., 2007. Direct identification of hydrophobins and their processing in Trichoderma using intact-cell MALDI-TOF MS. FEBS J. 274, 841–852.
    Nivoix, Y., Velten, M., Letscher-Bru, V., Moghaddam, A., Natarajan-Amé, S., Fohrer, C., Lioure, B., Bilger, K., Lutun, P., Marcellin, L., Launoy, A., Freys, G., Bergerat, J.P., Herbrecht, R., 2008. Factors associated with overall and attributable mortality in invasive aspergillosis. Clin. Infect. Dis. 47, 1176–1184.
    Nosanchuk, J.D., Casadevall, A., 2003. The contribution of melanin to microbial pathogenesis. Cell. Microbiol. 5, 203–223.
    Palarasah, Y., Skjoedt, M.O., Vitved, L., Andersen, T.E., Skjoedt, K., Koch, C., 2010. Sodium polyanethole sulfonate as an inhibitor of activation of complement function in blood culture systems. J. Clin. Microbiol. 48, 908–914.
    Pan, Y.L., Chow, N.H., Chang, T.C., Chang, H.C., 2011. Identification of lethal Aspergillus at early growth stages based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Diagn. Microbiol. Infect. Dis. 70, 344–354.
    Pan, Y.L., Chang, T.C., Chang, H.C., 2006. Rapid identification of Candida albicans on silicon wafer using Raman microspectroscopy and multivariate data analysis. Proc. 3rd International Symposium of Environmental Biotechnology 37–39.
    Pan, Y.L., Yang, T.S., Chang, T.C., Chang, H.C., 2009. Rapid identification of Candida albicans based on Raman spectral biosensing technology. IEEE International Conference on Nano/Molecular Medicine and Engineering (NANOMED) 120–124. (doi: 10.1109/NANOMED.2009.5559104)
    Panackal, A.A., Halpern, E.F., Watson, A.J., 2009. Cutaneous fungal infections in the United States: Analysis of the National Ambulatory Medical Care Survey (NAMCS) and National Hospital Ambulatory Medical Care Survey (NHAMCS), 1995–2004. Int. J. Dermatol. 48, 704712.
    Pasqualotto, A.C., 2009. Differences in pathogenicity and clinical syndromes due to Aspergillus fumigatus and Aspergillus flavus. Med. Mycol. 47, S261–S270.
    Patel, D.A., Gao, X., Stephens, J.M., Forshag, M.S., Tarallo, M., 2011. US hospital database analysis of invasive aspergillosis in the chronic obstructive pulmonary disease non-traditional host. J. Med. Econ. 14, 227–237.
    Patterson, T.F., Kirkpatrick, W.R., White, M., Hiemenz, J.W., Wingard, J.R., Dupont, B., Rinaldi, M.G., Stevens, D.A., Graybill, J.R., 2000. Invasive aspergillosis. disease spectrum, treatment practices, and outcomes. Medicine (Baltimore) 79, 250–260.
    Pedraz, J., Delgado-Jiménez, Y., Pérez-Gala, S., Nam-Cha, S., Fernández-Herrera, J., García-Diez, A., 2009. Cutaneous expression of systemic candidiasis. Clin. Exp. Dermatol. 34, 106–110.
    Pfaller, M.A., Diekema, D.J., 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20, 133–163.
    Pfaller, M.A., Diekema, D.J., 2010. Epidemiology of invasive mycoses in north America. Crit. Rev. Microbiol. 36, 1–53.
    Pihet, M., Vandeputte, P., Tronchin, G., Renier, G., Saulnier, P., Georgeault, S., Mallet, R., Chabasse, D., Symoens, F., Bouchara, J.P., 2009. Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol. 9, 177.
    Prod'hom, G., Bizzini, A., Durussel, C., Bille, J., Greub, G., 2010. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J. Clin. Microbiol. 48,1481–1483.
    Podstawka, E., Ozaki, Y., Proniewicz, L.M., 2004. Part I: surface-enhanced Raman spectroscopy investigation of amino acids and their homodipeptides adsorbed on colloidal silver, Appl. Spectrosc. 58, 570–580.
    Polson, C., Sarkar, P., Incledon, B., Raguvaran, V., Grant, R., 2003. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 785, 263–275.
    Prasad, R., 1991. Candida albicans—cellular and molecular biology, Springer-Velag, Berlin, p. 7.
    Pridham, T.G.,1952. Microbial synthesis of riboflavin. Econ. Bot. 6, 185–205.
    Prod’hom, G., Bizzini, A., Durussel, C., Bille, J., Greub, G., 2010. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J. Clin. Microbiol. 48, 1481–1483.
    Qian, J., Cutler, J.E., Cole, R.B., Cai, Y., 2008. MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Anal. Bioanal. Chem. 392, 439–449.
    Revankar, S.G., Sutton, D.A., 2010. Melanized fungi in human disease. Clin. Microbiol. Rev. 23, 884–928.
    Reyes-Goddard, J.M., Barr, M., Stone, N., 2005. Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids. Photodiagnosis Photodyn. Ther. 2, 223–233.
    Robert, R., Pihet, M., 2008. Conventional methods for the diagnosis of dermatophytosis. Mycopathologia 166, 295–306.
    Rogers, P.D., Barker, K.S., 2002. Evaluation of differential gene expression in fluconazole-susceptible and -resistant isolates of Candida albicans by cDNA microarray analysis. Antimicrob. Agents Chemother. 46, 3412–3417.
    Rösch, P., Schmitt, M., Kiefer, W., Popp, J., 2003. The identification of microorganisms by micro-Raman spectroscopy. J. Mol. Struct. 661–662, 363–369.
    Rose, A.H., Harrison, J.S., 1987. The Yeasts, Academic Press, Oxford, pp. 223–236.
    Ruhnke, M., 2006. Epidemiology of Candida albicans infections and role of non-Candida albicans yeasts. Curr. Drug Targets 7, 495–504.
    Saade, J., Pacheco, M.T.T., Rodrigues, M.R., Silveira Jr., L., 2008. Identification of hepatitis C in human blood serum by near-infrared Raman spectroscopy. Spectroscopy 22, 387–395.
    Sandt, C., Sockalingum, G.D., Aubert, D., Lepan, H., Lepouse, C., Jaussaud, M., Leon, A., Pinon, J.M., Manfait, M., Toubas, D., 2003. Use of Fourier-transform infrared spectroscopy for typing of Candida albicans strains isolated in intensive care units. J. Clin. Microbiol. 41, 954–959.
    Sandven, P., 2000. Epidemiology of candidemia. Rev. Iberoam. Micol. 17, 73–81.
    Santos, C., Paterson, R.R.M., Venâncio, A., Lima, N., 2010. Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Appl. Microbiol. 108, 375–385.
    Sauer, S., Kliem, M., 2010. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol. 8, 74–82.
    Schmid, O., Ball, G., Lancashire, L., Culak, R., Shah, H., 2005. New approaches to identification of bacterial pathogens by surface enhanced laser desorption/ionization time of flight mass spectrometry in concert with artificial neural networks, with special reference to Neisseria gonorrhoeae. J. Med. Microbiol. 54, 1205–1211.
    Schuster, E., Dunn-Coleman, N., Frisvad, J.C., van Dijck, P.W., 2002. On the safety of Aspergillus niger—a review. Appl. Microbiol. Biotechnol. 59, 426–435.
    Schuster, K.C., Urlaub, E., Gapes, J.R., 2000. Single-cell analysis of bacteria by Raman microscopy: Spectral information on the chemical composition of cells and on the heterogeneity in a culture. J. Microbiol. Methods 42, 29–38.
    Segal, B.H., 2009. Aspergillosis. N. Engl. J. Med. 360, 1870–1884.
    Seidler, K., Polreichová, M., Lieberzeit, P.A., Dickert, F.L., 2009. Biomimetic yeast cell typing—application of QCMs. Sensors 9, 8146–8157.
    Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P.E., Rolain, J.M., Raoult, D., 2009. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 49, 543–551.
    Shangkuan, Y.H., Yang, J.F., Lin, H.C., Shaio, M.F., 2000. Comparison of PCR-RFLP, ribotyping and ERIC-PCR for typing Bacillus anthracis and Bacillus cereus strains. J. Appl. Microbiol. 89, 452–462.
    Sheng, W.H., Wang, J.T., Lin, M.S., Chang, S.C., 2007. Risk factors affecting in-hospital mortality in patients with nosocomial infections. J. Formos. Med. Assoc. 106, 110–118.
    Shier, W.T., Lao, Y., Steele, T.W.J., Abbas, H.K., 2005. Yellow pigments used in rapid identification of aflatoxin-producing Aspergillus strains are anthraquinones associated with the aflatoxin biosynthetic pathway. Bioorg. Chem. 33, 426–438.
    Shiku, H., Goto, S., Jung, S., Nagamine, K., Koide, M., Itayama, T., Yasukawa, T., Matsue, T., 2009. Electrochemical characterization of enzymatic activity of yeast cells entrapped in a poly(dimethylsiloxane) microwell on the basis of limited diffusion system. Analyst 134, 182–187.
    Simoneau, E., Kelly, M., Labbe, A.C., Roy, J., Laverdière, M., 2005. What is the clinical significance of positive blood cultures with Aspergillus sp in hematopoietic stem cell transplant recipients? A 23 year experience. Bone Marrow Transplant. 35, 303–306.
    Singer, A.C., Huang, W.E., Helm, J., Thompson, I.P., 2005. Insight into pollutant bioavailability and toxicity through Raman confocal microscopy. J. Microbiol. Methods, 60, 417–422.
    Singh, G.P., Creely, C.M., Volpe, G., Grotsch, H., Petrov, D., 2005. Real-time detection of hyperosmotic stress response in optically trapped single yeast cells using Raman microspectroscopy. Anal. Chem. 77, 2564–2568.
    Smith E., Dent, G. 2005. Modern Raman spectroscopy—a practical approach, John Wiley &Sons, Chichester, pp. 15–19.
    Soubani, A.O., Chandrasekar, P.H., 2002. The clinical spectrum of pulmonary aspergillosis. Chest 121, 1988–1999.
    Steinbach, W.J., Benjamin, D.K., Kontoyiannis, D.P., Perfect, J.R., Lutsar, I., Marr, K.A., Lionakis, M.S., Torres, H.A., Jafri, H., Walsh, T.J., 2004. Infections due to Aspergillus terreus: a multicenter retrospective analysis of 83 cases. Clin. Infect. Dis. 39, 192–198.
    Stiles, P.L., Dieringer, J.A., Shah, N.C., Duyne, R.P.V., 2008. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626.
    Stöckel, S., Schumacher, W., Meisel, S., Elschner, M., Rosch, P., Popp, J., 2010. Raman spectroscopy-compatible inactivation method for pathogenic endospores. Appl. Environ. Microbiol. 76, 2895–2907.
    Sujith, A., Itoh, T., Abe, H., Anas, A.A., Yoshida, K., Biju, V., Ishikawa, M., 2008. Surface enhanced Raman scattering analyses of individual silver nanoaggregates on living single yeast cell wall. Appl. Phys. Lett. 92, ID 103901 (3 pages).
    Sulc, M., Peslova, K., Zabka, M., Hajduch, M., Havlicek, V., 2009. Biomarkers of Aspergillus spores: strain typing and protein identification. Int. J. Mass Spectrom. 280, 162–168.
    Szabados, F., Michels, M., Kaase, M., Gatermann, S., 2011. The sensitivity of direct identification from positive BacT/ALERTTM (bioMérieux) blood culture bottles by MALDI-TOF mass spectrometry is low. Clin. Microbiol. Infect. 17, 192–195.
    Tekaia, F., Latgé, J.P., 2005. Aspergillus fumigatus: saprophyte or pathogen? Curr. Opin. Microbiol. 8, 385–392.
    Theodore, S., Liava'a, M., Antippa, P., Wynne, R., Grigg, A., Slavin, M., Tatoulis, J., 2009. Surgical management of invasive pulmonary fungal infection in hematology patients. Ann. Thorac. Surg. 87, 1532–1538.
    Thiel, R. 2010. Systemic mycoses: An overview for modern natural health professionals. The Original Internist, 17, 119–128.
    Thompson III, G.R., Cadena, J., Patterson, T.F., 2009. Overview of antifungal agents. Clin. Chest Med. 30, 203–215.
    Timmins, E.M., Howell, S.A., Alsberg, B.K., Noble, W.C., Goodacre, R., 1998. Rapid differentiation of closely related Candida species and strains by pyrolysis-mass spectrometry and Fourier transform-infrared spectroscopy. J. Clin. Microbiol. 36, 367–374.
    Tokunaga, M., Tokunaga, J.I., Harada, K., 1973. Scanning and transmission electron microscopy of sterigma and conidiospore formation in Aspergillus group. J. Electron. Microsc. (Tokyo) 22, 27–38.
    Torres, H.A., Rivero, G.A., Lewis, R.E., Hachem, R., Raad, I.I., Kontoyiannis, D.P., 2003. Aspergillosis caused by non-fumigatus Aspergillus species: risk factors and in vitro susceptibility compared with Aspergillus fumigatus. Diagn. Microbiol. Infect. Dis. 46, 25–28.
    Trinel, P.A., Borg-von-Zepelin, M., Lepage, G., Jouault, T., Mackenzie, D., Poulain, D., 1993. Isolation and preliminary characterization of the 14- to 18-kilodalton Candida albicans antigen as a phospholipomannan containing beta-1,2-linked oligomannosides. Infect. Immun. 61, 4398–4405.
    Trnovsky, J., Merz, W., Della-Latta, P., Wu, F., Arendrup, M.C., Stender, H., 2008. Rapid and accurate identification of Candida albicans isolates by use of PNA FISHFlow. J. Clin. Microbiol. 46, 1537–1340.
    Tsai, H.F., Wheeler, M.H., Chang, Y.C., Kwon-Chung, K.J., 1999. A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J. Bacteriol. 181, 6469–6477.
    Turenne, C.Y., Sanche, S.E., Hoban, D.J., Karlowsky, J.A., Kabani, A.M., 1999. Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. J. Clin. Microbiol. 37, 1846–1851.
    Upton, A., Kirby, K.A., Carpenter, P., Boeckh, M., Marr, K.A., 2007. Invasive aspergillosis following hematopoietic cell transplantation: outcomes and prognostic factors associated with mortality. Clin. Infect. Dis. 44, 531–540.
    Vaidyanathan, S., Winder, C.L., Wade, S.C., Kell, D.B., Goodacre, R., 2002. Sample preparation in matrix-assisted laser desorption ionization mass spectrometry of whole bacterial cells and the detection of high mass (> 20 kDa) proteins. Rapid Commun. Mass Spectrom. 16, 1276–1286.
    van Veen, S.Q., Claas, E.C., Kuijper, E.J., 2010. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J. Clin. Microbiol. 48, 900–907.
    Vazquez, J.A., Beckley, A., Sobel, J.D., Zervos, M.J., 1991. Comparison of restriction enzyme analysis and pulsed-field gradient gel electrophoresis as typing systems for Candida albicans. J. Clin. Microbiol. 29, 962–967.
    Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C., 2010. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol. Adv. 28, 232–254.
    Vera, C.C., Zubarev, R., Ehring, H., Hakansson, P., Sunqvist, B.U.R., 1996. A three-point calibration procedure for matrix-assisted laser desorption/ionization mass spectrometry utilizing multiply charged ions and their mean initial velocities. Rapid Commun. Mass Spectrom. 10, 1429–1432.
    Vickers, T.J., Mann, C.K., 1999. Raman shift calibration of a compact multichannel spectrometer. Appl. Spectrosc. 53, 1617–1622.
    Villanueva, J., Philip, J., Entenberg, D., Chaparro, C.A., Tanwar, M.K., Holland, E.C., Tempst, P., 2004. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal. Chem. 76, 1560–1570.
    Vito, M.D., Podo, F., Torosantucci, A., Carpinelli, G., Whelan, W.L., Kerridge, D., Cassone, A., 1986. A 19F nuclear magnetic resonance study of uptake and metabolism of 5-FC in susceptible and resistant strains of Candida albicans. Antimicrob. Agents Chemother. 29, 303–308.
    Wagner, M., 2009. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63, 411–429.
    Wahl, K.L., Wunschel, S.C., Jarman, K.H., Valentine, N.B., Petersen, C.E., Kingsley, M.T., Zartolas, K.A., Saenz, A.J., 2002. Analysis of microbial mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 74, 6191–6199.
    Walsh T.J., Anaissie, E.J., Denning, D.W., Herbrecht, R., Kontoyiannis, D.P., Marr, K.A., Morrison, V.A., Segal, B.H., Steinbach, W.J., Stevens, D.A., van Burik, J.A., Wingard, J.R., Patterson, T.F., 2008. Treatment of aspergillosis: clinical practice guidelines of the infectious diseases society of America. Clin. Infect. Dis. 46, 327–360.
    Wang, B., Xu, M., Sun, G., 2010. Comparative analysis of membranous proteomics of Shewanella decolorationis S12 grown with azo compound or Fe (III) citrate as sole terminal electron acceptor. Appl. Microbiol. Biotechnol. 86, 1513–1523.
    White, P.L., Perry, M.D., Barnes, R.A., 2009. An update on the molecular diagnosis of invasive fungal disease. FEMS Microbiol. Lett. 296, 1–10.
    Whittal, R.M., Schriemer, D.C., Li, L., 1997. Time-lag focusing MALDI time-of-flight mass spectrometry for polymer characterization: oligomer resolution, mass accuracy, and average weight information. Anal. Chem. 69, 2734-2741.
    Wolski, W.E., Lalowski, M., Jungblut, P., Reinert, K., 2005. Calibration of mass spectrometric peptide mass fingerprint data without specific external or internal calibrants. BMC Bioinformatics 6, 203.
    Wong, P.K., Wang, T.H., Deval, J.H., Ho, C.M., 2004. Electrokinetics in micro devices for biotechnology applications. IEEE/ASME Transactions on Mechatronics 9, 366–376.
    Wright, G.D., Arlt, J., Poon, W.C., Read, N.D., 2007. Optical tweezer micromanipulation of filamentous fungi. Fungal Genet. Biol. 44, 1–13.
    Xu, S., Ye, M., Xu, D., Li, X., Pan, C., Zou, H., 2006. Matrix with high salt tolerance for the analysis of peptide and protein samples by desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 78, 2593–2599.
    Yan, L., Zhang, J., Li, M., Cao, Y., Xu, Z., Cao, Y., Gao, P., Wang, Y., Jiang, Y., 2008. DNA microarray analysis of fluconazole resistance in a laboratory Candida albicans strain. Acta Biochim. Biophys. Sin. (Shanghai) 40, 1048–1060.
    Zaoutis, T.E., Heydon, K., Chu, J.H., Walsh, T.J., Steinbach, W.J., 2006. Epidemiology, outcomes, and costs of invasive aspergillosis in immunocompromised children in the United States, 2000. Pediatrics 117, e711–e716.
    Zeiri, L., Bronk, B.V., Shabtai, Y., Eichler, J., Efrima, S., 2004. Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Appl. Spectrosc. 58, 33–40.
    Zharov, V.P., Mercer, K.E., Galitovskaya, E.N., Smeltzer, M.S., 2005. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 90, 619–627.
    Zoladek, A., Pascut, F.C., Patel, P., Notingher, I., 2010. Non-invasive time-course imaging of apoptotic cells by confocal Raman micro-spectroscopy. J. Raman Spectrosc. 42, 251–258.

    下載圖示 校內:2015-09-05公開
    校外:2016-09-05公開
    QR CODE