簡易檢索 / 詳目顯示

研究生: 呂亮萱
Lu, Liang-Hsuan
論文名稱: 探討自噬作用作為敗血性休克治療標的之可能性
Autophagy is a potentially therapeutic target in septic shock
指導教授: 葉才明
Yeh, Trai-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 54
中文關鍵詞: 敗血症高遷移率族蛋白 1自噬作用血管滲漏細胞激素細菌清除
外文關鍵詞: sepsis, HMGB1, autophagy, vascular leakage, cytokine, bacterial clearance
相關次數: 點閱:120下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 敗血症是因為感染而引起全身性發炎反應且致死性極高的疾病。由於血液中含有高量的發炎激素導致血管滲漏,患者往往會死於低血壓所引起的休克。然而目前仍無有效且具專一性之藥物可降低敗血症的高致死率。高遷移率族蛋白1 (High mobility group box 1, HMGB1)是一種會於敗血症晚期釋出的細胞激素,且被認為在敗血症中扮演重要角色。然而目前已知,針對細胞激素本身做抑制,並無法有效降低敗血症患者的死亡率。先前研究顯示,自噬作用(Autophagy)會參與在脂多醣(Lipopolysaccharides, LPS) 所引起的內皮細胞高通透性。此外,自噬作用也具有調控免疫細胞製造及分泌部分細胞激素如介白素-1 (interleukin 1, IL-1)及腫瘤壞死因子-α (tumor necrosis factor, TNF-α) 之能力,而抑制自噬作用也可促進巨噬細胞的吞噬作用。因此,本研究將進一步探討,抑制細胞自噬是否能降低在敗血症情況下病原菌感染及發炎反應之嚴重程度。首先,我們發現LPS誘發白血球之促發炎激素的生成會被自噬作用抑制劑所抑制。此外,由LPS條件培養液 (LPS-conditioned medium) 及HMGB1所誘發的內皮細胞通透性增加,在自噬抑制劑存在下也會被抑制。而在經自噬抑制劑處理之後的白血球,其吞噬細菌的能力會提升。最後,我們利用大腸桿菌感染小鼠引起的敗血症模式下,展示了在細菌感染後給予自噬抑制劑,可增強小鼠清除細菌的能力及降低發炎激素的產生和血管滲漏的情形,最終有效提升小鼠的存活率。以上結果說明,自噬作用在敗血症的致病機轉中扮演很重要的角色,且或許可作為敗血症中一個良好的治療標的。

    Sepsis is a life-threating condition that arises as a systemic inflammatory response to infection. Due to high circulating cytokine levels increase vascular permeability, septic patients often die of septic shock caused by the hypotension. Despite a high mortality and morbidity, there is no effective and specific drug for sepsis. High mobility group box 1 (HMGB1) is a pro-inflammatory cytokine released in the late stage of sepsis, which is considered as a critical mediator for sepsis pathogenesis. However, inhibition of cytokines couldn’t reduce the mortality of sepsis patients effectively. Previous studies have found that autophagy is involved in lipopolysaccharide (LPS)-induced endothelial hyper-permeability. In addition, autophagy can also regulate the production and secretion of cytokines, such as IL-1 and TNF-α. Moreover, autophagy can modulate phagocytosis in macrophages. In this study, we aim to evaluate the therapeutic potential of inhibiting autophagy against bacterial infection and sepsis-induced inflammatory responses. First, we found that LPS-induced cytokines production of leukocyte was blocked by the inhibition of autophagy. In addition, endothelial hyper-permeability induced by both LPS conditioned medium and HMGB1 were also inhibited in the presence of autophagy inhibitors. Moreover, treatment of autophagy inhibitors enhanced uptake of bacteria by leukocytes. Finally, we demonstrated that blocking autophagy improves the survival rate of septic mice by increasing bacterial clearance and reducing cytokine production and vascular leakage. Taken together, these results suggest that autophagy plays an important role in the sepsis pathogenesis. And autophagy may serve as a potential therapeutic target for septic shock.

    Table of Contents 中文摘要 I Abstract II Acknowledgement III Table of Contents IV List of Figures VII Abbreviations Index VIII 1. Introduction 1 1.1. Sepsis 1 1.1.1. Sepsis : Causes, symptoms and treatments 1 1.1.2. Pathogenesis of septic shock 2 1.1.3. Late proinflammatory mediators of sepsis 2 1.1.4. The difficulty of treatment to sepsis 3 1.2. Autophagy 4 1.2.1. Characteristics of autophagy 4 1.2.2. The role of autophagy in sepsis 6 1.2.2.1. Vascular leakage and autophagy 6 1.2.2.2. Cytokine Secretory and autophagy: unconventional secretory pathway 7 1.2.2.3. Bacterial clearance and autophagy 8 2. Objective and Specific Aims 10 2.1. To investigate the roles of autophagy in sepsis-induced endothelial cell hyper-permeability. 10 2.2. To investigate the roles of autophagy in sepsis-induced cytokine storm. 10 2.3. To investigate whether the inhibition of autophagy promotes bacterial clearance. 10 2.4. To evaluate the therapeutic potential of the inhibition of the autophagy in septic mice model. 10 3. Materials and Methods 12 3.1. Materials 12 3.1.1. Cell lines 12 3.1.2. Recombinant Proteins 12 3.1.3. Bacteria 12 3.1.4. Reagents 12 3.1.5. Antibodies 14 3.1.6. ELISA kits 14 3.1.7. Consumables 15 3.1.8. Instruments 16 3.1.9. Mice 16 3.2. Methods 17 3.2.1. Cell culture 17 3.2.2. Transwell assay 17 3.2.3. Isolation of peripheral blood leukocytes 17 3.2.4. Cytokine measurement 18 3.2.5. Preparation of E. coli 18 3.2.6. Phagocytosis assay 19 3.2.7. Bacterial sepsis models and treatment 19 3.2.8. Determination of blood and organs bacterial CFU 19 3.2.9. Vascular leakage in the organs of mice 20 3.2.10. Vascular leakage in the peritoneal cavity of mice 20 3.2.11. Statistical analysis 20 4. Results 21 4.1. Both HMGB1 and LPS conditioned medium-induced hyper-permeability are blocked by autophagy inhibitors 21 4.2. Both LPS and HMGB1-induced cytokines production of leukocyte were blocked by the inhibition of autophagy. 22 4.3. The treatment of autophagy inhibitors promote the bacterial clearance by leukocytes 23 4.4. Autophagy inhibitors rescue vascular leakage in E. coli-infected BALB/c mice 23 4.5. Autophagy inhibitors block the cytokine secretion in BALB/c mice infected with E. coli 23 4.6. Post-treated with autophagy inhibitor enhances bacterial clearance in BALB/c mice infected with E. coli 24 4.7. Post-treated with autophagy inhibitors improved the survival rate in BALB/c mice infected with E. coli 25 5. Discussion 26 6. Conclusion 32 7. References 33 8. Figures 43   List of Figures Figure 1. Inhibition of autophagy attenuates LPS and HMGB1-induced hyperpermeability. 43 Figure 2. LPS induces cytokine secretion in human leukocytes. 45 Figure 3. Endothelial hyperpermeability induced by LPS conditioned medium is blocked by autophagy inhibitors. 46 Figure 4. Autophagy inhibitors inhibit LPS and HMGB1-induced cytokine secretion in leukocytes. 47 Figure 5. LPS-induced cytokine secretion is inhibited in LC3 knockdown THP-1 cell. 48 Figure 6. Treatment of autophagy inhibitors enhance phagocytosis of bacteria by leukocytes. 49 Figure 7. Autophagy inhibitors rescue vascular leakage in E. coli-infected BALB/c mice. 50 Figure 8. Cytokine production in E. coli-infected BALB/c mice. 51 Figure 9. Autophagy inhibitors inhibit cytokine secretion in E. coli-infected BALB/c mice. 52 Figure 10. Post-treatment with autophagy inhibitor enhances bacterial clearance in E. coli-infected mice. 53 Figure 11. Post-treatment with autophagy inhibitor improves the survival rate in E. coli-infected BALB/c mice. 54

    Angus, D. C., & van der Poll, T. (2013). Severe sepsis and septic shock. N Engl J Med, 369(9), 840-851. doi:10.1056/NEJMra1208623
    Araya, J., Hara, H., & Kuwano, K. (2013). Autophagy in the pathogenesis of pulmonary disease. Intern Med, 52(20), 2295-2303.
    Bernhagen, J., Calandra, T., & Bucala, R. (1994). The emerging role of MIF in septic shock and infection. Biotherapy, 8(2), 123-127.
    Birmingham, C. L., Smith, A. C., Bakowski, M. A., Yoshimori, T., & Brumell, J. H. (2006). Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem, 281(16), 11374-11383. doi:10.1074/jbc.M509157200
    Bone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A., . . . Sibbald, W. J. (1992). Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest, 101(6), 1644-1655.
    Bonilla, D. L., Bhattacharya, A., Sha, Y., Xu, Y., Xiang, Q., Kan, A., . . . Eissa, N. T. (2013). Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity, 39(3), 537-547. doi:10.1016/j.immuni.2013.08.026
    Calandra, T. (2001). Pathogenesis of septic shock: implications for prevention and treatment. J Chemother, 13 Spec No 1(1), 173-180. doi:10.1179/joc.2001.13.Supplement-2.173
    Calandra, T., Echtenacher, B., Roy, D. L., Pugin, J., Metz, C. N., Hultner, L., . . . Glauser, M. P. (2000). Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med, 6(2), 164-170. doi:10.1038/72262
    Calandra, T., & Roger, T. (2003). Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol, 3(10), 791-800. doi:10.1038/nri1200
    Chao, C. H., Chen, H. R., Chuang, Y. C., & Yeh, T. M. (2017). Macrophage Migration Inhibitory Factor-Induced Autophagy Contributes to Thrombin-Triggered Endothelial Hyperpermeability in Sepsis. Shock. doi:10.1097/shk.0000000000000976
    Chaudhry, H., Zhou, J., Zhong, Y., Ali, M. M., McGuire, F., Nagarkatti, P. S., & Nagarkatti, M. (2013). Role of cytokines as a double-edged sword in sepsis. In Vivo, 27(6), 669-684.
    Chen, H. R., Chuang, Y. C., Chao, C. H., & Yeh, T. M. (2015). Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biol Open, 4(2), 244-252. doi:10.1242/bio.201410322
    Chen, H. R., Chuang, Y. C., Lin, Y. S., Liu, H. S., Liu, C. C., Perng, G. C., & Yeh, T. M. (2016). Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLoS Negl Trop Dis, 10(7), e0004828. doi:10.1371/journal.pntd.0004828
    Chen, L., Zhang, B., & Toborek, M. (2013). Autophagy is involved in nanoalumina-induced cerebrovascular toxicity. Nanomedicine, 9(2), 212-221. doi:10.1016/j.nano.2012.05.017
    Chousterman, B. G., Swirski, F. K., & Weber, G. F. (2017). Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol, 39(5), 517-528. doi:10.1007/s00281-017-0639-8
    Chuang, T. Y., Chang, H. T., Chung, K. P., Cheng, H. S., Liu, C. Y., Liu, Y. C., . . . Hsueh, P. R. (2014). High levels of serum macrophage migration inhibitory factor and interleukin 10 are associated with a rapidly fatal outcome in patients with severe sepsis. Int J Infect Dis, 20, 13-17. doi:10.1016/j.ijid.2013.12.006
    Dai, J., Zhang, X., Li, L., Chen, H., & Chai, Y. (2017). Autophagy Inhibition Contributes to ROS-Producing NLRP3-Dependent Inflammasome Activation and Cytokine Secretion in High Glucose-Induced Macrophages. Cell Physiol Biochem, 43(1), 247-256. doi:10.1159/000480367
    Dan Dunn, J., Alvarez, L. A., Zhang, X., & Soldati, T. (2015). Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol, 6, 472-485. doi:10.1016/j.redox.2015.09.005
    Daniels, M. J., & Brough, D. (2017). Unconventional Pathways of Secretion Contribute to Inflammation. Int J Mol Sci, 18(1). doi:10.3390/ijms18010102
    Delgado, M. A., Elmaoued, R. A., Davis, A. S., Kyei, G., & Deretic, V. (2008). Toll-like receptors control autophagy. Embo j, 27(7), 1110-1121. doi:10.1038/emboj.2008.31
    Dellinger, R. P., Levy, M. M., Rhodes, A., Annane, D., Gerlach, H., Opal, S. M., . . . Surviving Sepsis Campaign Guidelines Committee including The Pediatric, S. (2013). Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med, 39(2), 165-228. doi:10.1007/s00134-012-2769-8
    Deretic, V., Jiang, S., & Dupont, N. (2012). Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol, 22(8), 397-406. doi:10.1016/j.tcb.2012.04.008
    Deretic, V., Saitoh, T., & Akira, S. (2013). Autophagy in infection, inflammation and immunity. Nat Rev Immunol, 13(10), 722-737. doi:10.1038/nri3532
    Desjarlais, M., Pratt, J., Lounis, A., Mounier, C., Haidara, K., & Annabi, B. (2014). Tetracycline derivative minocycline inhibits autophagy and inflammation in concanavalin-a-activated human hepatoma cells. Gene Regul Syst Bio, 8, 63-73. doi:10.4137/grsb.s13946
    Dupont, N., Jiang, S., Pilli, M., Ornatowski, W., Bhattacharya, D., & Deretic, V. (2011). Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. Embo j, 30(23), 4701-4711. doi:10.1038/emboj.2011.398
    Fearon, D. T., & Locksley, R. M. (1996). The instructive role of innate immunity in the acquired immune response. Science, 272(5258), 50-53.
    Fleischmann, C., Scherag, A., Adhikari, N. K., Hartog, C. S., Tsaganos, T., Schlattmann, P., . . . Reinhart, K. (2016). Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med, 193(3), 259-272. doi:10.1164/rccm.201504-0781OC
    Garrido-Mesa, N., Zarzuelo, A., & Galvez, J. (2013). Minocycline: far beyond an antibiotic. Br J Pharmacol, 169(2), 337-352. doi:10.1111/bph.12139
    Harris, J. (2011). Autophagy and cytokines. Cytokine, 56(2), 140-144. doi:10.1016/j.cyto.2011.08.022
    Harris, J., Hartman, M., Roche, C., Zeng, S. G., O'Shea, A., Sharp, F. A., . . . Lavelle, E. C. (2011). Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem, 286(11), 9587-9597. doi:10.1074/jbc.M110.202911
    Hayashi, K., Taura, M., & Iwasaki, A. (2018). The interaction between IKKalpha and LC3 promotes type I interferon production through the TLR9-containing LAPosome. Sci Signal, 11(528). doi:10.1126/scisignal.aan4144
    Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., & Ezekowitz, R. A. (1999). Phylogenetic perspectives in innate immunity. Science, 284(5418), 1313-1318.
    Hsieh, Y. C., Athar, M., & Chaudry, I. H. (2009). When apoptosis meets autophagy: deciding cell fate after trauma and sepsis. Trends Mol Med, 15(3), 129-138. doi:10.1016/j.molmed.2009.01.002
    Jiang, F. (2016). Autophagy in vascular endothelial cells. Clin Exp Pharmacol Physiol, 43(11), 1021-1028. doi:10.1111/1440-1681.12649
    Jin, L., Batra, S., & Jeyaseelan, S. (2017). Deletion of Nlrp3 Augments Survival during Polymicrobial Sepsis by Decreasing Autophagy and Enhancing Phagocytosis. J Immunol, 198(3), 1253-1262. doi:10.4049/jimmunol.1601745
    Jo, E. K., Yuk, J. M., Shin, D. M., & Sasakawa, C. (2013). Roles of autophagy in elimination of intracellular bacterial pathogens. Front Immunol, 4, 97. doi:10.3389/fimmu.2013.00097
    Kawai, T., & Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol, 21(4), 317-337. doi:10.1093/intimm/dxp017
    Keller, C. W., Fokken, C., Turville, S. G., Lunemann, A., Schmidt, J., Munz, C., & Lunemann, J. D. (2011). TNF-alpha induces macroautophagy and regulates MHC class II expression in human skeletal muscle cells. J Biol Chem, 286(5), 3970-3980. doi:10.1074/jbc.M110.159392
    Kimmey, J. M., & Stallings, C. L. (2016). Bacterial Pathogens versus Autophagy: Implications for Therapeutic Interventions. Trends Mol Med, 22(12), 1060-1076. doi:10.1016/j.molmed.2016.10.008
    Larosa, S. P. (2002). Sepsis: menu of new approaches replaces one therapy for all. Cleve Clin J Med, 69(1), 65-73.
    Lee, S. A., Kwak, M. S., Kim, S., & Shin, J. S. (2014). The role of high mobility group box 1 in innate immunity. Yonsei Med J, 55(5), 1165-1176. doi:10.3349/ymj.2014.55.5.1165
    Levine, B., & Klionsky, D. J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 6(4), 463-477.
    Li, Q., Li, L., Fei, X., Zhang, Y., Qi, C., Hua, S., . . . Fang, M. (2018). Inhibition of autophagy with 3-methyladenine is protective in a lethal model of murine endotoxemia and polymicrobial sepsis. Innate Immun, 24(4), 231-239. doi:10.1177/1753425918771170
    Lin, X., Sakuragi, T., Metz, C. N., Ojamaa, K., Skopicki, H. A., Wang, P., . . . Miller, E. J. (2005). Macrophage migration inhibitory factor within the alveolar spaces induces changes in the heart during late experimental sepsis. Shock, 24(6), 556-563.
    Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction And Targeted Therapy, 2, 17023. doi:10.1038/sigtrans.2017.23
    Lv, S., Han, M., Yi, R., Kwon, S., Dai, C., & Wang, R. (2014). Anti-TNF-alpha therapy for patients with sepsis: a systematic meta-analysis. Int J Clin Pract, 68(4), 520-528. doi:10.1111/ijcp.12382
    Mei, Y., Thompson, M. D., Cohen, R. A., & Tong, X. (2015). Autophagy and oxidative stress in cardiovascular diseases. Biochim Biophys Acta, 1852(2), 243-251. doi:10.1016/j.bbadis.2014.05.005
    Metz, C. N., & Bucala, R. (1997). Role of Macrophage Migration Inhibitory Factor in the Regulation of the Immune Response. In F. J. Dixon (Ed.), Advances in Immunology (Vol. 66, pp. 197-223): Academic Press.
    Mitchell, R. A. (2004). Mechanisms and effectors of MIF-dependent promotion of tumourigenesis. Cell Signal, 16(1), 13-19.
    Moss, M. (2005). Epidemiology of sepsis: race, sex, and chronic alcohol abuse. Clin Infect Dis, 41 Suppl 7, S490-497. doi:10.1086/432003
    Mostowy, S. (2013). Autophagy and bacterial clearance: a not so clear picture. Cell Microbiol, 15(3), 395-402. doi:10.1111/cmi.12063
    Murthy, T. (2014). Blood transfusion practices in sepsis. Indian J Anaesth, 58(5), 643-646. doi:10.4103/0019-5049.144676
    Nah, J., Yuan, J., & Jung, Y. K. (2015). Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells, 38(5), 381-389. doi:10.14348/molcells.2015.0034
    Oh, J. E., & Lee, H. K. (2014). Pattern recognition receptors and autophagy. Front Immunol, 5, 300. doi:10.3389/fimmu.2014.00300
    Opal, S. M., & van der Poll, T. (2015). Endothelial barrier dysfunction in septic shock. J Intern Med, 277(3), 277-293. doi:10.1111/joim.12331
    Pickles, S., Vigie, P., & Youle, R. J. (2018). Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr Biol, 28(4), R170-r185. doi:10.1016/j.cub.2018.01.004
    Py, B. F., Lipinski, M. M., & Yuan, J. (2007). Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy, 3(2), 117-125.
    Rabouille, C. (2017). Pathways of Unconventional Protein Secretion. Trends Cell Biol, 27(3), 230-240. doi:10.1016/j.tcb.2016.11.007
    Riedemann, N. C., Guo, R. F., & Ward, P. A. (2003). Novel strategies for the treatment of sepsis. Nat Med, 9(5), 517-524. doi:10.1038/nm0503-517
    Rosado Jde, D., & Rodriguez-Sosa, M. (2011). Macrophage migration inhibitory factor (MIF): a key player in protozoan infections. Int J Biol Sci, 7(9), 1239-1256.
    Sachdev, U., Cui, X., Hong, G., Namkoong, S., Karlsson, J. M., Baty, C. J., & Tzeng, E. (2012). High mobility group box 1 promotes endothelial cell angiogenic behavior in vitro and improves muscle perfusion in vivo in response to ischemic injury. J Vasc Surg, 55(1), 180-191. doi:10.1016/j.jvs.2011.07.072
    Sachdev, U., & Lotze, M. T. (2017). Perpetual change: autophagy, the endothelium, and response to vascular injury. J Leukoc Biol, 102(2), 221-235. doi:10.1189/jlb.3RU1116-484RR
    Schmid, D., & Munz, C. (2007). Innate and adaptive immunity through autophagy. Immunity, 27(1), 11-21. doi:10.1016/j.immuni.2007.07.004
    Schulte, W., Bernhagen, J., & Bucala, R. (2013). Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view. Mediators Inflamm, 2013, 165974. doi:10.1155/2013/165974
    Shahidi Bonjar, M. R., & Shahidi Bonjar, L. (2015). A prospective treatment for sepsis. Drug Des Devel Ther, 9, 2537-2543. doi:10.2147/dddt.s82755
    Shi, C. S., & Kehrl, J. H. (2010). TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal, 3(123), ra42. doi:10.1126/scisignal.2000751
    Singer, M. (2014). The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence, 5(1), 66-72. doi:10.4161/viru.26907
    Stearns-Kurosawa, D. J., Osuchowski, M. F., Valentine, C., Kurosawa, S., & Remick, D. G. (2011). The pathogenesis of sepsis. Annu Rev Pathol, 6, 19-48. doi:10.1146/annurev-pathol-011110-130327
    Stevens, N. E., Chapman, M. J., Fraser, C. K., Kuchel, T. R., Hayball, J. D., & Diener, K. R. (2017). Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci Rep, 7(1), 5850. doi:10.1038/s41598-017-06205-z
    Suffredini, A. F., & Munford, R. S. (2011). Novel therapies for septic shock over the past 4 decades. JAMA, 306(2), 194-199. doi:10.1001/jama.2011.909
    Tang, T. T., Lv, L. L., Pan, M. M., Wen, Y., Wang, B., Li, Z. L., . . . Liu, B. C. (2018). Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis, 9(3), 351. doi:10.1038/s41419-018-0378-3
    Tanida, I. (2011). Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal, 14(11), 2201-2214. doi:10.1089/ars.2010.3482
    Ullah, I., Ritchie, N. D., & Evans, T. J. (2017). The interrelationship between phagocytosis, autophagy and formation of neutrophil extracellular traps following infection of human neutrophils by Streptococcus pneumoniae. Innate Immun, 23(5), 413-423. doi:10.1177/1753425917704299
    Vandenbroucke, E., Mehta, D., Minshall, R., & Malik, A. B. (2008). Regulation of endothelial junctional permeability. Ann N Y Acad Sci, 1123, 134-145. doi:10.1196/annals.1420.016
    Vincent, J. L., Rello, J., Marshall, J., Silva, E., Anzueto, A., Martin, C. D., . . . Reinhart, K. (2009). International study of the prevalence and outcomes of infection in intensive care units. JAMA, 302(21), 2323-2329. doi:10.1001/jama.2009.1754
    Wang, H., Yang, H., Czura, C. J., Sama, A. E., & Tracey, K. J. (2001). HMGB1 as a late mediator of lethal systemic inflammation. Am J Respir Crit Care Med, 164(10 Pt 1), 1768-1773. doi:10.1164/ajrccm.164.10.2106117
    Wang, S., Yin, S., Li, Y., Li, C., Li, T., & Liu, Y. (2016). [Effects of autophagy on lipopolysaccharide-induced vascular hyper-permeability]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 28(8), 673-677. doi:10.3760/cma.j.issn.2095-4352.2016.08.001
    Weber, B., Saliken, J., Jadavji, T., Gray, R. R., & Moore, R. (2008). A near-fatal case of sepsis with an antibiotic-resistant organism complicating a routine transrectal prostate biopsy in a health care worker. Can Urol Assoc J, 2(5), 543-545.
    White, E. (2015). The role for autophagy in cancer. J Clin Invest, 125(1), 42-46. doi:10.1172/jci73941
    Wolfson, R. K., Chiang, E. T., & Garcia, J. G. (2011). HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption. Microvasc Res, 81(2), 189-197. doi:10.1016/j.mvr.2010.11.010
    Wu, Z., Zou, X., Zhu, W., Mao, Y., Chen, L., & Zhao, F. (2016). Minocycline is effective in intracerebral hemorrhage by inhibition of apoptosis and autophagy. J Neurol Sci, 371, 88-95. doi:10.1016/j.jns.2016.10.025
    Yang, M., Cao, L., Xie, M., Yu, Y., Kang, R., Yang, L., . . . Tang, D. (2013). Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis. Biochem Pharmacol, 86(3), 410-418. doi:10.1016/j.bcp.2013.05.013
    Yu, L., Chen, Y., & Tooze, S. A. (2018). Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 14(2), 207-215. doi:10.1080/15548627.2017.1378838
    Zanotti, S., Kumar, A., & Kumar, A. (2002). Cytokine modulation in sepsis and septic shock. Expert Opin Investig Drugs, 11(8), 1061-1075. doi:10.1517/13543784.11.8.1061
    Zhou, H., Deng, M., Liu, Y., Yang, C., Hoffman, R., Zhou, J., . . . Billiar, T. R. (2018). Platelet HMGB1 is required for efficient bacterial clearance in intra-abdominal bacterial sepsis in mice. Blood Adv, 2(6), 638-648. doi:10.1182/bloodadvances.2017011817
    Zimmerman, J. L. (2004). Use of blood products in sepsis: an evidence-based review. Crit Care Med, 32(11 Suppl), S542-547.

    下載圖示 校內:2020-12-31公開
    校外:2020-12-31公開
    QR CODE