| 研究生: |
許世弘 Hsu, Shih-Hung |
|---|---|
| 論文名稱: |
台灣花蓮地區地震前兆特性研究 Precursory swarms of moderate-sized earthquakes in eastern Taiwan |
| 指導教授: |
饒瑞鈞
Rau, Ruey-Juin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 地震觀測 、地震力學 、地震預測 、地震相互作用 |
| 外文關鍵詞: | Seismicity and tectonics, Earthquake prediction, Earthquake forecasting, Earthquake interaction, Earthquake source observations, Earthquake dynamics |
| 相關次數: | 點閱:79 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
突發性孤立地震是發生在有限空間和時間的地震群,主要和彈性應變、流體入侵或無震滑移有關。觀察台灣1991年至2009年間中央氣象局所提供之地震資料,台灣的突發性孤立地震在龜山島區域和花蓮區域有集中現象,可能和火山活動和板塊碰撞擠壓形成的破碎帶所造成。此外,六群花蓮區域的突發性孤立地震在發生後1到48天,在群震中心50公里的範圍內會發生規模大於5.5的中等規模地震,且間隔和群震的累計能量成線性反比關係。經由雙差分重新定位後,發現花蓮區域地震帶呈現北北東走向,且只有發生在特定位置的群震會跟隨中等規模地震。研究顯示如果主斷層上有許多大小相近的Asperity,並且存在由許多子斷層所組成的破碎區塊時,當應力隨時間增加,子斷層會先破裂形成Precursory swarms,隨後Asperity無法承受應力破裂成為主震。群震累積的能量愈大,代表累積的應力愈接近Asperity所能承受之應力,因此,群震累計能量和中等規模地震發生的時間差有反比關係。
Earthquake bursts are known as many earthquakes striking in limited space and time. Bursts in general are caused by the elastic fault rupture, the influence of fluids or aseismic slip and common in volcanic areas and transform faults. We investigate bursts occurred in Taiwan from January 1991 to March 2009 and find numbers of them occurred in the Turtle Island and Hualien area. Evidence suggested that volcanic activities and plate collision are the major causes. We also find that six of swarms located at the collision corner of eastern Taiwan occurred before moderate-sized (M>5.5) earthquakes with distances less than fifty kilometers. The moderate-sized earthquake in general located on the east of the seismic zone between one and forty-eight days after individual swarm. The accumulated moments of the preceding swarms is inversely related to the time-separation between the swarms and the moderate-sized earthquakes. We suggest that precursory swarms-mainshock sequences found at Hualien area were due to process of stress accumulation and release on a given fault planes that contain several asperities and a number of subfaults. As the stress increases, the subfaults break on short time and cause a precursory swarm. When the tectonic stress increases further, the asperity breaks in the form of the moderate-sized earthquake.
詹忠翰. 2002. 利用雙差分地震定位演算法重新定位 過去十年台灣中、大型地震之餘震. 國立中央大學地球物理研究所碩士論文.
薩宜光. 2003. 南部中央山脈之地震活動性探討. 國立成功大學地球科學系碩士論文.
Aki, K. 1965. Maximum likelihood estimate of b in the formula log N= a-bM and its confidence limits. Bull. Earthquake Res. Inst.Tokyo Univ. 43, 237-239.
Ben-Zion, Y. 2008. Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Rev. Geophys. 46, doi:10.1029/2008RG000260.
Dreger, D. S., Tkali, H. & Johnston, M. 2000. Dilational Processes Accompanying Earthquakes in the Long Valley Caldera. Science 288(5463), 122-125, doi:10.1126/science.288.5463.122.
Evison, F. & Rhoades, D. 2000. The precursory earthquake swarm in Greece. ANNALI DI GEOFISICA 43(5), 991-1009.
Gutenberg, B. & Richter, C. F. 1954. Seismicity of the Earth and Associated Phenomena. Princeton University Press, Princeton, New Jersey.
Henry, C. & Das, S. 2001. Aftershock zones of large shallow earthquakes: fault dimensions, aftershock area expansion and scaling relations. Geophysical Journal International 147(2), 272-293.
Inouye, W. 1965. On the seismicity in the epicentral region and its neighborhood before the Niigata earthquake. Kenshin Jiho 29, 31-36.
Jones, L. & Molnar, P. 1976. Frequency of foreshocks. Nature 262(5570), 677-679.
Kanamori, H. 1981. The nature of seismicity patterns before large earthquakes. In: Earthquake Prediction: An International Review. (edited by Simpson, D. & Richards, P.). American Geophysical Union, Washington, D.C., 1-19.
Lin, C.-H. 2004. Repeated foreshock sequences in the thrust faulting environment of eastern Taiwan. Geophys. Res. Lett. 31, doi:10.1029/2004GL019833.
Mogi, K. 1962. Study of Elastic Shocks Caused by the Fracture of Heterogeneous Materials and its Relations to Earthquake Phenomena. Bull. Earthquake Res. Inst.Tokyo Univ. 40, 125-173.
Mogi, K. 1963. Some Discussions on Aftershocks, Foreshocks and Earthquake Swarms : the Fracture of a Semi-infinite Body Caused by an Inner Stress Origin and Its Relation to the Earthquake Phenomena. Bull. Earthquake Res. Inst.Tokyo Univ. 41, 615-658.
Mogi, K. 1969. Some Features of Recent Seismic Activity in and near Japan. Bull. Earthquake Res. Inst.Tokyo Univ. 46, 1125-1235.
Rau, R.-J., Wu, F. T. & Shin, T.-C. 1996. Regional Network focal mechanism determination using 3D velocity model and SH/P amplitude ratio. Bulletin of the Seismological Society of America 86(5), 1270-1283.
Scholz, C. H. 1990. The Mechanics of Earthquakes and Faulting. Cambridge University Press, New York.
Sekiya, H. 1977. Anomalous seismic activity and earthquake prediction. J. Phys. Earth 25, 585-593.
Shyu, J. B. H., Sieh, K., Chen, Y.-G. & Liu, C.-S. 2005. Neotectonic architecture of Taiwan and its implications for future large earthquakes. J. Geophys. Res. 110, doi:10.1029/2004JB003251.
Singh, V. P. & Singh, J. 1986. Precursory swarm and its application for long range earthquake forecasting in Taiwan. Proceedings of the Indian Academy of Sciences. 96, 15-23.
Snoke, J. A. 2003. FOCMEC: FOcal MEChanism determinations. In: International Handbook of Earthquake and Engineering Seismology (edited by Lee, W. H. K., Kanamori, H., Jennings, P. C. & Kisslinger, C.). Academic Press, San Diego.
Tajima, F. & Kanamori, H. 1985. Aftershock area expansion and mechanical heterogeneity of fault zone within subduction zones. Geophys. Res. Lett. 12(6), 345-348.
Utsu, T. 1961. A statistical study on the occurrence of aftershocks. Geophys. Mag 30, 521-605.
Vidale, J. E. & Shearer, P. M. 2006. A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. J. Geophys. Res. 111, doi:10.1029/2005JB004034.
Waite, G. P. & Smith, R. B. 2002. Seismic evidence for fluid migration accompanying subsidence of the Yellowstone caldera. J. Geophys. Res. 107, doi:10.1029/2001JB000586.
Waldhauser, F. & Ellsworth, W. L. 2000. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America 90(6), 1353-1368, doi:10.1785/0120000006.
Wiemer, S. 2001. A software package to analyze seismicity: ZMAP. Seismological Research Letters 72, 373-382.
Wiemer, S. & Wyss, M. 2000. Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America 90(4), 859-869, doi:10.1785/0119990114.
Wyss, M. & Habermann, R. E. 1988. Precursory seismic quiescence. Pure and Applied Geophysics 126(2), 319-332.
Wyss, M., Shimazaki, K. & Wiemer, S. 1997. Mapping active magma chambers by b values beneath the off-Ito volcano, Japan. J. Geophys. Res. 102(20), 413-422.
Yang, W. & Ben-Zion, Y. 2009. Observational analysis of correlations between aftershock productivities and regional conditions in the context of a damage rheology model. Geophysical Journal International 177(2), 481-490.
Zoback, M. L. 1992. First- and Second-Order Patterns of Stress in the Lithosphere: The World Stress Map Project. J. Geophys. Res. 97(11), 703-728.