簡易檢索 / 詳目顯示

研究生: 張舒涵
Chang, Shu-Han
論文名稱: 掘穴環爪蚓應用於鉻污染土壤之生物整治
Bioremediation of Chromium-Contaminated Soil using Perionyx excavatus
指導教授: 黃榮振
Huang, Jung-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 65
中文關鍵詞: 蚯蚓微生物生物整治
外文關鍵詞: Chromium, earthworm, microorganisms, bioremediation
相關次數: 點閱:51下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了鉻(Cr)污染對蚯蚓糞便微生物群落結構的影響及其在重金屬修復中的潛力。鉻作為一種常見的工業污染物,對人類健康和生態系統構成嚴重威脅。蚯蚓作為土壤生態系統的重要成員,在維持土壤健康和生態平衡中發揮了關鍵作用,但其對重金屬污染高度敏感。本研究選用掘穴環爪蚓(Perionyx excavatus)作為模型,分別探討了三價鉻(Cr(III))與六價鉻(Cr(VI))對蚯蚓及其糞便微生物群落的影響,並進一步分析蚯蚓糞便微環境中功能菌的增殖與鉻還原能力。
    實驗結果顯示,Cr(VI) 的暴露降低了蚯蚓的存活率與體重增長,對照組、Cr(III) 組和 Cr(VI) 組的存活率分別為 100%、97.78% 和 75.56%,而 Cr(VI) 組的蚯蚓體重則明顯下降,顯示出 Cr(VI) 的毒性作用。此外,蚯蚓體內的鉻含量低於其糞便中的鉻含量,表明蚯蚓通過活性排泄機制將鉻從體內排出。
    在微生物群落結構分析中,發現含鉻處理顯著改變了蚯蚓糞便中的微生物群落,特定功能菌屬如Leucobacter和Comamonas的豐富度提高,表現出鉻還原能力,能有效將毒性的Cr(VI)還原為低毒的Cr(III)。硒(Se)的加入在某些情境下增強了微生物群落對重金屬的適應性,展現了協同修復的潛力,但在部分情況下也產生拮抗效應,削弱了微生物群落的多樣性與穩定性。此外,蚯蚓糞便提供了一個富含有機質和微量元素的特殊微環境,促進了功能菌屬如Flavobacterium和Chryseobacterium 的增殖,進一步推動了鉻的穩定化與還原。
    從蚯蚓糞便中分離出的Bacillus cereus展現了卓越的鉻還原與固定能力,能在低濃度條件下高效去除Cr(VI),顯示了其在污染修復和資源化利用中的雙重應用潛力。本研究強調蚯蚓及其微生物群落在重金屬修復中的協同作用,不僅提高了修復效率,還促進了微生物群落的穩定性與功能多樣性。未來應進一步探索蚯蚓與微生物的交互機制,特別是在多重污染環境中的應用,為可持續環境治理提供科學依據和新策略。

    This study investigated the impact of chromium (Cr) contamination on earthworm fecal microbial communities and their potential for heavy metal remediation. The results showed that Cr exposure significantly altered microbial community structures, with increased abundance of functional genera such as Leucobacter and omamonas, which demonstrated the ability to reduce the highly toxic hexavalent chromium (Cr(VI)) to the less toxic trivalent chromium (Cr(III)). The addition of selenium (Se) enhanced microbial adaptability under certain conditions and exhibited synergistic remediation effects in multi-pollutant scenarios, though antagonistic interactions were also observed. Earthworm feces, as an organic matter-rich microenvironment, promoted the proliferation of functional bacteria such as Flavobacterium and Chryseobacterium, further facilitating the stabilization and reduction of Cr. Additionally, Bacillus cereus, isolated from earthworm feces, exhibited efficient Cr(VI) reduction and immobilization capabilities, demonstrating its dual potential for pollution remediation and resource recovery.This study highlights the synergistic roles of earthworms and their associated microbial communities in bioremediation, not only improving remediation efficiency but also enhancing microbial community stability and functional diversity. Future research should focus on optimizing the earthworm-microbe synergistic mechanisms to address more complex pollution scenarios and promote sustainable environmental development.

    摘要 I Extended Abstract III 致謝 VI 目錄 VIII 表目錄 XI 圖目錄 XI 第一章 前言 1 1.1 研究背景與目的 1 第二章文獻回顧 3 2.1 鉻的特性與污染 3 2.1.1 鉻的基本物化性質 3 2.1.2 鉻的來源與分佈 4 2.1.3 鉻的污染現況 5 2.1.4 鉻的毒性與危害 6 2.2 環境中鉻污染處理技術與方法 7 2.2.1 物理處理技術 7 2.2.2 化學處理技術 8 2.2.3 生物處理技術 9 2.3 蚯蚓在土壤中鉻污染的處理應用 10 2.3.1 蚯蚓簡介 10 2.3.2 蚯蚓對鉻的去除機制 10 2.3.3 蚯蚓對於鉻毒性產生的解毒機制 11 2.3.4 六價鉻對於蚯蚓去除鉻產生的作用 12 2.3.5 硒在蚯蚓去除鉻過程中的拮抗機制 12 2.4 資源化處理 13 第三章 研究方法 14 3.1 實驗架構 14 3.2 實驗材料與方法 14 3.2.1 實驗器材 14 3.2.2 實驗材料 15 3.3 實驗設置 17 3.3.1 含鉻土壤的蚯蚓實驗 17 3.3.2 共存污染物土壤的蚯蚓實驗 18 3.3.3 功能菌篩選實驗 20 3.4 實驗方法 20 3.4.1 總鉻分析 20 3.4.2 比色法 21 3.5 分析方法 21 3.5.1 感應耦合電漿發射光譜儀 ( ICP-OES ) 21 3.5.2 鉻還原菌種之鑑定 21 3.5.3 微生物群落分析 22 3.6 數據處理 23 第四章 結果與討論 24 4.1 含鉻土壤對蚯蚓的影響 24 4.1.1 鉻對蚯蚓的生長與毒性 24 4.1.2 鉻的累積與去除 26 4.2 共存污染物對於蚯蚓除鉻的影響 28 4.2.1 共存污染物對蚯蚓的生長與毒性 28 4.3 蚯蚓對微生物的影響 33 4.3.1 微生物物種多樣性(Alpha diversity index) 33 4.3.2 微生物群落結構與組成 34 4.3.3 微生物去鉻測試及資源化 39 第五章 結論與建議 42 5.1 結論 42 5.2 建議 43 參考文獻 45

    1. Nriagu, J.O. and E. Nieboer, Chromium in the natural and human environments. Vol. 20. 1988: John Wiley & Sons.
    2. Prado, C., et al., Differential physiological responses of two Salvinia species to hexavalent chromium at a glance. Aquatic Toxicology, 2016. 175: p. 213-221.
    3. Ashraf, A., et al., Chromium (VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. International journal of phytoremediation, 2017. 19(7): p. 605-613.
    4. Coetzee, J.J., N. Bansal, and E.M. Chirwa, Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Exposure and health, 2020. 12: p. 51-62.
    5. Singh, P., N. Itankar, and Y. Patil, Biomanagement of hexavalent chromium: Current trends and promising perspectives. Journal of Environmental Management, 2021. 279: p. 111547.
    6. Tumolo, M., et al., Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. International journal of environmental research and public health, 2020. 17(15): p. 5438.
    7. Pellerin, C. and S.M. Booker, Reflections on hexavalent chromium: health hazards of an industrial heavyweight. Environmental health perspectives, 2000. 108(9): p. A402-A407.
    8. Prasad, S., et al., Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. Journal of Environmental Management, 2021. 285: p. 112174.
    9. Pushkar, B., et al., Chromium pollution and its bioremediation mechanisms in bacteria: A review. Journal of Environmental Management, 2021. 287: p. 112279.
    10. Khan, A., et al., Processes controlling the extent of groundwater pollution with chromium from tanneries in the Hazaribagh area, Dhaka, Bangladesh. Science of the total environment, 2020. 710: p. 136213.
    11. Tang, X., et al., Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. Ecotoxicology and Environmental Safety, 2021. 208: p. 111699.
    12. Murthy, M.K., P. Khandayataray, and D. Samal, Chromium toxicity and its remediation by using endophytic bacteria and nanomaterials: A review. Journal of Environmental Management, 2022. 318: p. 115620.
    13. DesMarias, T.L. and M. Costa, Mechanisms of chromium-induced toxicity. Current opinion in toxicology, 2019. 14: p. 1-7.
    14. Sharma, A., et al., Chromium bioaccumulation and its impacts on plants: an overview. Plants, 2020. 9(1): p. 100.
    15. Peng, H. and J. Guo, Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environmental Chemistry Letters, 2020. 18(6): p. 2055-2068.
    16. Yan, G., et al., Toxicity mechanisms and remediation strategies for chromium exposure in the environment. Frontiers in Environmental Science, 2023. 11: p. 1131204.
    17. Beretta, G., et al., Progress towards bioelectrochemical remediation of hexavalent chromium. Water, 2019. 11(11): p. 2336.
    18. Guo, L., et al., Remediation of high concentration chromium contaminated soil by Enhanced Electrodynamic Method. Earth Sciences Research Journal, 2021. 25(2): p. 247-253.
    19. Hayashi, N., et al., Chromium (VI) adsorption–reduction using a fibrous amidoxime-grafted adsorbent. Separation and Purification Technology, 2021. 277: p. 119536.
    20. Mkheidze, N., et al., Improvement of technological modes of electrodialysis apparatus for treatment of chromium-containing waste waters. Ecological Engineering & Environmental Technology, 2021. 22.
    21. He, C., et al., Cleaning chromium pollution in aquatic environments by bioremediation, photocatalytic remediation, electrochemical remediation and coupled remediation systems. Environmental Chemistry Letters, 2020. 18: p. 561-576.
    22. Samuel, M.S., et al., Clean approach for chromium removal in aqueous environments and role of nanomaterials in bioremediation: Present research and future perspective. Chemosphere, 2021. 284: p. 131368.
    23. Malaviya, P., A. Singh, and T.A. Anderson, Aquatic phytoremediation strategies for chromium removal. Reviews in Environmental Science and Bio/Technology, 2020. 19: p. 897-944.
    24. Liu, P., et al., Synergistic Effects of Earthworms and Plants on Chromium Removal from Acidic and Alkaline Soils: Biological Responses and Implications. Biology, 2023. 12(6): p. 831.
    25. Aparicio, J.D., et al., Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies. Environmental Research, 2021. 194: p. 110666.
    26. Rajadurai, M., et al., Vermiremediation of engine oil contaminated soil employing indigenous earthworms, Drawida modesta and Lampito mauritii. Journal of Environmental Management, 2022. 301: p. 113849.
    27. Hasanuzzaman, A.M., S.Z. Hossian, and M. Das, Nutritional potentiality of earthworm (Perionyx excavatus) for substituting fishmeal used in local feed company in Bangladesh. Mesopotamian Journal of Marine Sciences, 2010. 25(2): p. 134-139.
    28. Zeb, A., et al., Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. Science of the Total Environment, 2020. 740: p. 140145.
    29. Aththanayake, A., I. Rathnayake, and M. Deeyamulla, Detoxification and Removal of Hexavalent Chromium in Aquatic Systems: Applications of Bioremediation. Nepal Journal of Biotechnology, 2022. 10(2): p. 57-76.
    30. Rong, H., et al., Biochemical toxicity and potential detoxification mechanisms in earthworms Eisenia fetida exposed to sulfamethazine and copper. Bulletin of Environmental Contamination and Toxicology, 2020. 105: p. 255-260.
    31. Yu Cheng, Y.C., et al., The long-term effects of hexavalent chromium on anaerobic ammonium oxidation process: performance inhibition, hexavalent chromium reduction and unexpected nitrite oxidation. 2019.
    32. Boyd, R., Selenium stories. Nature chemistry, 2011. 3(7): p. 570-570.
    33. Xia, J., et al., Selenium-containing polymers: perspectives toward diverse applications in both adaptive and biomedical materials. Macromolecules, 2018. 51(19): p. 7435-7455.
    34. Ye, J., et al., Role of reactive oxygen species and p53 in chromium (VI)-induced apoptosis. Journal of Biological Chemistry, 1999. 274(49): p. 34974-34980.
    35. Zhang, T.-g., et al., Antagonistic effects of nano-selenium on broilers hepatic injury induced by Cr (VI) poisoning in AMPK pathway. Environmental Science and Pollution Research, 2020. 27: p. 41585-41595.
    36. Nie, M., et al., Selenium-mediated Cr (VI) reduction and SeNPs synthesis accelerated Bacillus cereus SES to remediate Cr contamination. Journal of Hazardous Materials, 2023. 457: p. 131713.
    37. Peng, R.J., et al., Selenium toxicity and bioaccumulation in selenium-enriched fly (Chrysomya megacephala) maggots. Environmental Geochemistry and Health, 2023. 45(7): p. 4493-4503.
    38. Xu, S., et al., Remediation of chromium-contaminated soil using delaminated layered double hydroxides with different divalent metals. Chemosphere, 2020. 254: p. 126879.
    39. Batool, M., et al., Microbial-assisted soil chromium immobilization through zinc and iron-enriched rice husk biochar. Frontiers in Microbiology, 2022. 13: p. 990329.
    40. Fu, L., et al., Remediation of soil contaminated with high levels of hexavalent chromium by combined chemical-microbial reduction and stabilization. Journal of Hazardous Materials, 2021. 403: p. 123847.
    41. Toju, H., et al., High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PloS one, 2012. 7(7): p. e40863.
    42. Bolger, A.M., M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014. 30(15): p. 2114-2120.
    43. Martin, M., Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal, 2011. 17(1): p. 10-12.
    44. Callahan, B.J., et al., DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 2016. 13(7): p. 581-583.
    45. Caporaso, J.G., et al., QIIME allows analysis of high-throughput community sequencing data. Nature methods, 2010. 7(5): p. 335-336.
    46. Quast, C., et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research, 2012. 41(D1): p. D590-D596.
    47. Glöckner, F.O., et al., 25 years of serving the community with ribosomal RNA gene reference databases and tools. Journal of biotechnology, 2017. 261: p. 169-176.
    48. Yilmaz, P., et al., The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic acids research, 2014. 42(D1): p. D643-D648.
    49. Ludwig, W., et al., ARB: a software environment for sequence data. Nucleic acids research, 2004. 32(4): p. 1363-1371.
    50. Schloss, P.D., et al., Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and environmental microbiology, 2009. 75(23): p. 7537-7541.
    51. Ondov, B.D., N.H. Bergman, and A.M. Phillippy, Interactive metagenomic visualization in a Web browser. BMC bioinformatics, 2011. 12: p. 1-10.
    52. Lozupone, C. and R. Knight, UniFrac: a new phylogenetic method for comparing microbial communities. Applied and environmental microbiology, 2005. 71(12): p. 8228-8235.
    53. Lozupone, C., et al., UniFrac: an effective distance metric for microbial community comparison. The ISME journal, 2011. 5(2): p. 169-172.
    54. Lozupone, C.A., et al., Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Applied and environmental microbiology, 2007. 73(5): p. 1576-1585.
    55. Basha, P.M. and V. Latha, Evaluation of sublethal toxicity of zinc and chromium in Eudrilus eugeniae using biochemical and reproductive parameters. Ecotoxicology, 2016. 25: p. 802-813.
    56. Sinkakarimi, M.H., E. Solgi, and A.H. Colagar, Interspecific differences in toxicological response and subcellular partitioning of cadmium and lead in three earthworm species. Chemosphere, 2020. 238: p. 124595.
    57. Žaltauskaitė, J., I. Kniuipytė, and R. Kugelytė, Lead impact on the earthworm Eisenia fetida and earthworm recovery after exposure. Water, Air, & Soil Pollution, 2020. 231: p. 1-8.
    58. Zhou, C.-F., et al., Subacute toxicity of copper and glyphosate and their interaction to earthworm (Eisenia fetida). Environmental pollution, 2013. 180: p. 71-77.
    59. Gudeta, K., et al., Ecological adaptation of earthworms for coping with plant polyphenols, heavy metals, and microplastics in the soil: A review. Heliyon, 2023. 9(3).
    60. Sapkota, R., et al., Insights into the earthworm gut multi-kingdom microbial communities. Science of the Total Environment, 2020. 727: p. 138301.
    61. Gao, C., et al., Determination of metallothionein, malondialdehyde, and antioxidant enzymes in earthworms (Eisenia fetida) following exposure to chromium. Analytical Letters, 2016. 49(11): p. 1748-1757.
    62. Zhang, F.-Q., et al., Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 2007. 67(1): p. 44-50.
    63. Yadav, R., et al., Heavy metal toxicity in earthworms and its environmental implications: A review. Environmental Advances, 2023. 12: p. 100374.
    64. Yuvaraj, A., et al., Metallothionein dependent-detoxification of heavy metals in the agricultural field soil of industrial area: Earthworm as field experimental model system. Chemosphere, 2021. 267: p. 129240.
    65. Li, Y., et al., Bioaccumulation of dietary CrPic, Cr (III) and Cr (VI) in juvenile coral trout (Plectropomus leopardus). Ecotoxicology and Environmental Safety, 2022. 240: p. 113692.
    66. Kumpiene, J., A. Lagerkvist, and C. Maurice, Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–a review. Waste management, 2008. 28(1): p. 215-225.
    67. Wang, Y., et al., Bioremediation of selenium-contaminated soil using earthworm Eisenia fetida: Effects of gut bacteria in feces on the soil microbiome. Chemosphere, 2022. 300: p. 134544.
    68. 王子境, 底層型蚯蚓土後腔環蚓應用於鉻污染土壤之生物整治. 2024.
    69. Buch, A.C., et al., Ecotoxicology of mercury in tropical forest soils: Impact on earthworms. Science of the Total Environment, 2017. 589: p. 222-231.
    70. Xiao, K., et al., Differences in the bioaccumulation of selenium by two earthworm species (Pheretima guillemi and Eisenia fetida). Chemosphere, 2018. 202: p. 560-566.
    71. Yali, W., et al., Behavior and respiration responses of the earthworm Eisenia fetida to soil arsenite pollution. Pedosphere, 2021. 31(3): p. 452-459.
    72. Zheng, S., et al., Interactive effects of multiple heavy metal (loid) s on their bioavailability in cocontaminated paddy soils in a large region. Science of the Total Environment, 2020. 708: p. 135126.
    73. Wang, S. and H. Wang, Adsorption behavior of antibiotic in soil environment: a critical review. Frontiers of Environmental Science & Engineering, 2015. 9: p. 565-574.
    74. Huang, Y., et al., Impact of sediment characteristics on adsorption behavior of typical antibiotics in Lake Taihu, China. Science of the total environment, 2020. 718: p. 137329.
    75. Qin, X., et al., Adsorption of levofloxacin onto goethite: effects of pH, calcium and phosphate. Colloids and Surfaces B: Biointerfaces, 2014. 116: p. 591-596.
    76. Sturini, M., et al., Removal of fluoroquinolone contaminants from environmental waters on sepiolite and its photo-induced regeneration. Chemosphere, 2016. 150: p. 686-693.
    77. Yue, S., et al., Toxicokinetics of selenate in earthworm sub-tissues and potential bio-accessibility assessment of earthworm-derived selenium. Ecotoxicology and Environmental Safety, 2024. 281: p. 116643.
    78. El-Ramady, H.R., et al., Selenium in agriculture: water, air, soil, plants, food, animals and nanoselenium. CO2 sequestration, biofuels and depollution, 2015: p. 153-232.
    79. Lakin, H.W., Selenium accumulation in soils and its absorption by plants and animals. Geological Society of America Bulletin, 1972. 83(1): p. 181-190.
    80. Sharma, S., R. Singh, and G.G. Nielson, Selenium in soil, plant, and animal systems. Critical Reviews in Environmental Science and Technology, 1983. 13(1): p. 23-50.
    81. Yue, S., et al., Selenium accumulation, speciation and bioaccessibility in selenium-enriched earthworm (Eisenia fetida). Microchemical Journal, 2019. 145: p. 1-8.
    82. Handa, N., et al., Selenium ameliorates chromium toxicity through modifications in pigment system, antioxidative capacity, osmotic system, and metal chelators in Brassica juncea seedlings. South African Journal of Botany, 2018. 119: p. 1-10.
    83. Cai, M., et al., Selenium induces changes of rhizosphere bacterial characteristics and enzyme activities affecting chromium/selenium uptake by pak choi (Brassica campestris L. ssp. Chinensis Makino) in chromium contaminated soil. Environmental Pollution, 2019. 249: p. 716-727.
    84. Pradhan, S.K., et al., Bacterial chromate reduction: a review of important genomic, proteomic, and bioinformatic analysis. Critical reviews in environmental science and technology, 2016. 46(21-22): p. 1659-1703.
    85. Gulia, S., J. Yadav, and R. Gupta, Assessment of chromium induced alterations on gut bacterial population of E. eugeniae. Journal of Applied and Natural Science, 2019. 11(1): p. 94-96.
    86. Yuvaraj, A., N. Karmegam, and R. Thangaraj, Vermistabilization of paper mill sludge by an epigeic earthworm Perionyx excavatus: mitigation strategies for sustainable environmental management. Ecological Engineering, 2018. 120: p. 187-197.
    87. Thakur, S.S., et al., Metagenomic exploration of bacterial community structure of earthworms’ gut. Journal of Pure and Applied Microbiology, 2021. 15(3): p. 1156-1172.
    88. Teles, Y.V., et al., Potential of bacterial isolates from a stream in manaus-amazon to bioremediate chromium-contaminated environments. Water, Air, & Soil Pollution, 2018. 229: p. 1-10.
    89. Sun, Y.-Y., et al., Microbial communities outperform extracellular polymeric substances in the reduction of hexavalent chromium by anaerobic granular sludge. Environmental Technology & Innovation, 2024. 34: p. 103616.
    90. Lyu, Y., et al., Enrichment and characterization of an effective hexavalent chromium-reducing microbial community YEM001. Environmental Science and Pollution Research, 2021. 28: p. 19866-19877.
    91. Hu, X., et al., Effects of heavy metals/metalloids and soil properties on microbial communities in farmland in the vicinity of a metals smelter. Frontiers in Microbiology, 2021. 12: p. 707786.
    92. Sun, X., et al., Selenium accumulation in unicellular green alga Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments. Plos One, 2014. 9(11): p. e112270.
    93. Guo, S., et al., Speciation, toxicity, microbial remediation and phytoremediation of soil chromium contamination. Environmental Chemistry Letters, 2021. 19(2): p. 1413-1431.
    94. Sturm, G., et al., Chromate resistance mechanisms in Leucobacter chromiiresistens. Applied and environmental microbiology, 2018. 84(23): p. e02208-18.
    95. Ghane, M., et al., Isolation and characterization of a heavy metal resistant Comamonas sp. from industrial effluents. Iranian Journal of Science, 2013. 37(2): p. 173-179.
    96. Tagliabue, F., et al., A Systematic Review on Earthworms in Soil Bioremediation. Applied Sciences, 2023. 13(18): p. 10239.
    97. Singh, J., et al., Vermiremediation in contaminated soils: An approach for soil stabilization. Frontiers in Environmental Science, 2023. 11: p. 1137463.
    98. Hou, X., et al., Flavobacterium selenitireducens sp. nov., isolated from rhizosphere soil of ancient mulberry. International Journal of Systematic and Evolutionary Microbiology, 2022. 72(3): p. 005304.
    99. Li, M.-h., et al., Isolation and identification of chromium reducing Bacillus Cereus species from chromium-contaminated soil for the biological detoxification of chromium. International Journal of Environmental Research and Public Health, 2020. 17(6): p. 2118.
    100. Naik, U.C., S. Srivastava, and I.S. Thakur, Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium. Environmental Science and Pollution Research, 2012. 19: p. 3005-3014.
    101. Chen, Z., et al., Cr (VI) uptake mechanism of Bacillus cereus. Chemosphere, 2012. 87(3): p. 211-216.
    102. Akhtar, N., et al., Role of Bacillus cereus in improving the growth and phytoextractability of Brassica nigra (L.) K. Koch in chromium contaminated soil. Molecules, 2021. 26(6): p. 1569.
    103. Nemat, H., et al., Ameliorative effect of co-application of Bradyrhizobium japonicum EI09 and Se to mitigate chromium stress in Capsicum annum L. International Journal of Phytoremediation, 2020. 22(13): p. 1396-1407.
    104. Dash, B., R. Soni, and R. Goel, Rhizobacteria for reducing heavy metal stress in plant and soil. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management: Volume 1: Rhizobacteria in Abiotic Stress Management, 2019: p. 179-203.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE