| 研究生: |
黃合建 Huang, Ho-Chien |
|---|---|
| 論文名稱: |
光敏性硒化鎘奈米微粉之合成與特性研究 Synthesis and Characterization of Photosensitive Cadmium Selenide Nanoparticles |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 硒化鎘 、奈米微粉 、濕式沈澱法 |
| 外文關鍵詞: | chemical wetness, cadmium selenide, nanoparticle |
| 相關次數: | 點閱:94 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以硫酸鎘及亞硫酸硒鈉為前驅鹽,採用濕式沈澱法在水溶液相合成奈米級硒化鎘微粉。實驗中,分別以檸檬酸二銨、檸檬酸鈉與丙硫醇酸作錯合劑,針對反應氣氛、溫度、反應時間、前驅鹽濃度、錯合劑濃度、pH值及前驅鹽比例等製備變因,對所得微粉晶態、組成、形狀、粒徑及其分佈、UV吸收以及放光性質之影響來加以探討。
實驗結果顯示,在氮氣氣氛下,適量之檸檬酸二銨、檸檬酸鈉或丙硫醇酸可錯合鎘離子,避免氫氧化鎘之雜相存在,可得面心立方型硒化鎘微粉產物。當降低前驅鹽濃度、反應溫度、檸檬酸二銨濃度、檸檬酸鈉、丙硫醇酸濃度或提高pH值均可使微粉粒徑降低。但降低溫度時,平衡轉化率亦隨之降低。適當控制反應條件,可得能隙約在1.8-2.9 eV之硒化鎘微粒,其微粉理論粒徑在7.4-3.3 nm之間。實驗結果並顯示,丙硫醇酸之添加可得單佈性良好之硒化鎘微粉。當CdSe微粉粒徑減小時,其吸光及放光波長均呈現藍位移之現象,亦即此半導體微粉能隙變大。
藉由本研究可知,本法可在溫和及環保之條件,藉由控制反應條件可製備出不同粒徑及能隙CdSe之奈米微粉。
In this study, nano-sized CdSe particles were synthesized via chemical wetness route. Experimentally, The CdSe nanoparticles were obtained by precipitation of CdSO4 and Na2SeSO3 in alkaline aqueous solution. Firstly, in avoiding the formation of Cd(OH)2, di-ammonium hydrogen citrate (ACT), sodium citrate (CT-Na) and 3-mercaptopropionic acid (MPA) were added as the chelating agents, respectively. The effects of preparation conditions such as atmosphere, reaction temperature and time, concentrations of precursors and chelating agents, pH value and [Cd2+]/[Se2-] ratio on the characteristics of prepared particles including the crystalline structure, shape, particle size and size distribution were investigated. Furthermore, the optical and photoluminescent properties of resulting particles were also studied.
The experimental results show that the fcc-structured CdSe nanoparticles can be obtained under N2 atmosphere. The addition of ACT, CT-Na and MPA play a key role on the formation of high-purity products without the presence of Cd(OH)2. Furthermore, it is found that the particle size decreases with decreasing the concentrations of precursors, ACT, CT-Na or MPA. The same tendencies were also found for reaction temperature and time, whereas the effect of pH value is the reverse. However, the equilibrium conversion is relatively low at lower reaction temperature. The prepared particles are sizing from 7.4 to 3.3 nm corresponded as band gaps from 1.8 to 2.9 eV, depending upon the preparation condition. Also, the results reveal that the addition of MPA can obtain highly monodisperse nanoparticles. As the particle size is reduced, the UV/VIS absorption and photoluminescence spectra are toward blue shift. As well, the bandgaps of particles become larger. From this study, the relationship between preparation condition and characteristics of resulting particles has been comprehended. It is worth to note, the CdSe nanoparticles can be synthesized in mild aqueous conditions. In addition, the band gap of the resulting nanoparticles modulated by appropriately varying the reaction condition. More importantly, it reveals that the synthesis of nanosized high-purity CdSe particles is feasible and promising via chemical wetness route under friendly environmental and mild conditions.
參 考 文 獻
1. R. Turton, “The Physics of Solids”, Oxford, New York, (2000).
2. M. Fox, “Optical Properties of Solids”, Oxford, New York, (2001).
3. S. M. Sze, “Physics of Semiconductor Device”, Wiley Interscience Publication, New York, (1981).
4. A. L. Rogach, A. Kornowski, M. Gao, A. Eychmiiler and H. Weller, “Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals”, J. Phys. Chem. B, 103, 3065-3069 (1999).
5. L. Qu and X. Peng, “Control of Photoluminescence Properties of CdSe Nanocrystals in Growth”, J. Am. Chem. Soc., 124(9), 2049-2055 (2002).
6. K. Walzer, U. J. Quaade, D. S. Ginger, N. C. Greenham and K. Stokbro, “Adsorption Behavior and Current-Voltage Characteristics of CdSe Nanocrystals on Hydrogen-Passivated Silicon ”, J. Appl. Phys., 92(3), 1343-1440 (2002).
7. A. Y. Nazzal, L. Qu, X. Peng and M. Xiao, “Photoactivated CdSe Nanocrystals as Nanosensors for Gases”, Nano Lett., 3(6), 819-822 (2003).
8. M. Morales, P. J. Sebastian and O. Solorza, “Characterization of Screen Printed Ti/CdS and Ti/CdSe Photoelectrodes for Photoelectrochemical Hydrogen Production”, Sol. Energy Mater. Sol. Cells, 55(1-2), 51-58 (1998).
9. A. J. Nozik, “Quantum Dot Solar Cells”, Physica E, 14(1-2), 115-120 (2002).
10. M. Klude, T. Passow, R. Kroger and D. Hommel, “Electrically Pumped Lasing from CdSe Quantum Dots”, Electron. Lett., 37(18), 1119-1120 (2001).
11. V . A. Kasiyan, R. Z. Shneck, Z. M. Dashevsky and S. R. Rotman, “Development of AIIBVI Semiconductors Doped with Cr for IR Laser Application”, Phys. Stat. Sol., 229(1), 395-398 (2002).
12. D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos and P. L. McEuen, “A Single-Electron Transistor Made from a Cadmium Selenide Nanocrystal”, Nature, 389, 699-701 (1997).
13. D. L. Feldheim and C. D. Keating, “Self-Assembly of Single electron Transistors and Related Devies”, Chem. Soc. Rev., 27(1), 1-12 (1998).
14. B. O. Dabbousi and M. G. Bawendi, “Electroluminescence form CdSe Quantum-Dot/Polymer Composites”, Appl. Phys. Lett., 66(11), 1316-1318 (1995).
15. M. Gao, B. Richter, S. Kirstein and H. Mohwald, “Electroluminescence Studies on Self-Assembled Films of PPV and CdSe Nanoparticles ”, J. Phys. Chem. B, 102(21), 4096-4103 (1998).
16. S. H. Kim, G. Markovich, S. Rezvani, S. H. Choi, K. L. Wang and J. R. Heath, “Tunnel Diodes Fabricated form CdSe Nanocrystals Monolayers”, Appl. Phys. Lett., 74(2), 317-319 (2001).
17. N. Tessler, V. Medvedev, M. Kazes, S. H. Kan and U. Banin, “Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes”, Science, 295, 1506-1508 (2002).
18. M. B. Jr., M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, “Semiconductor Naoncrystals as Fluorescent Biological Labels”, Science, 281, 2013-2015 (1998).
19. W. C. W. Chan and S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Noisotopic Detection”, Science, 281, 2016-2018 (1998).
20. C. B. Murray, D. J. Norris and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E=S,Se,Te) Semiconductor Nanocrystallites”, J. Am. Chem. Soc., 115(19), 8706-8715 (1993).
21. T. Trindade and P. O’Brien, “Synthesis of CdS and CdSe Nanoparticles by Thermolysis of Diethyldithio- or Diethyldiseleno- Carbamates of Cadmium”, J. Mater. Chem., 6(3), 343-347 (1996).
22. T. Trindade and P. O’Brien, “Synthesis of CdS and CdSe Nanocrystallites Using a Novel Single-Molecule Precursors Approach”, Chem. Mater., 9(2), 523-530 (1997).
23. B. Ludolph, M. A. Malik, P. O’Brien and N. Revaprasadu, “Novel Single Molecule Precursor Routes for the Direct Synthesis of Highly Monodispersed Quantum Dots of Cadmium or Zinc Sulfide or Selenide”, Chem. Commun., (17), 1849-1850 (1998).
24. D. J. Crouch, P. O’Brien, M. A. Malik, P. J. Skabara and S. P. Wright, “A one-Step Synthesis of Cadmium Selenide Quantum Dots from a Novel Single Source Precursor”, Chem. Commun., (12), 1454-1455 (2003).
25. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, “Shape Control of CdSe Nanocrystals”, Nature, 404, 59-61 (2000).
26. L. Qu, Z. A. Peng and X. Peng, “Alternative Routes toward High Quality CdSe Nanocrystals”, Nano Lett., 1(6), 333-337 (2001).
27. Z. A. Peng and X. Peng, “Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor”, J. Am. Chem. Soc., 123(1), 183-184 (2001).
28. Z. A. Peng and X. Peng, “Mechanisms of the Shape Evolution of CdSe Nanocrystals”, J. Am. Chem. Soc., 123(7), 1389-1395 (2001).
29. Z. A. Peng and X. Peng, “Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth”, J. Am. Chem. Soc., 124(13), 3343-3353
(2002).
30. X. Peng, “Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals”, Adv. Mater., 15(5), 459-463 (2003).
31. L. Manna, E. C. Scher and A. P. Alivisators, “Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals”, J. Am. Chem. Soc., 122(51), 12700-12706 (2000).
32. J. Hambrock, A. Birkner and R. A. Fischer, “Synthesis of CdSe Nanoparticles Using Various Organometallic Cadmium Precursors”, J. Mater. Chem., 11(12), 3197-3201 (2001).
33. T. Nann and J. Riegler, “Monodisperse CdSe Nanorods at Low Temperatures”, Chem. Eur. J., 8(20), 4791-4795 (2002).
34. E. Kucur, J. Riegler, G. A. Urban and T. Nann, “Determination of Quantum Confinement in CdSe Nanocrystals by Cyclic Voltammetry”, J. Chem. Phys.,119(4), 2333-2337 (2003).
35. J. Zhu, O. Palchik, S. Chen and A. Gedanken, “Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles”, J. Phys. Chem. B, 104, 7344-7347 (2000).
36. O. Palchik, R. Kerner, A. Gedanken, A. M. Weiss, M. A Slifkin and
V. Palchik, “Microwave-Assisted Polyol Method for the Preparation of CdSe “Nanoballs””, J. Mater. Chem., 11, 874-878 (2001).
37. S. J. Choi, D. H. Woo, N. Myung, H. Kang and S. M. Park, “Electrochemical Preparation of Cadmium Selenide Nanoparticles by the Use of Molecular Templates”, J. Electrochem. Soc., 148(9), C569-C573 (2001).
38. R. N. Irit, H. D. Wagner, I. Rubinstein and G. Hodes, “Structural Effects in the Electrodeposition of CdSe Quantum Dots on Mechanically Strained Gold”, Adv. Funct. Mater., 13(2), 159-164 (2003).
39. J. P. Ge, Y. D. Li and G. Q. Yang, “Mechanism of Aqueous Ultrasonic Reaction: Controlled Synthesis, Luminescence Properties of Amorphous Cluster and Nanocrystalline CdSe”, Chem. Commum., (17), 1826-1827 (2002).
40. X. Zheng, Y. Xie, L. Zhu, X. Jiang and A. Yan, “Formation of Vesicle-Templated CdSe hollow Spheres in an Ultrasound-Induced Anionic Surfactant Solution”, Ultrason. Sonochem., 9(6), 311-316 (2002).
41. H. L. Li, Y. C. Zhu, S. G. Chen, O. Palchik, J. P. Xiong, Y. Koltypin,
Y. Gofer and A. Gedanken, “A Novel Ultrasound-Assisted Approach to the Synthesis of CdSe and CdS Nanoparticles”, J. Solid State Chem., 172(1), 102-110 (2003).
42. Y. Mastai, R. Polsky, Yu. Koltypin, A. Gedanken, and G. Hodes, “Plused Sonoelectrochemical Synthesis of Cadmium Selenide Nanoparticles”, J. Am. Chem. Soc., 121(43), 10047-10052 (1999).
43. J. Zhu, X. Liao, X. Zhao and J.Wang, “Photochemical Synthesis and Characterization of CdSe Nanoparticles”, Mater Lett., 47(6), 339-343
(2001).
44. X. G. Y. Ni, H. Liu, Q. Ye and Z. Zhang, “�-Irradiation Preparation of Cadmium Selenide Nano-Particles in Ethylenediamine System”, Mater. Res. Bull., 36(9), 1609-1613 (2001).
45. Q. Yang, K. Tang, F. Wang, C. Wang and Y. Qian, “A �-Irradiation Reduction Route to Nanocrystalline CdE (E= Se, Te) at Room Tepmerature”, Mater Lett., 57(22-23), 3508-3512 (2003).
46. Y. Hu, W. Chen, J. Chen and S. Zhang, “A Novel Route to Prepare CdSe Hollow Structures”, Mater Lett., 57(21), 3137-3139 (2003).
47. W. B. Zhao, J. J. Zhu and H. Y. Chen, “Photochemical Preparation of Rectangular PbSe and CdSe Nanoparticles”, J. Cryst. Growth. , 2(4), 587-592 (2003).
48. Y. L. Yan, Y. Li, X. F. Qian, J. Yin and Z. K. Zhu, “Preparation and Characterization of CdSe Nanocrystals via Na2SO3-Assisted Photochemical Route”, Mater. Sci. Eng. B, 103(2), 202-206 (2003).
49. E. Hao, H. Sun, Z. Zhou, J. Liu, B. Yang and J. Shen, “Synthesis and Optical Properties of CdSe and CdSe/CdS Nanoparticles”, Chem. Mater., 11(11), 3096-3102 (1999).
50. L. Xu, L. Wang, X. Huang, J. Zhu, H. Chen and K. Chen, “Surface Passivation and Enhanced Quantum-Size Effect and Photo Stability of Coated CdSe/CdS Nanocrystals”, Pyhsica E, 8(2), 129-133 (2000).
51. C. C. Chen, C. Y. Chu and Z. H. Lang, “Simple Solution-Phase Synthesis of Soluble CdS and CdSe Nanorods”, Chem. Mater., 12(6), 1516-1518 (2000).
52. A. Kasyua, G. Milczarek, I. Dmitruk, Y. Barnakov, R. Czajka, O.
Perales, X. Liu, K. Tohji, B. Jeyadevan, K. Shinoda, T. Ogawa,
T. Arai, T. Hihara and K. Sumiyama, “Size- and Shape-Controls and Electronic Functions of Nanometer-Scale Semiconductors and Oxides”, Colloid Surf. A-Physicochem. Eng. Asp., 202(2-3), 291-296 (2002).
53. W. Wang, Y. Geng, P. Yan, F. Liu, Y. X and Y. T. Qian, “Synthesis and Characterization of MSe (M=Zn, Cd) Nanorods by a New Solvothermal Method”, Inorg. Chem. Commun., 2(3), 83-85 (1999).
54. Y. D. Li, H. Liao, Y. Fan, L. Li and Y. T. Qian, “A Solvothermal Synthetic Route to CdE (E= S, Se) Semiconductor Nanocrystalline”, Mater. Chem, Phys., 58(1), 87-89 (1999).
55. C. Wang, W. X. Zhang, X. F. Qian, X. M. Zhang, Y. Xie and Y. T.
Qian, “An Aqueous Approach to ZnSe and CdSe Semiconductor Nanocrystals”, Mater. Chem. Phys., 60(1), 99-102 (1999).
56. Q. Yang, K. B. Tang, C. R. Wang, C. J. Zhang and Y. T. Qian, “Wet Synthesis and Characterization of MSe (M= Cd, Hg) Nanocrystallites at Room Temperature”, J. Mater. Res., 17(5), 1147-1152 (2002).
57. L. Xu, X. F. Huang, H. B. Huang, H. M. Chen, J. Xu and K. J. Chen, “Surface Modification and Enhancement of Luminescence due to Quantum Effects in Coated CdSe/CuSe Semiconductor Nanocrystals”, Jpn. J. Appl. Phys., 37(6), 3491-3494 (1998).
58. L. Xu, K. J. Chen, J. M. Zhu, H. M. Chen, H. B. Huang, J. Xu and X.
F. Huang, “Core-Shell Structure and Quantum Effect of CdSe/HgSe/CdSe Quantum Dot Quantum Well”, Superlattices microstruct., 29(1), 67-72 (2001).
59. R. J. Bandaranayake, G. W. Wen, J. Y. Lin, H. X. Jiang and C. M.
Sorensen, “Structural Phase Behavior in II-VI Semiconductor Nanoparticles”, Appl. Phys. Lett., 67(6), 831-833 (1995).
60. A. L. Rogach, A. Kornowski, M. Gao, A. Eychmuller and H. Weller, “Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals”, J. Phys. Chem. B, 103(16), 3065-3069 (1999).
61. S. M. Liu, H. Q. Guo, Z. H. Zhang, R. Li, W. Chen and Z. G. Wang, “Characterization of CdSe and CdSe/CdS core/Shell Nanoclusters Synthesized in Aqueous Solution”, Physica E, 8(2), 174-178 (2000).
62. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature”, J. Colloid Interface Sci., 252(1), 77-81 (2002).
63. S. Wageh, S. M. Liu and X. R. Xu, “Effect of Aging on CdSe Nanocrystals”, Physica E, 16(2), 269-273 (2003).
64. D. Pejova, A. Tanusevski and I. Grozdanov, “Chemical Deposition of Semiconducting Cadmium Selenide Quantum Dots in Thin Film Form and Investigation of Their Optical and Electrical Properties”, J. Solid State Chem., 172(2), 381-388 (2003).
65. H. H. Song, Z. Fang, and H. Q. Guo, “Synthesis and Characterization of CdSe/Poly(4-vinylpyridine) Quateenary Ammonium Nanocomposite”, Acta Phys. –Chim. Sin., 19, 9-12 (2003).
66. P. P. Hankare, V. M. Bhuse, K. M. Garadkar, S. D. Delekar, I. S. Mulla, “Low Temperature Route to Grow Polycrystalline Cadmium Selenide and Mercury Selenide Thin Films”, Mater. Chem. Phys., 82(3), 711-717 (2003).
67. M. A. Vairavamurthy, W. S. Goldenberg, S. Ouyang and S. Khalid, “The Interaction of Hydrophilic Thiols with Cadmium: Investigation with A Simple Model, 3-Mercaptopropionic Acid” , Mar. Chem., 70, 181-189 (2000).
68. 黃忠良, 精密陶瓷材料概念, 復漢出版社, 2001年, 台南.
69. J. W. Mullin, “Crystallization”, Butterworth-Heinemann, Boston, (1993).
70. C. B. Murray, C. R. Kagan and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies”, Annu. Rev. Mater. Sci., 30(1), 545-610 (2000).
71. X. Peng, J. Wickham and A. P. Alivisatos, “Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions”, J. Am. Chem. Soc., 120(21), 5343-5344 (1998).
72. Z. Qiao, Y. Xie, J. Huang, Y. Zhu and Y. T. Qian, “Single-Step Confined Growth of CdSe/Polyacrylamide Nanocomposites under �-Irradiation”, Radiat. Phys. Chem., 58, 287-292 (2000).
73. M. A. Malik, P. O’Brien and N. Revapresadu, “Semiconductor Nanoparticles: Their Properties, Synthesis and Potential for Application”, S. Afr. J. Sci., 96(2), 55-60 (2000).
74. A. D. Yoffe, “Low-Dimensional Systems: Quantum Size Effects and Electronic Properties of Semiconductor Microcrystallites (Zero-Dimensional Systems) and Some Quasi-Two-Dimensional Systems”, Adv. Phys., 42(2), 173-266 (1993).
75. L. E. Brus, “Electron-Electron and Electron-Hole Interactions in Small semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State”, J. Chem. Phys., 80(9), 4403-4409 (1984).
76. Y. Wang, A. Suna, W. Mahler and R. Kasowski, “PbS in Polymers. From Molecules to Bulk Solids”, J. Chem. Phys., 87(12), 7315-7322 (1987).
77. Y. Kayanuma, “Quantum-Size Effects of Interacting Electrons and Holes in Semiconductor Microcrystals with Spherical Shape”, Phys. Rev. B, 38(14), 9797-9805 (1988).
78. Y. Wang and N. Herron, “Quantum Size Effects on the Exciton Energy of CdS Clusters”, Phys. Rev. B, 42(11), 7253-7255 (1990).
79. Y. Kayanuma and H. Momiji, “Incomplete Confinement of Electrons and Holes in Microcrystals”, Phys. Rev. B, 41(14), 10261-10263 (1990).
80. M. L. Steigerwald and L. E. Brus, “Semiconductor Crystallites: a Class of Large Molecules”, Acc. Chem. Res., 23(6), 183-188 (1990).
81. Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties”, J. Phys. Chem., 95(2), 525-532 (1991).
82. B. Zorman, M. V. Ramakrishna and R. A. Friesner, “Quantum Confinement Effects in CdSe Quantum Dots”, J. Phys. Chem., 99(19), 7649-7653 (1995).
83. R. Mu, Y. S. Tung, A. Ueda and D. O. Henderson, “Chemical and Size Characterization of Layered Lead Iodide Quantum Dots via Optical Spectroscopy and Atomic Force Microscopy”, J. Phys. Chem., 100(51), 19927-19932 (1996).
84. T. Trindade, P. O’Brien and N. L. Pickett, “Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives”, Chem. Mater., 13(11), 3843-3858 (2001).
85. P. E. Lippens and M. Lannoo, “Calculation of the Band Gap for Small CdS and ZnS Crystallites”, Phys. Rev. B, 39(15), 10935-10942 (1989).
86. P. E. Lippens and M. Lannoo, “Comparison between Calculated and Experimental Values of the Lowest Excited Electronic State of Small CdSe Crystallites”, Phys. Rev. B, 41(9), 6079-6081 (1990).
87. M. V. R. Krishna and R. A. Friesner, “Exciton Spectra of Semiconductor Clusters”, Phys. Rev. Lett., 67(5), 629-632 (1991).
88. L. W. Wang and A. Zunger, “Pseudopotential Calculations of Nanoscale CdSe Quantum Dots”, Phys. Rev. B, 53(15), 9579-9582 (1996).
89. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders and S. B. Warner, “The Science and Design of Engineering Materials”, McGraw-Hill, USA, (1999).
90. C. M. Donega, S. G. Hickey, Ss. F. Wuister, D. Vanmaekelbergh and A. Meijerink, “Single-Step Synthesis to Control the Photoluminescence Quantum Yield and Size Dispersion of CdSe Nanocrystals”, J. Phys. Chem. B, 107, 489-496 (2003).
91. H. P. Klug, L. E. Alexander, “X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials”, 2nd Edition, Wiley, New York, (1974).
92. R. C. Kainthla, D. K. Pandya and K. L. Chopra, “Solution Growth of CdSe and PbSe Films”, 127(2), 277-283 (1980).
93. 王崇人, “神奇的奈米科學”, 科學發展月刊, 354期, 45-51 (2002).
94. C. D. Wagner, “Handbook of X-Ray Photoelectron Spectroscopy”, Perkin-Elmer, MN, (1979).
95. O. Yamamoto and T. Sasamoto, “Preparation of Crystalline CdSe Particles by Chemical Bath Deposition”, J. Mater. Res., 13(12), 3394-3398 (1998).
96. A. V. Firth and D. J. Cole-Hamilton, “Optical Properties of CdSe Nanocrystals in A Polymer Matrix”, Appl. Phys. Lett., 75(20), 3120-3122 (1999).
97. S. Gorer and G. Hodes, “Quantum Size Effects in the Study of Chemical Solution Deposition Mechanisms of Semiconductor Films”, J. Phys. Chem., 98(20), 5338-5346 (1994).
98. L. Spanhel, M. Haase, H. Weller and A. Henglein, “Photochemistry of Colloidal Aemiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles”, J. Am. Chem. Soc., 109(19), 5649-5655 (1987).