簡易檢索 / 詳目顯示

研究生: 林品均
Lin, Pin-Chun
論文名稱: 含磺酸根硫醚之自組裝單分子膜在Au(111)電極上的吸附及其對電化學鍍銅的效應
Self-Assembled Monolayer of Thioether with Sulfonate Adsorbed on Au(111) Surface and Its Effect on Electrochemical Deposition of Copper
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 111
中文關鍵詞: 自組裝單分子膜磺酸根掃描式電子穿隧顯微鏡循環伏安法電化學鍍銅
外文關鍵詞: SAMs, TBPS, sulfonic, STM, CV, copper deposition, chloride
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要工作可分為二部份,第一部份是藉由循環伏安法 (cyclic voltammetry, CV) 以及電化學掃描式電子穿隧顯微鏡 ( electrochemical scanning tunneling microscopy, EC-STM) 來分析有機硫醚分子3,3’-thiobis(1-propanesulfonic acid, sodium salt) (TBPS) 自組裝單分子膜於金(111)上的吸附結構及電化學行為。在STM觀察之下,TBPS單分子膜於0.8 V (vs. RHE) 會形成 (6 × 3√3) 的規則結構 ; 然而當電位低於0.7 V時,TBPS吸附層呈現不規則的排列,而在0.06 V時產生脫附的行為。從CV實驗中得知,0.3 V ~ 1.0 V為TBPS單分子膜穩定存在的區間,TBPS要到1.2 V之後才會完全氧化。

    本研究的第二部份是利用電化學的方式將銅電鍍於TBPS單分子膜修飾後的金(111)電極上,觀察鍍銅過程中的電化學行為及表面銅層的成長模式。由CV實驗中得知, TBPS單分子膜的修飾對銅的低電位沉積 (underpotential deposition, UPD) 有稍微促進的效果,過電位沉積 (overpotential deposition, OPD) 則是沿載體方向進行特殊的二維條狀成長。當溶液中有氯離子存在時,對於銅的UPD及OPD皆有明顯的促進效果,銅沉積的方式在UPD電位下呈片狀成長,在OPD電位區間則產生顆粒狀的形態。當氯離子濃度較高時,有助於銅成長為平台狀的表面形式。此外,本研究亦發現,TBPS自組裝膜製備後,基板的潤洗與否對後續的鍍銅程序有明顯的差異,未經潤洗的修飾基板,對於銅在UPD及OPD電位區間的成長有較明顯的促進效果。

    This research includes two parts. In the first part, the adsorption behavior and electrochemical features of an organic thioether— 3,3’-thiobis(1-propanesulfonic acid, sodium salt) (TBPS) on Au(111) electrode were investigated by using cyclic voltammetry (CV) and in-situ scanning tunneling microscopy (STM). Under the investigation of STM, an ordered TBPS adlattice can be observed at 0.8 V (vs. RHE) and the structure is identified to be (6 × 3√3). When the potential was negatively shifted, the TBPS adlayer becomes disorder at ca. 0.7 V and desorbed from the Au(111) surface at ca. 0.06 V. The CV spectrum reveals that the TBPS monolayer adsorbs stably at the potential range between 0.3 V ~ 1.0 V, and oxidizes when the potential was elevated up above 1.2 V.

    For the second part of this study, electrochemical deposition of copper was performed on the TBPS-modified Au(111) surface. The CV results indicate that the TBPS adlayer has a slightly enhancement effect to the underpotential deposition (UPD) of copper. For the overpotential deposition (OPD), the modification of TBPS triggers a one dimensional growth mode of copper, formation of copper clusters with rode-like morphology. The presence of the chloride ions has an enhancement effect to the copper deposition both in the UPD and OPD regions. It’s also found that the deposition rate was also affected by the chloride concentration and the rinsing conditions of the TBPS-modified Au(111) substrates after the self-assembling process.

    摘要.......................................................I Abstract..................................................II 誌謝.....................................................III 目錄......................................................IV 表目錄...................................................VIII 圖目錄.....................................................IX 第1章 緒論..................................................1 1.1 前言...................................................1 1.2 研究動機與目的...........................................3 第2章 文獻回顧...............................................4 2.1 自組裝單分子膜 (self-assembled monolayers, SAMs) 的介紹...4 2.1.1 自組裝單分子膜系統的發展及起源............................4 2.1.2 自組裝單分子膜系統的分類.................................4 2.1.3 自組裝現象及分子的特性...................................6 2.1.4 自組裝分子薄膜的應用....................................7 2.1.5 有機硫化物自組裝於金屬基材之相關研究.......................9 2.1.5.1 烷基硫醇及二烷基二硫化物...............................9 2.1.5.2 硫醚..............................................10 2.2 金屬基材對SAMs排列之影響.................................16 2.3 銅製程技術簡介..........................................17 2.3.1 電鍍銅填充盲孔之技術發展................................17 2.3.2 電鍍銅添加劑的種類及其作用原理...........................22 2.3.2.1 氫離子(H+).........................................22 2.3.2.2 氯離子(Cl-)........................................22 2.3.2.3 抑制劑(Suppressor).................................23 2.3.2.4 平整劑(Leveler)....................................24 2.3.2.5 加速劑(Accelerator)或光澤劑(Brightener).............26 2.3.3 低電位沉積(UPD)文獻回顧................................28 第3章 實驗部份..............................................36 3.1 氣體及耗材.............................................36 3.2 藥品..................................................36 3.3 儀器設備...............................................37 3.3.1 循環伏安儀 (Cyclic Voltammogram, CV).................37 3.3.2 掃描式電子穿隧顯微鏡(Scanning Tunneling Microscopy, STM) .........................................................40 3.3.2.1 儀器操作原理........................................40 3.3.2.2 取像方法...........................................42 3.3.2.3 儀器架構...........................................43 3.4 實驗步驟...............................................48 3.4.1 STM 部分...........................................48 3.4.2 循環伏安儀掃描的前處理..................................50 3.4.3 自組裝單分子膜的製備...................................51 3.4.4 銅電化學沉積流程......................................51 第4章 結果與討論............................................52 4.1 金(111)電極的重排現象....................................52 4.1.1 金(111)電極在0.1 M過氯酸中之循環伏安圖...................52 4.1.2 STM觀察金(111)電極重排現象............................54 4.2 TBPS於金(111)上的自組裝單分子膜之電性與結構的探討...........58 4.2.1 利用循環伏安儀檢測TPBS單分子膜的電化學特性.................58 4.2.1.1 循環伏安圖.........................................58 4.2.1.2 脫附實驗...........................................62 4.2.1.3 電流對時間關係圖.....................................64 4.2.2 利用STM觀察TPBS單分子膜吸附於金(111)上的行為..............66 4.3 TBPS單分子膜於金(111)上之電化學鍍銅效應的探討..............72 4.3.1 以循環伏安法分析銅於金(111)表面之沉積行為.................72 4.3.2 以循環伏安法分析TBPS單分子膜於金(111)電極之電化學鍍銅特性....75 4.3.3 利用STM觀察TBPS單分子膜於金(111)電極之電化學鍍銅特性.......77 4.4 氯離子效應對TBPS單分子膜於金(111)上之電化學鍍銅的影響.........82 4.4.1 利用循環伏安儀測試氯離子濃度的差異對TBPS單分子膜於金(111)電極上電化學鍍銅的影響............................................82 4.4.2 STM觀察低濃度氯離子 (77 μM) 對TBPS單分子膜於金(111)電極上電化學鍍銅的影響...............................................85 4.4.3 STM觀察高濃度氯離子 (0.77 mM) 對TBPS單分子膜於金(111)電極上電化學鍍銅的影響..............................................91 4.5 TBPS在未潤洗情況下自組裝於金(111)上之電化學特性及銅沉積行為的探討 .........................................................96 4.5.1 未潤洗之TBPS自組裝分子膜於金(111)上的電化學特性...........96 4.5.2 未潤洗之TBPS自組裝分子膜於金(111)上的電化學鍍銅效應........98 第5章 結論................................................104 5.1 TBPS自組裝單分子膜於金(111)上電性及分子結構的探討..........104 5.2 TBPS自組裝單分子膜於金(111)上電化學鍍銅的探討.............104 第6章 參考文獻.............................................106

    1.Bigelow, W.C., Pickett, D.L., and Zisman, W.A., "Oleophobic Monolayers :I. Films Adsorbed From Solution in Non-polar Liquids" Journal of Colloid Science, 1, 513 (1946).

    2.Nuzzo, R.G., and Allara, D.L., "Adsorption of Bifunctional Organic Disulfides on Gold Surfaces," Journal of the American Chemical Society, 105, 4481 (1983).

    3.Ulman, A., "Formation and Structure of Self-Assembled Monolayers", Chem. Rev., 96, 1533 (1996).

    4.Sellers, H., Ulman, A., Shnidman, Y., and Eilers, J.E., "Structure and Binding of Alkanethiolates on Gold and Silver Surfaces: Implications for Self-Assembled Monolayers", Journal of the American Chemical Society, 115, 9389 (1993).

    5.Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., and Whitesides, G.M.,"Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology", Chem. Rev., 105, 1103 (2005).

    6.Xia, Y., Zhao, X.M., Whitesides, G.M., "Pattern Transfer: Self-Assembled Monolayers as Ultrathin Resists", Microelectronic Engineering, 32, 255 (1996).

    7.Cotton, C., Glidle, A., Beamson, G., and Cooper, J.M., "Dynamics of the Formation of Mixed Alkanethiol Monolayers: Applications in Structuring Biointerfacial Arrangements", Langmuir, 14, 5139 (1998).

    8.Taniguch,i I., Toyosawa, K., Yamaguchi, H.,and Yasukouchi, K., "Reversible Electrochemical Reduction and Oxidation of Cytochrome c at a Bis(4-pyridyl) Disulphide-modified Gold Electrode", Journal of the Chemical Socciety, Chemical Communications, 1032 (1982).

    9.Huang, J.Y., Dahlgren, D.A., and Hemminger, J.C., "Photopatterning of Self-Assembled Alkanethiolate Monolayers on Gold: A Simple Monolayer Photoresist Utilizing Aqueous Chemistry", Langmuir, 10, 626 (1994).

    10.Li, X.M., Huskens, J., Reinhoudt, D.N., "Reactive Self-Assembled Monolayers on Flat and Nanoparticle Surfaces, and Their Application in Soft and Scanning Probe Lithographic Nanofabrication Technologies", Journal of Materials Chemistry, 14, 2954 (2004).

    11.Yang, G.H., and Liu, G.Y., "New Insights for Self-Assembled Monolayers of Organothiols on Au(111) Revealed by Scanning Tunneling Microscopy", The Journal of Physical Chemistry B, 107, 8746 (2003).

    12.Biebuyck, H.A., and Whitesides, G.M., "Interchange between Monolayers on Gold Formed from Unsymmetrical Disulfides and Solutions of Thiols: Evidence for Sulfur-Sulfur Bond Cleavage by Gold Metal", Langmuir, 9, 1766 (1993).

    13.Biebuyck, H.A., Bain, C.D., and Whitesides, G.M., "Comparison of Organic Monolayers on Polycrystalline Gold Spontaneously Assembled from Solutions Containing Dialkyl Disulfides or Alkanethiols", Langmuir, 10, 1825 (1994).

    14.Thoughton, E.B., Bain, C.D., Whitesides, G.M., Nuzzo, R.G., Allara, D.L.,and Porter, M.D., "Monolayer Films Prepared by the Spontaneous Self-Assembly of Symmetrical and Unsymmetrical Dialkyl Sulfides from Solution onto Gold Substrates: Structure, Properties, and Reactivity of Constituent Functional Groups", Langmuir, 4, 365 (1988).

    15.Sandroff, C.J., and Herschbach, D.R., "Surface-Enhanced Raman Study of Organic Sulfides Adsorbed on Silver : Facile Cleavage of S-S and C-S Bonds", J. Phys. Chem., 86, 3277 (1982).

    16.Lee, S.B., Kim, K., and Kim, M.S., "Electrochemical Reductlon of Organlc Sulfldes Investlgated by Raman Spectroscopy ", J. Phys. Chem., 96, 9940 (1992).

    17.Zhong, C.J., and Porter, M.D., "Evidence for Carbon-Sulfur Bond Cleavage in Spontaneously Adsorbed Organosulfide-Based Monolayers at Gold", Journal of the American Chemical Society, 116, 11616 (1994).

    18.Beulen, M.W.J., Huisman, B.H., vanderHeijden, P.A., vanVeggel, F.C.J.M., Simons M.G., Biemond Ed M.E.F., deLange P.J., and Reinhoudt D.N., "Evidence for Nondestructive Adsorption of Dialkyl Sulfides on Gold. ", Langmuir, 12, 6170 (1996).

    19.Zhong, C.J., Brush, R.C., Anderegg, J., and Porter, M.D., "Organosulfur Monolayers at Gold Surfaces: Reexamination of the Case for Sulfide Adsorption and Implications to the Formation of Monolayers from Thiols and Disulfides. ", Langmuir, 15, 518 (1999).

    20.Takiguchi, H., and Sato, K., "Delicate Surface Reaction of Dialkyl Sulfide Self-Assembled Monolayers on Au(111) ", Langmuir, 16, 1703 (2000).

    21.Hagenhoff, B., Benninghoven, A., Spinke, J., Liley, M., and Knoll, W., "Time-of-Flight Secondary Ion Mass Spectrometry Investigations of Self-Assembled Monolayers of Organic Thiols, Sulfides, and Disulfides on Gold Surfaces", Langmuir, 9, 1622 (1993).

    22.Noh, J., Kato, H.S., Kawai, M., and Hara, M., "Surface and Adsorption Structures of Dialkyl Sulfide Self-Assembled Monolayers on Au(111) ", J. Phys. Chem. B, 106, 13268 (2002).

    23.Noh, J., Jeong, Y., Ito, E., and Hara, M., "Formation and Domain Structure of Self-Assembled Monolayers by Adsorption of Tetrahydrothiophene on Au(111) ", J. Phys. Chem. C, 111, 2691 (2007).

    24.Smith, T., "The hydrophilic nature of a clean gold surface", Journal of Colloid and Interface Science, 75, 51 (1980).

    25.Laibinis, P.E., and Whitesides, G.M., "ω-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities", Journal of the American Chemical Society, 114, 1990 (1992).

    26.Laibinis, P.E., Whitesides, G.M., Allara, D.L., Tao, Y.T., Parikh, A.N., and Nuzzo, R.G., "Comparison of the Structures and Wetting Properties of Self-Assembled Monolayers of n-Alkanethiols on the Coinage Metal Surfaces, Cu, Ag, Au", Journal of the American Chemical Society, 113, 7152 (1991).

    27.Andricacos, P.C., Uzoh, C., Dukovic, J.O., Horkans, J., and Deligianni, H., "Damascene Copper Electroplating for Chip Interconnections", IBM J. Res. Develop., 42, 576 (1998).

    28.Soukane, S., Sen, S., Caleb, T.S., "Feature Superfilling in Copper Electrochemical Deposition", J. Electrochem. Soc., 149, C74 (2002).

    29.West, A.C., "Theory of Filling of High-Aspect Ratio Trenches and Vias in Presence of Additives", J. Electrochem. Soc., 147, 227 (2000).

    30.Moffat, T.P., Wheeler, D., Huber, W.H., and Josell, D., "Superconformal Electrodeposition of Copper", Electrochem. Solid-State Lett., 4, C26 (2001).

    31.West, A.C., Mayer, S., and Reid, J., "A Superfilling Model that Predicts Bump Formation", Electrochem. Solid-State Lett., 4, C50 (2001).

    32.Moffat, T.P., Wheeler, D., Kim, S.K., and Josell, D., "Curvature enhanced adsorbate coverage mechanism for bottom-up superfilling and bump control in damascene processing", Electrochim. Acta, 53, 145 (2007).

    33.Dow, W.P., Huang, H.S., Yen, M.Y., and Huang, H.C., "Influence of Convection-Dependent Adsorption of Additives on Microvia Filling by Copper Electroplating", J. Electrochem. Soc., 152, C425 (2005).

    34.Dow, W.P., Yen, M.Y., Chou, C.W., Liu, C.W., Yang, W.H., and Chen, C.H., "Practical Monitoring of Filling Performance in a Copper Plating Bath", Electrochem. Solid-State Lett., 9, C134 (2006).

    35.Dow, W.P., Li, C.C., Su, Y.C., Shen, S.P., Huang, C.C., Lee, C., Hsu, B., and Hsu, S., "Microvia Filling by Copper Electroplating Using Diazine Black as a Leveler", Electrochim. Acta, 54, 5894 (2009).

    36.Nagy, Z., Blaudeau, J.P., Hung, N.C., Curtiss, L.A., and Zurawski, D.J., "Chloride Ion Catalysis of the Copper Deposition Reaction", J. Electrochem. Soc., 142, L87 (1995).

    37.Dow, W.P., Huang, H.S., Yen, M.Y., and Chen, H.H., "Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition II. Studies Using EPR and Galvanostatic Measurements", J. Electrochem. Soc., 152, C77 (2005).

    38.Dow, W.P., Yen, M.Y., Lin, W.B., and Ho, S.W., "Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling by Copper Electroplating", J. Electrochem. Soc., 152, C769 (2005).

    39.Yokoi, M., Konishi, S., and Hayahi, T., "Adsorption Behavior of Polyoxyethyleneglycole on the Copper Surface in an Acid Copper Sulfate Bath",Denki Kagaku, 52, 218 (1984).

    40.Feng, Z.V., Li, X., Gewirth, A.A., "Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study ", J. Phys. Chem. B, 107, 9415 (2003).

    41.Bozzini, B., Mele, C., D’urzo, L., and Romanello, V., "An Electrochemical and In situ SERS Study of Cu Electrodeposition from Sulphate Solutions in the Presence of 3 – Diethylamino – 7 – (4–dimethylaminophenylazo) – 5 –phenylphenazinium chloride (Janus Green B), J. Appl. Electrochem., 36, 973 (2006).

    42.Li, Y.B., Wang, W., and Li, Y.L., "Adsorption Behavior and Related Mechanism of Janus Green B during Copper Via-Filling Process", J. Electrochem. Soc., 156, D119 (2009).

    43.Taephaisitphongse, P., Cao, Y., and West, A.C., "Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition", J. Electrochem. Soc., 148, C492 (2001).

    44.Dow, W.P. and Yen, M.Y., "Microvia Filling over Self-Assembly Disulfide Molecule on Au and Cu Seed Layers─A Morphological Study of Copper Deposits", Electrochem Solid-State Lett., 8, C161 (2005).

    45.Dow, W.P., Chiu, Y.D., and Yen, M.Y., "Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide.", J. Electrochem. Soc., 156, D155 (2009).

    46.Jung, D.R. and Czanderna, A.W., "Chemical and Physical Interactions at Metal/Self-Assembled Organic Monolayer Interfaces", Crit. Rev. Solid State Mater. Sci., 19, 1 (1994).

    47.Shi, Z., Wu, S., and Lipkowski, J., "Coadsorption of Metal Atoms and Anions in the presence of SO42-, Cl-and Br-", Electrochimica Acta, 40, 9 (1995).

    48.Schneeweiss, M.A. and Kolb, D.M., "The Initial Stages of Copper Deposition on Bare and Chemically Modified Gold Electrodes", phys. stat. sol., 173, 51 (1999).

    49.Kolb, D.M., Petri, M., Memmert, U., and Meyer, H., "Adsorption of Mercaptopropionic Acid onto Au(111) Part II. Effect on Copper Electrodeposition", Electrochimica Acta, 49,183 (2003).

    50.Tu, H.L., Yen, P.Y., Wu, H.L., Chen, S., Vogel, W., Yau, S.L., and Dow, W.P., "In Situ STM of 3-Mercaptopropanesulfonate Adsorbed on Pt(111) Electrode and Its Effect on the Electrodeposition of Copper", J. Electrochem. Soc., 157, D206 (2010).

    51.Munakta, H., Oyamatsu, D., and Kuwabata, S., "Effects of ω-Functional Groups on pH-Dependent Reductive Desorption of Alkanethiol Self-Assembled Monolayers ", Langmuir, 20, 10123 (2004).

    無法下載圖示 校內:2012-07-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE