| 研究生: |
黃誼昀 Huang, Yi-Yun |
|---|---|
| 論文名稱: |
區域血液中心之存貨政策分析 The Inventory Policy on Regional Blood Center |
| 指導教授: |
王泰裕
Wang, Tai-Yue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 血液存貨管理 、區域血液中心 、類神經網路 |
| 外文關鍵詞: | blood inventory management, regional blood center, neural network |
| 相關次數: | 點閱:123 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血液為一種具有固定性壽命之易腐性商品,會隨著保存時間的減短而降低品質,醫院必須提高血液的存貨控制的重要性,血液存貨過多或過少時,可能會產生不必要的社會資源浪費及增加病患治療的風險。而在醫療臨床的需求中,血液為一項必不可缺的重要資源,其中,以血小板的壽命最短,自捐贈後僅約有五天之壽命,更顯其存貨管理的重要性,因此本研究將以血小板為主要研究對象。
本研究提出一個結合類神經網路與模擬最佳化的方法,由於血液的需求及供給皆是不確定性的,會隨著時間或事件的發生而波動,形成一時間序列,長短期記憶網路可針對過去資料判斷其重要性而採取記憶或忘記,主要適合處理或預測與時間序列相關之問題,因此,本研究將利用長短期記憶網路預測未來血小板的供應量,接著以模擬最佳化的方法求解該期最佳存貨策略參數,最後利用類神經網路模型,學習預測供應量與最佳存貨策略參數之間的關係,預測該期之最佳存貨策略參數,提供血庫管理人員控制血液捐贈量,另外,本研究之模型以星期為單位,預測在該單位內每日的存貨策略參數,並利用缺貨數量、過期數量、總存貨成本及供應的血小板平均剩餘壽命作為衡量指標。
透過實際捐血中心血小板資料進行模式驗證,利用不同的存貨策略對血小板的存貨進行管理,相較於捐血中心目前所採行的管理方法,本研究所提出的方法造成的缺貨及過期情形較佳,並發現:當缺貨數量較多時,供應的血小板平均剩餘壽命較高,當過期數量較多時,平均剩餘壽命較低,在存貨策略方面,相較於目標存貨水準策略,(s, Q)存貨策略利用安全存量控制庫存,使得過期數量較低,但亦使得缺貨數量較多。
本研究提出之方法提供血庫管理人員能夠明確控制血小板的存貨,依據管理需求採取不同的存貨策略,並將過期處理、缺貨及存貨持有成本降到最低,甚至能夠將此方法應用至其他血品之存貨管理。
Blood is not only an indispensable medical resource in the hospital but also a perish product with a limited shelf life which will reduce the quality as the storage time shortens. It may cause unnecessary waste of social resources or increase the risk of patient treatment. Across all blood types, the shelf life of platelets is only five days after donation, which shows the importance of inventory management. In the past, most research used the Taguchi method to solve the optimal parameters and considered only one inventory policy. We propose a model combining the neural networks and simulation optimization, not only taking the trend of platelet demand into consideration but also discussing multiple inventory policies. Firstly, we use Long Short-Term Memory (LSTM) to predict the demand of the hospitals and use simulation optimization to find the optimal parameters. Secondly, considering the predicting demand of hospitals and the optimal parameters simultaneously, we use LSTM to predict the corresponding parameters. This model was tested in six scenarios, and we used the number of shortages, expiration, total inventory cost and average remaining life to evaluate the performance. Finally, a numerical example is presented to demonstrate this model accompanied by sensitivity analysis. The results in all scenarios performed better than the baseline, and the best performance was when there is was high donation limit. The number of shortages is lower when using the order-up to policy and periodic inventory system. The amount of expired blood is lower when using the (s, Q) policy. Some managerial insights are obtained from the results, which will assist the blood center in improving its inventory management.
Baesler, F., Nemeth, M., Martinez, C., & Bastias, A. (2014). Analysis of inventory strategies for blood components in a regional blood center using process simulation. Transfusion, 54(2), 323-330.
Belien, J., & Force, H. (2012). Supply chain management of blood products: A literature review. European Journal of Operational Research, 217(1), 1-16.
Bermudez, J. D., Feitosa, R. Q., Achanccaray, P. M., Happ, P. N., Sanches, I. D., & Cué, L. E. (2017). Evaluation of recurrent neural networks for crop recognition from multitemporal remote sensing images. In Anais do XXVII Congresso Brasileiro de Cartografia. (pp.799-804)
Blake, J. T., Thompson, S., Smith, S., Anderson, D., Arellana, R., & Bernard, D. (2003, July 27 - Aug 1). Optimizing the platelet supply chain in Nova Scotia. In Proceedings of the 29th meeting of the European Working Group on Operational Research Applied to Health Services (ORAHS). Prague: European Working Group on Operational Research Applied to Health Services (pp. 47-66).
Chapman, J. F., Hyam, C., & Hick, R. (2004). Blood inventory management. Vox sanguinis, 87, 143-145.
Cohen, M. A., & Pierskalla, W. P. (1979). Target inventory levels for a hospital blood-bank or a decentralized regional blood banking system. Transfusion, 19(4), 444-454.
Duan, Q., & Liao, T. W. (2013). A new age-based replenishment policy for supply chain inventory optimization of highly perishable products. International Journal of Production Economics, 145(2), 658-671.
Fradinata, E., Suthummanon, S., Suntiamorntut, W., & Noor, M. M. (2019). Compare the forecasting method of artificial neural network and support vector regression model to measure the bullwhip effect in supply chain. Journal of Mechanical Engineering and Sciences, 13(2), 4816-4834.
Fries, B. E. (1975). Optimal ordering policy for a perishable commodity with fixed lifetime. Operations Research, 23(1), 46-61.
Haijema, R. (2013). A new class of stock-level dependent ordering policies for perishables with a short maximum shelf life. International Journal of Production Economics, 143(2), 434-439.
Haijema, R., van der Wal, J., & van Dijk, N. M. (2007). Blood platelet production: Optimization by dynamic programming and simulation. Computers & Operations Research, 34(3), 760-779.
Haijema, R., van Dijk, N., van der Wal, J., & Sibinga, C. S. (2009). Blood platelet production with breaks: optimization by SDP and simulation. International Journal of Production Economics, 121(2), 464-473.
Hemmelmayr, V., Doerner, K. F., Hartl, R. F., & Savelsbergh, M. W. P. (2009). Delivery strategies for blood products supplies. Or Spectrum, 31(4), 707-725.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
Ilya, J., Jurijs, T., Sebastian, L., & Zhandos, K. (2019). Metamodelling of inventory-control simulations based on a multilayer perceptron. Transport and Telecommunication Journal, 20(3), 251-259.
Ilya, J., Jurijs, T., & Tobias, R. (2018). The combination of discrete-event simulation and genetic algorithm for solving the stochastic multi-product inventory optimization problem. Transport and Telecommunication Journal, 19(3), 233-243.
Jennings, J. B. (1973). Blood bank inventory control. Management Science, 19.6, 637-645.
Kamp, C., Heiden, M., Henseler, O., & Seitz, R. (2010). Management of blood supplies during an influenza pandemic. Transfusion, 50(1), 231-239.
Kazemi, S. M., Rabbani, M., Tavakkoli-Moghaddam, R., & Shahreza, F. A. (2017). Blood inventory-routing problem under uncertainty. Journal of Intelligent & Fuzzy Systems, 32(1), 467-481.
Khaldi, R., El Afia, A., Chiheb, R., & Faizi, R. (2017). Artificial Neural Network Based Approach for Blood Demand Forecasting: Fez Transfusion Blood Center Case Study. In Proceedings of the 2nd international Conference on Big Data, Cloud and Applications.
Kopach, R., Balcıoğlu, B., & Carter, M. (2008). Tutorial on constructing a red blood cell inventory management system with two demand rates. European Journal of Operational Research, 185(3), 1051-1059.
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. In Proceedings of the IEEE, 86(11), 2278-2324.
Li, Y. C., & Liao, H. C. (2012). The optimal parameter design for a blood supply chain system by the Taguchi method. International Journal of Innovative Computing, Information and Control, 8(11), 7697-7712.
Morish, M., Ayob, Y., Naim, N., Salman, H., Muhamad, N. A., & Yusoff, N. M. (2012). Quality indicators for discarding blood in the National Blood Center, Kuala Lumpur. Asian J Transfus Sci, 6(1), 19-23.
Nahmias, S. (1982). Perishable inventory-theory : a review. Operations Research, 30(4), 680-708.
Ólafsson, S., & Kim, J. (2002). Simulation optimization. Paper presented at the Proceedings of the winter simulation conference.
Osorio, A. F., Brailsford, S. C., & Smith, H. K. (2015). A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making. International Journal of Production Research, 53(24), 7191-7212.
Osorio, A. F., Brailsford, S. C., Smith, H. K., Forero-Matiz, S. P., & Camacho-Rodriguez, B. A. (2017). Simulation-optimization model for production planning in the blood supply chain. Health Care Manag Sci, 20(4), 548-564.
Pereira, A. (2004). Performance of time-series methods in forecasting the demand for red blood cell transfusion. Transfusion, 44(5), 739-746.
Perera, G., Hyam, C., Taylor, C., & Chapman, J. F. (2009). Hospital Blood Inventory Practice: the factors affecting stock level and wastage. Transfusion Medicine, 19(2), 99-104.
Pierskalla, W. P. (2005). Supply chain management of blood banks. Operations research and health care, 70, 103-145.
Prastacos, G. P. (1984). Blood inventory management : an overview of theory and practice. Management Science, 30(7), 777-800.
Raafat, F. (1991). Survey of literature on continuously deteriorating inventory models. Journal of the Operational Research Society, 42(1), 27-37.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.
Shih, H., & Rajendran, S. (2019). Comparison of time series methods and machine learning algorithms for forecasting Taiwan Blood Services Foundation's blood Supply. Journal of Healthcare Engineering, 2019.
Stanger, S. H. W., Yates, N., Wilding, R., & Cotton, S. (2012). Blood inventory management: Hospital best practice. Transfusion Medicine Reviews, 26(2), 153-163.
van Dijk, N., Haijema, R., van der Wal, J., & Sibinga, C. S. (2009). Blood platelet production: a novel approach for practical optimization. Transfusion, 49(3), 411-420.
van Donselaar, K., van Woensel, T., Broekmeulen, R., & Fransoo, J. (2006). Inventory control of perishables in supermarkets. International Journal of Production Economics, 104(2), 462-472.
Wee, H. M. (1993). Economic production lot-size model for deteriorating items with partial back-ordering. Computers & Industrial Engineering, 24(3), 449-458.
Yazer, M. H., Jackson, B., Beckman, N., Chesneau, S., Bowler, P., Delaney, M., . . . Land, K. (2016). Changes in blood center red blood cell distributions in the era of patient blood management: the trends for collection (TFC) study. Transfusion, 56(8), 1965-1973.
Zhou, D. M., Leung, L. C., & Pierskalla, W. P. (2011). Inventory management of platelets in hospitals: Optimal inventory policy for perishable products with regular and optional expedited replenishments. M&Som-Manufacturing & Service Operations Management, 13(4), 420-438.