簡易檢索 / 詳目顯示

研究生: 林智宣
Lin, Chih-Hsuan
論文名稱: 邊界條件對藍相液晶微球之影響
Influence of boundary condition on blue phase liquid crystal microdroplets
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 77
中文關鍵詞: 藍相液晶微球微流道邊界錨定力光子能隙溫寬
外文關鍵詞: blue phase liquid crystal droplet, microfluidic, boundary anchoring force, photonic bandgap, temperature range
相關次數: 點閱:143下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究乃利用微流道生成系統製作出尺寸均勻的藍相液晶微球群,並研究藍相液晶微球在降溫過程中,受到具有垂直(異向)配向效果之SDS水溶液的影響而造成的溫寬與光學特性上之變化。論文主要研究內容可分兩個主題,第一個是在慢速降溫過程中,利用偏光顯微鏡觀察液晶微球群出現藍相與消失時的溫度範圍,改變不同濃度的SDS水溶液會讓液晶微球出現藍相的溫度範圍跟著位移,在偏光顯微鏡的反射模式與穿透模式所觀察到的藍相也會因為配向力的強弱而出現不同步的相態變化。由於液晶微球受到來自四面八方的三維徑向錨定力所影響,不同於一般平板樣品所受較少維度方向之錨定力,因此藍相液晶微球展現出不同於一般藍相樣品的特性。
    第二個主題為了將第一部分的實驗結果進行客觀的數據化,自行架設一套可進行單顆液晶微球光譜量測與白光影像擷取之光路。實驗結果顯示隨著水溶液給予的邊界錨定力愈強,藍相液晶的光子能隙在降溫時的位移範圍也會愈狹窄,代表其晶格結構可更穩定地被維持住,不會因為些微的溫度改變而在物理光學性質上出現大幅度的改變。由上述結果可知錨定力的強弱對於藍相液晶的穩定性有很大的影響,相信這項有趣的研究對於將來的藍相液晶特性探討及顯示器領域會有重要的幫助。

    This study successfully fabricated blue phase liquid crystal (BPLC) microdroplets with uniform size by a microfluidic system. The influences of SDS aqueous solution with homeotropically anchoring force on the BP temperature range and characteristics of the BPLC microdroplets are investigated. This study included two topics. The first part, during the cooling process, we found that the BPLC microdroplets near the surface and bulk regions have different transition temperatures and thus different BP temperature ranges. The photonic bandgap (PBG) shift of the BPLC microdroplets became narrower when the concentration of the aqueous solution. This result is attributed to the more stabilized effect on the lattice structures of the BPLC microdroplets under a stronger anchoring force caused by the higher concentrated SDS solution.
    In second part, we measured the spectra of single LC microdroplet and recorded the corresponding white light images at the cooling process. The results showed that the BPLC PBG shifted a narrower spectral range during the cooling process because a stronger anchoring force from a high concentrated SDS solution can more effectively stabilize the lattice structure of the BP, which result is similar to that in Part 1. The investigation about the interesting properties of the BPLC microdroplets is important in understanding the basic properties of BPLC and helpful to the future applications.

    目錄 摘要 I ABSTRACT II 致謝 VI 圖目錄 X 表目錄 XV 第一章 綱要 1 第二章 液晶簡介 3 2-1 何謂液晶 3 2-2 液晶的分類 3 2-2.1 長棒狀分子 4 2-2.2 圓盤狀分子 8 2-3 液晶物理特性 9 2-3.1 方向秩序參數 9 2-3.2 光學異向性 10 2-3.3 介電異向性 12 2-3.4 溫度對液晶的影響 13 2-3.5 連續彈性體理論 14 第三章 藍相液晶 16 3-1 藍相液晶的介紹 16 3-2 發現藍相液晶的背景 17 3-3 藍相液晶結構 18 3-3.1 雙扭轉圓柱 18 3-3.2 藍相型態 20 3-4 藍相的特性 21 3-4.1 藍相的布拉格反射 22 3-4.2 Kossel圖 23 3-4.3 藍相的光電特性 24 第四章 樣品製備與實驗架設 27 4-1 實驗材料 27 4-1.1 液晶 27 4-1.2 旋光性分子 27 4-1.3 十二烷基硫酸鈉 28 4-2 樣品製作 29 4-2.1 玻璃空樣品製作 29 4-2.2 材料配製 30 4-2.3 液晶微球製備 31 4-2.4 液晶微球樣品製作 32 4-3 實驗架設 33 4-3.1 偏振光學顯微鏡結合溫控系統 33 4-3.2 可溫控之微區域之光譜量測架設 35 第五章 結果與討論 38 5-1 利用偏光顯微鏡進行藍相液晶微球在慢速降溫過程中之影像觀測 38 5-1.1 液晶微球在具有垂直配向效果水溶液中的分子排列 38 5-1.2 不同濃度配向液之藍相液晶微球降溫過程在顯微鏡下之影像觀測 39 5-2 單顆藍相液晶微球之反射光譜與白光影像觀測 62 第六章 結論與未來發展 73 6-1 結論 73 6-2 未來發展 74 參考文獻 75

    [1] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
    [2] P. Etchegoin, “Blue phases of cholesteric liquid crystals as thermotropic photonic crystals,” Phy. Rev. Lett. 62(1), 1435–1437 (2000).
    [3] M. J. Lee, C. H. Chang, and W. Lee, “Label-free protein sensing by employing blue
    phase liquid crystal,” Biomed. Opt. Express 8(3), 1712–1720 (2017).
    [4] S. M. Shamid, D. W. Allender, and J. V. Selinger, “Predicting a Polar Analog of Chiral Blue Phases in Liquid Crystals,” Phys. Rev. Lett. 113(237801), 1–5 (2014).
    [5] J. A. Martínez-González, Y. Zhou, M. Rahimi, E. Bukusoglu, N. L. Abbott, and J. J. de Pablo, “Blue-phase liquid crystal droplets,” Proc. Natl. Acad. Sci. 112(43), 13195–13200 (2015).
    [6] E. Bukusoglu, X. Wang, J. A. Martinez-Gonzalez, J. J. de Pablo, and N. L. Abbott, “Stimuli-Responsive Cubosomes Formed from Blue Phase Liquid Crystals,” Adv. Mater. 27, 6892–6898 (2015).
    [7] H. G. Lee, S. Munir, and S. Y. Park, “Cholesteric Liquid Crystal Droplets for Biosensors,” ACS Appl. Mater. Interfaces 8, 26407−26417 (2016).
    [8] J. H. Jang, S. Y. Park, “pH-responsive cholesteric liquid crystal double emulsion dropletsprepared by microfluidics” Sens. Actuators, B-Chem. 241, 636–643 (2017).
    [9] C. Priest, A. Quinn, A. Postma, A. N. Zelikin, J. Ralston and F. Caruso, “Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis,” Lab on a Chip 8, 2182–2187 (2008).
    [10] M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi,
    A. Magazzu`, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago`, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Comm. 5(3656), 1–5 (2014).
    [11] Y. Li, J. J. Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. T. Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and, E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Comm. 7(12520), 1–11 (2016).
    [12] H. Y. Liu, C. T. Wang, C. Y. Hsu, and T. H. Lin, “Pinning effect on the photonic bandgaps of blue-phase liquid crystal,” Appl. Opt. 50(11), (2011).
    [13] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York 1993).
    [14] S. Chandrasekhar, Liquid Crystal (Cambridge University Press, New York, 1992).
    [15] I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (John Wiley and Sons, New York, 1995).
    [16] 松本正一 和 角田市良 合著,劉瑞祥 譯,液晶之基礎與應用 (國立編譯館,台灣,1996)。
    [17] Eds. H. S. Kitzerow and Ch. Bahr, Chirality in Liquid Crystals (Springer, New York, 2001).
    [18] H. Zhou, E. P. Choate, and H. Wang, Optical Fredericks Transition in a Nematic Liquid Crystal Layer (Springer, New York, 2015).
    [19] Hirotsugu Kikuchi, “Liquid Crystalline Blue Phases,” Struct. Bond. 128, 99–117 (2008).
    [20] S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, “Theory of the blue phase of cholesteric liquid crystals,” Phys. Rev. Lett. 46(18), 1216¬–1219 (1981).
    [21] P. E. Cladis, P. Pieranski, and M. Joanicot, “Elasticity of blue phase-I of cholesteric liquid crystals,” Phys. Rev. Lett. 52(7), 542–545 (1984).
    [22] A. Yoshizawa, “Liquid Crystal Oligomers Exhibiting a Blue Phase,” Mol. Cryst. Liq. Cryst. 516, 99–106 (2010).
    [23] B. Jerome and P. Pieranski, “Kossel diagrams of blue phases,” Liq. Cryst. 5(3), 799–812 (1989).
    [24] Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
    [25] H. Yoshida, S. Yabu, H. Tone, Y. Kawata, H. Kikuchi, and M. Ozaki, “Secondary electro-optic effect in liquid crystalline cholesteric blue phases,” Opt. Mater. Express 4(5), 960–968 (2014).
    [26] M. J. Gim, G. Han, S. W. Choi, and D. K. Yoon, “Thermal phase transition behaviours of the blue phase of bent-core nematogen and chiral dopant mixtures under different boundary conditions,” Soft Mater. 10, 8224–8228 (2014).
    [27] 方金祥 著,微型化學實驗之設計與製作 (高雄覆文圖書出版社,台灣,1998 年)。
    [28] 余岳川 著,生活與化學 (台灣書店出版社,台灣,1997年)。
    [29] P. Kekicheff, C. Grabielle-Madelmont, and M. Ollivon, “Phase Diagram of Sodium Dodecyl Sulfate-Water System” J. Colloid Interface Sci. 131(1), 112-132 (1989).

    無法下載圖示 校內:2020-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE