研究生: |
呂亮萱 Lu, Liang-Hsuan |
---|---|
論文名稱: |
探討自噬作用作為敗血性休克治療標的之可能性 Autophagy is a potentially therapeutic target in septic shock |
指導教授: |
葉才明
Yeh, Trai-Ming |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 敗血症 、高遷移率族蛋白 1 、自噬作用 、血管滲漏 、細胞激素 、細菌清除 |
外文關鍵詞: | sepsis, HMGB1, autophagy, vascular leakage, cytokine, bacterial clearance |
相關次數: | 點閱:120 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
敗血症是因為感染而引起全身性發炎反應且致死性極高的疾病。由於血液中含有高量的發炎激素導致血管滲漏,患者往往會死於低血壓所引起的休克。然而目前仍無有效且具專一性之藥物可降低敗血症的高致死率。高遷移率族蛋白1 (High mobility group box 1, HMGB1)是一種會於敗血症晚期釋出的細胞激素,且被認為在敗血症中扮演重要角色。然而目前已知,針對細胞激素本身做抑制,並無法有效降低敗血症患者的死亡率。先前研究顯示,自噬作用(Autophagy)會參與在脂多醣(Lipopolysaccharides, LPS) 所引起的內皮細胞高通透性。此外,自噬作用也具有調控免疫細胞製造及分泌部分細胞激素如介白素-1 (interleukin 1, IL-1)及腫瘤壞死因子-α (tumor necrosis factor, TNF-α) 之能力,而抑制自噬作用也可促進巨噬細胞的吞噬作用。因此,本研究將進一步探討,抑制細胞自噬是否能降低在敗血症情況下病原菌感染及發炎反應之嚴重程度。首先,我們發現LPS誘發白血球之促發炎激素的生成會被自噬作用抑制劑所抑制。此外,由LPS條件培養液 (LPS-conditioned medium) 及HMGB1所誘發的內皮細胞通透性增加,在自噬抑制劑存在下也會被抑制。而在經自噬抑制劑處理之後的白血球,其吞噬細菌的能力會提升。最後,我們利用大腸桿菌感染小鼠引起的敗血症模式下,展示了在細菌感染後給予自噬抑制劑,可增強小鼠清除細菌的能力及降低發炎激素的產生和血管滲漏的情形,最終有效提升小鼠的存活率。以上結果說明,自噬作用在敗血症的致病機轉中扮演很重要的角色,且或許可作為敗血症中一個良好的治療標的。
Sepsis is a life-threating condition that arises as a systemic inflammatory response to infection. Due to high circulating cytokine levels increase vascular permeability, septic patients often die of septic shock caused by the hypotension. Despite a high mortality and morbidity, there is no effective and specific drug for sepsis. High mobility group box 1 (HMGB1) is a pro-inflammatory cytokine released in the late stage of sepsis, which is considered as a critical mediator for sepsis pathogenesis. However, inhibition of cytokines couldn’t reduce the mortality of sepsis patients effectively. Previous studies have found that autophagy is involved in lipopolysaccharide (LPS)-induced endothelial hyper-permeability. In addition, autophagy can also regulate the production and secretion of cytokines, such as IL-1 and TNF-α. Moreover, autophagy can modulate phagocytosis in macrophages. In this study, we aim to evaluate the therapeutic potential of inhibiting autophagy against bacterial infection and sepsis-induced inflammatory responses. First, we found that LPS-induced cytokines production of leukocyte was blocked by the inhibition of autophagy. In addition, endothelial hyper-permeability induced by both LPS conditioned medium and HMGB1 were also inhibited in the presence of autophagy inhibitors. Moreover, treatment of autophagy inhibitors enhanced uptake of bacteria by leukocytes. Finally, we demonstrated that blocking autophagy improves the survival rate of septic mice by increasing bacterial clearance and reducing cytokine production and vascular leakage. Taken together, these results suggest that autophagy plays an important role in the sepsis pathogenesis. And autophagy may serve as a potential therapeutic target for septic shock.
Angus, D. C., & van der Poll, T. (2013). Severe sepsis and septic shock. N Engl J Med, 369(9), 840-851. doi:10.1056/NEJMra1208623
Araya, J., Hara, H., & Kuwano, K. (2013). Autophagy in the pathogenesis of pulmonary disease. Intern Med, 52(20), 2295-2303.
Bernhagen, J., Calandra, T., & Bucala, R. (1994). The emerging role of MIF in septic shock and infection. Biotherapy, 8(2), 123-127.
Birmingham, C. L., Smith, A. C., Bakowski, M. A., Yoshimori, T., & Brumell, J. H. (2006). Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem, 281(16), 11374-11383. doi:10.1074/jbc.M509157200
Bone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A., . . . Sibbald, W. J. (1992). Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest, 101(6), 1644-1655.
Bonilla, D. L., Bhattacharya, A., Sha, Y., Xu, Y., Xiang, Q., Kan, A., . . . Eissa, N. T. (2013). Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity, 39(3), 537-547. doi:10.1016/j.immuni.2013.08.026
Calandra, T. (2001). Pathogenesis of septic shock: implications for prevention and treatment. J Chemother, 13 Spec No 1(1), 173-180. doi:10.1179/joc.2001.13.Supplement-2.173
Calandra, T., Echtenacher, B., Roy, D. L., Pugin, J., Metz, C. N., Hultner, L., . . . Glauser, M. P. (2000). Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med, 6(2), 164-170. doi:10.1038/72262
Calandra, T., & Roger, T. (2003). Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol, 3(10), 791-800. doi:10.1038/nri1200
Chao, C. H., Chen, H. R., Chuang, Y. C., & Yeh, T. M. (2017). Macrophage Migration Inhibitory Factor-Induced Autophagy Contributes to Thrombin-Triggered Endothelial Hyperpermeability in Sepsis. Shock. doi:10.1097/shk.0000000000000976
Chaudhry, H., Zhou, J., Zhong, Y., Ali, M. M., McGuire, F., Nagarkatti, P. S., & Nagarkatti, M. (2013). Role of cytokines as a double-edged sword in sepsis. In Vivo, 27(6), 669-684.
Chen, H. R., Chuang, Y. C., Chao, C. H., & Yeh, T. M. (2015). Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biol Open, 4(2), 244-252. doi:10.1242/bio.201410322
Chen, H. R., Chuang, Y. C., Lin, Y. S., Liu, H. S., Liu, C. C., Perng, G. C., & Yeh, T. M. (2016). Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLoS Negl Trop Dis, 10(7), e0004828. doi:10.1371/journal.pntd.0004828
Chen, L., Zhang, B., & Toborek, M. (2013). Autophagy is involved in nanoalumina-induced cerebrovascular toxicity. Nanomedicine, 9(2), 212-221. doi:10.1016/j.nano.2012.05.017
Chousterman, B. G., Swirski, F. K., & Weber, G. F. (2017). Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol, 39(5), 517-528. doi:10.1007/s00281-017-0639-8
Chuang, T. Y., Chang, H. T., Chung, K. P., Cheng, H. S., Liu, C. Y., Liu, Y. C., . . . Hsueh, P. R. (2014). High levels of serum macrophage migration inhibitory factor and interleukin 10 are associated with a rapidly fatal outcome in patients with severe sepsis. Int J Infect Dis, 20, 13-17. doi:10.1016/j.ijid.2013.12.006
Dai, J., Zhang, X., Li, L., Chen, H., & Chai, Y. (2017). Autophagy Inhibition Contributes to ROS-Producing NLRP3-Dependent Inflammasome Activation and Cytokine Secretion in High Glucose-Induced Macrophages. Cell Physiol Biochem, 43(1), 247-256. doi:10.1159/000480367
Dan Dunn, J., Alvarez, L. A., Zhang, X., & Soldati, T. (2015). Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol, 6, 472-485. doi:10.1016/j.redox.2015.09.005
Daniels, M. J., & Brough, D. (2017). Unconventional Pathways of Secretion Contribute to Inflammation. Int J Mol Sci, 18(1). doi:10.3390/ijms18010102
Delgado, M. A., Elmaoued, R. A., Davis, A. S., Kyei, G., & Deretic, V. (2008). Toll-like receptors control autophagy. Embo j, 27(7), 1110-1121. doi:10.1038/emboj.2008.31
Dellinger, R. P., Levy, M. M., Rhodes, A., Annane, D., Gerlach, H., Opal, S. M., . . . Surviving Sepsis Campaign Guidelines Committee including The Pediatric, S. (2013). Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med, 39(2), 165-228. doi:10.1007/s00134-012-2769-8
Deretic, V., Jiang, S., & Dupont, N. (2012). Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol, 22(8), 397-406. doi:10.1016/j.tcb.2012.04.008
Deretic, V., Saitoh, T., & Akira, S. (2013). Autophagy in infection, inflammation and immunity. Nat Rev Immunol, 13(10), 722-737. doi:10.1038/nri3532
Desjarlais, M., Pratt, J., Lounis, A., Mounier, C., Haidara, K., & Annabi, B. (2014). Tetracycline derivative minocycline inhibits autophagy and inflammation in concanavalin-a-activated human hepatoma cells. Gene Regul Syst Bio, 8, 63-73. doi:10.4137/grsb.s13946
Dupont, N., Jiang, S., Pilli, M., Ornatowski, W., Bhattacharya, D., & Deretic, V. (2011). Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. Embo j, 30(23), 4701-4711. doi:10.1038/emboj.2011.398
Fearon, D. T., & Locksley, R. M. (1996). The instructive role of innate immunity in the acquired immune response. Science, 272(5258), 50-53.
Fleischmann, C., Scherag, A., Adhikari, N. K., Hartog, C. S., Tsaganos, T., Schlattmann, P., . . . Reinhart, K. (2016). Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med, 193(3), 259-272. doi:10.1164/rccm.201504-0781OC
Garrido-Mesa, N., Zarzuelo, A., & Galvez, J. (2013). Minocycline: far beyond an antibiotic. Br J Pharmacol, 169(2), 337-352. doi:10.1111/bph.12139
Harris, J. (2011). Autophagy and cytokines. Cytokine, 56(2), 140-144. doi:10.1016/j.cyto.2011.08.022
Harris, J., Hartman, M., Roche, C., Zeng, S. G., O'Shea, A., Sharp, F. A., . . . Lavelle, E. C. (2011). Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem, 286(11), 9587-9597. doi:10.1074/jbc.M110.202911
Hayashi, K., Taura, M., & Iwasaki, A. (2018). The interaction between IKKalpha and LC3 promotes type I interferon production through the TLR9-containing LAPosome. Sci Signal, 11(528). doi:10.1126/scisignal.aan4144
Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., & Ezekowitz, R. A. (1999). Phylogenetic perspectives in innate immunity. Science, 284(5418), 1313-1318.
Hsieh, Y. C., Athar, M., & Chaudry, I. H. (2009). When apoptosis meets autophagy: deciding cell fate after trauma and sepsis. Trends Mol Med, 15(3), 129-138. doi:10.1016/j.molmed.2009.01.002
Jiang, F. (2016). Autophagy in vascular endothelial cells. Clin Exp Pharmacol Physiol, 43(11), 1021-1028. doi:10.1111/1440-1681.12649
Jin, L., Batra, S., & Jeyaseelan, S. (2017). Deletion of Nlrp3 Augments Survival during Polymicrobial Sepsis by Decreasing Autophagy and Enhancing Phagocytosis. J Immunol, 198(3), 1253-1262. doi:10.4049/jimmunol.1601745
Jo, E. K., Yuk, J. M., Shin, D. M., & Sasakawa, C. (2013). Roles of autophagy in elimination of intracellular bacterial pathogens. Front Immunol, 4, 97. doi:10.3389/fimmu.2013.00097
Kawai, T., & Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol, 21(4), 317-337. doi:10.1093/intimm/dxp017
Keller, C. W., Fokken, C., Turville, S. G., Lunemann, A., Schmidt, J., Munz, C., & Lunemann, J. D. (2011). TNF-alpha induces macroautophagy and regulates MHC class II expression in human skeletal muscle cells. J Biol Chem, 286(5), 3970-3980. doi:10.1074/jbc.M110.159392
Kimmey, J. M., & Stallings, C. L. (2016). Bacterial Pathogens versus Autophagy: Implications for Therapeutic Interventions. Trends Mol Med, 22(12), 1060-1076. doi:10.1016/j.molmed.2016.10.008
Larosa, S. P. (2002). Sepsis: menu of new approaches replaces one therapy for all. Cleve Clin J Med, 69(1), 65-73.
Lee, S. A., Kwak, M. S., Kim, S., & Shin, J. S. (2014). The role of high mobility group box 1 in innate immunity. Yonsei Med J, 55(5), 1165-1176. doi:10.3349/ymj.2014.55.5.1165
Levine, B., & Klionsky, D. J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 6(4), 463-477.
Li, Q., Li, L., Fei, X., Zhang, Y., Qi, C., Hua, S., . . . Fang, M. (2018). Inhibition of autophagy with 3-methyladenine is protective in a lethal model of murine endotoxemia and polymicrobial sepsis. Innate Immun, 24(4), 231-239. doi:10.1177/1753425918771170
Lin, X., Sakuragi, T., Metz, C. N., Ojamaa, K., Skopicki, H. A., Wang, P., . . . Miller, E. J. (2005). Macrophage migration inhibitory factor within the alveolar spaces induces changes in the heart during late experimental sepsis. Shock, 24(6), 556-563.
Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction And Targeted Therapy, 2, 17023. doi:10.1038/sigtrans.2017.23
Lv, S., Han, M., Yi, R., Kwon, S., Dai, C., & Wang, R. (2014). Anti-TNF-alpha therapy for patients with sepsis: a systematic meta-analysis. Int J Clin Pract, 68(4), 520-528. doi:10.1111/ijcp.12382
Mei, Y., Thompson, M. D., Cohen, R. A., & Tong, X. (2015). Autophagy and oxidative stress in cardiovascular diseases. Biochim Biophys Acta, 1852(2), 243-251. doi:10.1016/j.bbadis.2014.05.005
Metz, C. N., & Bucala, R. (1997). Role of Macrophage Migration Inhibitory Factor in the Regulation of the Immune Response. In F. J. Dixon (Ed.), Advances in Immunology (Vol. 66, pp. 197-223): Academic Press.
Mitchell, R. A. (2004). Mechanisms and effectors of MIF-dependent promotion of tumourigenesis. Cell Signal, 16(1), 13-19.
Moss, M. (2005). Epidemiology of sepsis: race, sex, and chronic alcohol abuse. Clin Infect Dis, 41 Suppl 7, S490-497. doi:10.1086/432003
Mostowy, S. (2013). Autophagy and bacterial clearance: a not so clear picture. Cell Microbiol, 15(3), 395-402. doi:10.1111/cmi.12063
Murthy, T. (2014). Blood transfusion practices in sepsis. Indian J Anaesth, 58(5), 643-646. doi:10.4103/0019-5049.144676
Nah, J., Yuan, J., & Jung, Y. K. (2015). Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells, 38(5), 381-389. doi:10.14348/molcells.2015.0034
Oh, J. E., & Lee, H. K. (2014). Pattern recognition receptors and autophagy. Front Immunol, 5, 300. doi:10.3389/fimmu.2014.00300
Opal, S. M., & van der Poll, T. (2015). Endothelial barrier dysfunction in septic shock. J Intern Med, 277(3), 277-293. doi:10.1111/joim.12331
Pickles, S., Vigie, P., & Youle, R. J. (2018). Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr Biol, 28(4), R170-r185. doi:10.1016/j.cub.2018.01.004
Py, B. F., Lipinski, M. M., & Yuan, J. (2007). Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy, 3(2), 117-125.
Rabouille, C. (2017). Pathways of Unconventional Protein Secretion. Trends Cell Biol, 27(3), 230-240. doi:10.1016/j.tcb.2016.11.007
Riedemann, N. C., Guo, R. F., & Ward, P. A. (2003). Novel strategies for the treatment of sepsis. Nat Med, 9(5), 517-524. doi:10.1038/nm0503-517
Rosado Jde, D., & Rodriguez-Sosa, M. (2011). Macrophage migration inhibitory factor (MIF): a key player in protozoan infections. Int J Biol Sci, 7(9), 1239-1256.
Sachdev, U., Cui, X., Hong, G., Namkoong, S., Karlsson, J. M., Baty, C. J., & Tzeng, E. (2012). High mobility group box 1 promotes endothelial cell angiogenic behavior in vitro and improves muscle perfusion in vivo in response to ischemic injury. J Vasc Surg, 55(1), 180-191. doi:10.1016/j.jvs.2011.07.072
Sachdev, U., & Lotze, M. T. (2017). Perpetual change: autophagy, the endothelium, and response to vascular injury. J Leukoc Biol, 102(2), 221-235. doi:10.1189/jlb.3RU1116-484RR
Schmid, D., & Munz, C. (2007). Innate and adaptive immunity through autophagy. Immunity, 27(1), 11-21. doi:10.1016/j.immuni.2007.07.004
Schulte, W., Bernhagen, J., & Bucala, R. (2013). Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view. Mediators Inflamm, 2013, 165974. doi:10.1155/2013/165974
Shahidi Bonjar, M. R., & Shahidi Bonjar, L. (2015). A prospective treatment for sepsis. Drug Des Devel Ther, 9, 2537-2543. doi:10.2147/dddt.s82755
Shi, C. S., & Kehrl, J. H. (2010). TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal, 3(123), ra42. doi:10.1126/scisignal.2000751
Singer, M. (2014). The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence, 5(1), 66-72. doi:10.4161/viru.26907
Stearns-Kurosawa, D. J., Osuchowski, M. F., Valentine, C., Kurosawa, S., & Remick, D. G. (2011). The pathogenesis of sepsis. Annu Rev Pathol, 6, 19-48. doi:10.1146/annurev-pathol-011110-130327
Stevens, N. E., Chapman, M. J., Fraser, C. K., Kuchel, T. R., Hayball, J. D., & Diener, K. R. (2017). Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci Rep, 7(1), 5850. doi:10.1038/s41598-017-06205-z
Suffredini, A. F., & Munford, R. S. (2011). Novel therapies for septic shock over the past 4 decades. JAMA, 306(2), 194-199. doi:10.1001/jama.2011.909
Tang, T. T., Lv, L. L., Pan, M. M., Wen, Y., Wang, B., Li, Z. L., . . . Liu, B. C. (2018). Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis, 9(3), 351. doi:10.1038/s41419-018-0378-3
Tanida, I. (2011). Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal, 14(11), 2201-2214. doi:10.1089/ars.2010.3482
Ullah, I., Ritchie, N. D., & Evans, T. J. (2017). The interrelationship between phagocytosis, autophagy and formation of neutrophil extracellular traps following infection of human neutrophils by Streptococcus pneumoniae. Innate Immun, 23(5), 413-423. doi:10.1177/1753425917704299
Vandenbroucke, E., Mehta, D., Minshall, R., & Malik, A. B. (2008). Regulation of endothelial junctional permeability. Ann N Y Acad Sci, 1123, 134-145. doi:10.1196/annals.1420.016
Vincent, J. L., Rello, J., Marshall, J., Silva, E., Anzueto, A., Martin, C. D., . . . Reinhart, K. (2009). International study of the prevalence and outcomes of infection in intensive care units. JAMA, 302(21), 2323-2329. doi:10.1001/jama.2009.1754
Wang, H., Yang, H., Czura, C. J., Sama, A. E., & Tracey, K. J. (2001). HMGB1 as a late mediator of lethal systemic inflammation. Am J Respir Crit Care Med, 164(10 Pt 1), 1768-1773. doi:10.1164/ajrccm.164.10.2106117
Wang, S., Yin, S., Li, Y., Li, C., Li, T., & Liu, Y. (2016). [Effects of autophagy on lipopolysaccharide-induced vascular hyper-permeability]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 28(8), 673-677. doi:10.3760/cma.j.issn.2095-4352.2016.08.001
Weber, B., Saliken, J., Jadavji, T., Gray, R. R., & Moore, R. (2008). A near-fatal case of sepsis with an antibiotic-resistant organism complicating a routine transrectal prostate biopsy in a health care worker. Can Urol Assoc J, 2(5), 543-545.
White, E. (2015). The role for autophagy in cancer. J Clin Invest, 125(1), 42-46. doi:10.1172/jci73941
Wolfson, R. K., Chiang, E. T., & Garcia, J. G. (2011). HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption. Microvasc Res, 81(2), 189-197. doi:10.1016/j.mvr.2010.11.010
Wu, Z., Zou, X., Zhu, W., Mao, Y., Chen, L., & Zhao, F. (2016). Minocycline is effective in intracerebral hemorrhage by inhibition of apoptosis and autophagy. J Neurol Sci, 371, 88-95. doi:10.1016/j.jns.2016.10.025
Yang, M., Cao, L., Xie, M., Yu, Y., Kang, R., Yang, L., . . . Tang, D. (2013). Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis. Biochem Pharmacol, 86(3), 410-418. doi:10.1016/j.bcp.2013.05.013
Yu, L., Chen, Y., & Tooze, S. A. (2018). Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 14(2), 207-215. doi:10.1080/15548627.2017.1378838
Zanotti, S., Kumar, A., & Kumar, A. (2002). Cytokine modulation in sepsis and septic shock. Expert Opin Investig Drugs, 11(8), 1061-1075. doi:10.1517/13543784.11.8.1061
Zhou, H., Deng, M., Liu, Y., Yang, C., Hoffman, R., Zhou, J., . . . Billiar, T. R. (2018). Platelet HMGB1 is required for efficient bacterial clearance in intra-abdominal bacterial sepsis in mice. Blood Adv, 2(6), 638-648. doi:10.1182/bloodadvances.2017011817
Zimmerman, J. L. (2004). Use of blood products in sepsis: an evidence-based review. Crit Care Med, 32(11 Suppl), S542-547.