簡易檢索 / 詳目顯示

研究生: 吳哲瑋
Wu, Che-Wei
論文名稱: 鐵、銅修飾二氧化鈰奈米微米顆粒添加對汽油發電機之粒狀物及多環芳香烴排放影響
Effects of Iron and Copper Modified Cerium Dioxide Nano/Microparticle Addition on Particulate Matters and PAHs Emissions from a Gasoline Generator.
指導教授: 林聖倫
Lin, Sheng-Lun
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 133
中文關鍵詞: 二氧化鈰汽油發電機燃燒效率多環芳香烴(PAHs)
外文關鍵詞: Cerium Oxide Nanoparticles (CeO₂), Gasoline Engine Generator, Combustion Efficiency, Polycyclic Aromatic Hydrocarbons (PAHs)
相關次數: 點閱:16下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球暖化與能源消耗問題日益嚴峻,提升燃料使用效率並降低排放對環境與人體健康的衝擊成為當代能源與環保領域的重要研究方向,內燃式發電設備-汽油發電機,其燃燒過程中常伴隨不完全燃燒,產生大量有害氣體與粒狀污染物,傳統的末端處理法雖能降低污染排放,但面臨設備成本高昂與潛在二次污染的挑戰,本研究聚焦源頭污染控制,探索奈米/微米顆粒材料在燃燒催化中的應用潛力。
    本研究以二氧化鈰(CeO₂)奈米顆粒為基礎,透過共沉澱法成功修飾了鐵(Fe)與銅(Cu)金屬,製備出改質奈米/微米添加劑,添加鐵與銅的目的在於強化CeO₂的氧化還原能力與活性氧釋放特性,進一步提升其在催化燃燒過程中的氧氣儲存/釋放效率,藉以改善其在低溫下的催化活性穩定性,研究首先探討了不同熱處理溫度對修飾後CeO₂奈米/微米顆粒的粒徑分佈與分散性的影響,發現適當的熱處理溫度對粒徑至關重要,過高的溫度會導致顆粒聚集,將製備的奈米/微米添加劑以25 ppm與100 ppm的濃度添加於汽油中,並進行汽油發電機燃燒,搭配五氣分析儀進行燃燒後氣體採樣,同時評估其粒狀物及多環芳香烴化合物生成的影響。
    結果顯示,CeO₂及其金屬修飾奈米顆粒添加之汽油燃燒效率提升,奈米顆粒的熱傳及促進霧化機制使燃料更快速被充分氧化,進而降低CO與HC等還原型氣體污染物形成,同時提升能源效率,對CO₂排放減量具一定效果,CeO₂奈米顆粒在較高濃度添加下(100 ppm)展現出優異的PAHs抑制效能,能顯著降低總PAHs濃度及毒性並有效抑制高分子量PAHs的生成,同時對CPM具有明顯的抑制效果,鐵修飾CeO₂在特定高濃度與高負載條件下,可能因觸媒熱失活或活性氧過度產生而導致PAHs生成量顯著升高,顯示其高度的操作敏感及負相關性,奈米/微米添加劑在燃燒後期可能作為成核中心,促使FPM2.5顯著生成。
    本研究證實此類奈米添加劑具備作為汽油燃燒優化方案的潛力,可提升燃燒效率並在適當條件下有效抑制多種污染物的排放,其應用需精確控制添加劑種類、濃度及操作條件,特別是考量高溫環境下的催化穩定性與對特定污染物的雙向影響,未來應著重於奈米/微米添加劑的精確設計,對能源轉型與空氣品質改善提供可行方法。

    This study investigates the use of cerium dioxide (CeO₂) nano/microparticles, modified with iron (Fe) and copper (Cu), as additives in gasoline to improve combustion efficiency and reduce emissions from small internal combustion generators. The research first optimized heat treatment for particle size and dispersibility. Blending these CeO₂ nanoparticles into gasoline at 25 ppm and 100 ppm, combustion tests showed enhanced efficiency, reducing harmful gases like CO and HC. Notably, CeO₂ significantly suppressed PAHs (86%-91% reduction) and condensable particulate matter (CPM). However, Fe-modified CeO₂ showed high operational sensitivity, sometimes increasing PAHs and FPM2.5 under specific high-load conditions, suggesting potential thermal deactivation or excessive reactive oxygen species. While promising for optimizing gasoline engine generator combustion and improving combustion efficiency, precise control of additive type, concentration, and operating conditions is crucial due to their complex impact on pollutants like PAHs and PM2.5.

    摘要 II 致謝 VI 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1研究背景 1 1.2研究動機 3 1.3研究目的 3 第二章 文獻回顧 4 2.1替代燃料與添加劑 4 2.2.1 介紹 6 2.2.2 燃燒特性 9 2.2.3 排氣排放 10 2.2.4 二氧化鈰 11 2.2.5氧化銅於催化燃燒及觸媒 15 2.2.6氧化鐵於催化燃燒 16 2.3 奈米顆粒製備方法 17 2.4共沉澱法 20 2.5 粒狀污染物 20 2.5.1 特性 20 2.5.2 總粒狀物(Total Particulate Matter, TPM) 21 2.6 多環芳香烴(Polycyclic Aromatic Hydrocarbons, PAHs) 23 2.6.1 介紹 23 2.6.2 生成機制 26 2.6.3健康風險 28 2.7 煙道採樣 29 第三章 研究方法 31 3.1 研究流程圖 31 3.2 實驗材料 32 3.3 實驗儀器與設備 34 3.4 實驗架構 37 3.5實驗方法 38 3.5.1 鐵、銅修飾二氧化铈之製備 38 3.5.2 油品製備 39 3.5.3 採樣步驟 40 3.5.4 粒徑分布及累積性 46 第四章 結果與討論 47 4.1鐵、銅修飾二氧化铈顆粒尺寸 47 4.2氣體分析儀數據結果 50 4.2.1一氧化碳(CO) 51 4.2.2二氧化碳(CO2) 53 4.2.3碳氫化合物(HC) 55 4.2.4氮氧化物(NOx) 57 4.2.5排放量與法規標準比較 59 4.3粒狀污染物 62 4.3.1總粒狀物(TPM) 62 4.3.2 大於2.5微米可過濾性懸浮微粒(FPM >2.5) 65 4.3.3可過濾性細懸浮微粒(FPM2.5) 67 4.3.4可凝結性微粒(CPM) 69 4.3.5粒狀污染物總結 72 4.4 PAH數據分析 72 4.4.1氣、固相PAHs組成 73 4.4.2 TPM中之PAHs組成 74 4.4.3Gas PAHs數據分析及組成 91 4.4.4 PAHs與粒狀物相關性分析 96 4.4.5小結論:PAHs生成控制的操作敏感性總結 104 4.5 成本效益 106 第五章 結論與建議 108 5.1 結論 108 5.2 建議 110 第六章 參考文獻 111

    1. Pirouzfar, V., M.H. Zonoozi, and C.H. Su, Evaluation of Performance Improvement of Gasoline Fuels by Adding Propanol, Ethanol, and Diisopropyl Ether along with Metal Oxides of CeO and FeO. International Journal of Energy Research, 2023. 2023.
    2. Dale, J.G., et al., Transformation of Cerium Oxide Nanoparticles from a Diesel Fuel Additive during Combustion in a Diesel Engine. Environmental Science & Technology, 2017. 51(4): p. 1973-1980.
    3. Liu, X.Y., et al., A novel, clean, closed-loop process for directional recovery of rare earth elements, fluorine, and phosphorus from mixed rare earth concentrate. Journal of Cleaner Production, 2021. 321.
    4. Shi, W., et al., Extruded monolith MnO-CeO-TiO catalyst for NH-SCR of low temperature flue gas from an industry boiler: Deactivation and recovery. Journal of Rare Earths, 2023. 41(9): p. 1336-1343.
    5. Gao, K., et al., Investigation into the purification and regeneration of rare earth polishing powder waste via continuous solid-phase conversion. Chemical Engineering Journal, 2024. 499.
    6. Sajeevan, A.C. and V. Sajith, Synthesis of stable cerium zirconium oxide nanoparticle - Diesel suspension and investigation of its effects on diesel properties and smoke. Fuel, 2016. 183: p. 155-163.
    7. Vinod, K.N., et al., Experimental characterization of ammonia, methane, and gasoline fuel mixtures in small scale spark ignited engines. Applications in Energy and Combustion Science, 2023. 16.
    8. O'Driscoll, R., et al., A Portable Emissions Measurement System (PEMS) study of NO and primary NO emissions from Euro 6 diesel passenger cars and comparison with COPERT emission factors. Atmospheric Environment, 2016. 145: p. 81-91.
    9. Zhang, Z.Q., et al., Diesel particulate filter regeneration mechanism of modern automobile engines and methods of reducing PM emissions: a review. Environmental Science and Pollution Research, 2023. 30(14): p. 39338-39376.
    10. Oral, F., Effect of using gasoline and gasoline-ethanol fuel mixture on performance and emissions in a hydrogen generator supported SI engine. Case Studies in Thermal Engineering, 2024. 55.
    11. Wu, B.Y., et al., Experimental investigation of combustion and particle emissions under different combustion modes on a heavy-duty diesel engine fueled by diesel/gasoline/diesel from direct coal liquefaction. Fuel, 2019. 254.
    12. Coelho, M.C., et al., Assessing methods for comparing emissions from gasoline and diesel light-duty vehicles based on microscale measurements. Transportation Research Part D-Transport and Environment, 2009. 14(2): p. 91-99.
    13. Li, X., et al., Seasonal and Long-Term Trend of on-Road Gasoline and Diesel Vehicle Emission Factors Measured in Traffic Tunnels. Applied Sciences-Basel, 2020. 10(7).
    14. Poulopoulos, S. and C. Philippopoulos, Influence of MTBE addition into gasoline on automotive exhaust emissions. Atmospheric Environment, 2000. 34(28): p. 4781-4786.
    15. Fortune, J.F., et al., Impact of fuel ethanol content on regulated and non-regulated emissions monitored by various analytical techniques over flex-fuel and conversion kit applications. Fuel, 2023. 334.
    16. Pang, X.B., et al., Carbonyls emission from ethanol-blended gasoline and biodiesel-ethanol-diesel used in engines. Atmospheric Environment, 2008. 42(6): p. 1349-1358.
    17. Mourad, M. and K. Mahmoud, Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends. Renewable Energy, 2019. 143: p. 762-771.
    18. Hua, Y., Y.M. Zhang, and D.S. Gao, Ammonia composite combustion with alcohol/ether: A systematic review from engine applications to combustion enhancement and emission mechanisms. Energy Conversion and Management, 2024. 322.
    19. Guo, Z.F., et al., Influence of Renewable Nano-AlO on Engine Characteristics and Health Impact under Variable Injection Timings and Excess Air Coefficients. Acs Omega, 2024. 9(50): p. 49966-49979.
    20. Awad, O.I., et al., Alcohol and ether as alternative fuels in spark ignition engine: A review. Renewable & Sustainable Energy Reviews, 2018. 82: p. 2586-2605.
    21. Kazerooni, H., et al., Effects of Combustion Catalyst Dispersed by a Novel Microemulsion Method as Fuel Additive on Diesel Engine Emissions, Performance, and Characteristics. Energy & Fuels, 2016. 30(4): p. 3392-3402.
    22. Jamkhande, P.G., et al., Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 2019. 53.
    23. Kegl, T., et al., Nanomaterials as fuel additives in diesel engines: A review of current state, opportunities, and challenges. Progress in Energy and Combustion Science, 2021. 83.
    24. Singh, G., M. Esmaeilpour, and A. Ratner, Effect of carbon-based nanoparticles on the ignition, combustion and flame characteristics of crude oil droplets. Energy, 2020. 197.
    25. Agbulut, U., et al., Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine. Fuel, 2020. 270.
    26. Gupta, A., et al., A comparative study of the impact on combustion and emission characteristics of nanoparticle-based fuel additives in the internal combustion engine. Energy Science & Engineering, 2024. 12(1): p. 284-303.
    27. Esmaeilnezhad, E., M. Karimian, and H.J. Choi, Synthesis and thermal analysis of hydrophobic iron oxide nanoparticles for improving in-situ combustion efficiency of heavy oils. Journal of Industrial and Engineering Chemistry, 2019. 71: p. 402-409.
    28. Agbulut, U., et al., Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics. Energy, 2021. 229.
    29. Hawi, M., et al., Experimental Investigation on Performance of a Compression Ignition Engine Fueled with Waste Cooking Oil Biodiesel-Diesel Blend Enhanced with Iron-Doped Cerium Oxide Nanoparticles. Energies, 2019. 12(5).
    30. Bao, L., et al., Experiments on macroscopic spray characteristics of diesel-ethanol with dispersed cerium nanoparticles. Journal of the Energy Institute, 2020. 93(6): p. 2186-2196.
    31. Ahmad, M.S., E.M. Kritikos, and A. Giusti, A Reactive Molecular Dynamics Investigation of Nanoparticle Interactions in Hydrocarbon Combustion. Combustion Science and Technology, 2023. 195(14): p. 3281-3295.
    32. Dhahad, H.A. and M.T. Chaichan, The impact of adding nano-AlO and nano-ZnO to Iraqi diesel fuel in terms of compression ignition engines' performance and emitted pollutants. Thermal Science and Engineering Progress, 2020. 18.
    33. Küçükosman, R., A.A. Yontar, and K. Ocakoglu, Nanoparticle additive fuels: Atomization, combustion and fuel characteristics. Journal of Analytical and Applied Pyrolysis, 2022. 165.
    34. Karmakar, S., et al., Effects of rare-earth oxide catalysts on the ignition and combustion characteristics of boron nanoparticles. Combustion and Flame, 2013. 160(12): p. 3004-3014.
    35. Portugal, J., et al., Toxicity of airborne nanoparticles: Facts and challenges. Environment International, 2024. 190.
    36. Karagulian, F., et al., Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 2015. 120: p. 475-483.
    37. Shao, S.S., et al., In situ catalytic fast pyrolysis over CeO catalyst: Impact of biomass source, pyrolysis temperature and metal ion. Renewable Energy, 2021. 177: p. 1372-1381.
    38. Li, K.Z., et al., Syngas production from methane and air via a redox process using Ce-Fe mixed oxides as oxygen carriers. Applied Catalysis B-Environmental, 2010. 97(3-4): p. 361-372.
    39. Wu, Y. and H.T. Ta, Different approaches to synthesising cerium oxide nanoparticles and their corresponding physical characteristics, and ROS scavenging and anti-inflammatory capabilities. Journal of Materials Chemistry B, 2021. 9(36): p. 7291-7301.
    40. Cam, T.S., et al., Recent progress in the synthesis of CeO-based nanocatalysts towards efficient oxidation of CO. Journal of Science-Advanced Materials and Devices, 2022. 7(1).
    41. Dinesha, P., S. Mohan, and S. Kumar, Impact of alumina and cerium oxide nanoparticles on tailpipe emissions of waste cooking oil biodiesel fuelled CI engine. Cogent Engineering, 2021. 8(1).
    42. Yousefvand, A., M. Ardjmand, and H. Mogadamzadeh, Innovative α-MnO/Nanocarbon Ball Additive for Enhancing the Molecular Structure, Emission Control, and Engine Performance of Diverse Biodiesel Generations. Acs Omega, 2024. 9(5): p. 5278-5297.
    43. Shan, Y., et al., A review on application of cerium-based oxides in gaseous pollutant purification. Separation and Purification Technology, 2020. 250.
    44. Huang, X.B., et al., Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. Acs Catalysis, 2021. 11(15): p. 9618-9678.
    45. Wang, X.W., et al., Recent advances and perspectives of CeO-based catalysts: Electronic properties and applications for energy storage and conversion. Frontiers in Chemistry, 2022. 10.
    46. Xu, Y.H., et al., Enhanced Oxygen Storage Capacity of Porous CeO by Rare Earth Doping. Molecules, 2023. 28(16).
    47. Lee, R.R., et al., Direct evidence from STXM analysis of enhanced oxygen storage capacity in ceria through the addition of Cu and Mg: Correlation of HT-WGS reaction performance. Chemical Engineering Journal, 2024. 496.
    48. Sarvestani, N.S., et al., Influence of doping Mg cation in FeO lattice on its oxygen storage capacity to use as a catalyst for reducing emissions of a compression ignition engine. Fuel, 2020. 272.
    49. Rao, R.C., et al., Enhancing catalytic performance of Ag-CeO catalysts for catalytic CO combustion: Ag-CeO interface interaction and Na-promoting action. Fuel, 2022. 317.
    50. Luo, M.F., et al., TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation. Applied Catalysis a-General, 1997. 162(1-2): p. 121-131.
    51. Slostowski, C., et al., CeO nanopowders as solid sorbents for efficient CO capture/release processes. Journal of Co2 Utilization, 2017. 20: p. 52-58.
    52. Hou, J.C., et al., Synergistic effects between highly dispersed CuO and the surface Cu-[O]-Ce structure on the catalysis of benzene combustion. Journal of Catalysis, 2022. 408: p. 9-23.
    53. Feng, S.Y., J.D. Liu, and B. Gao, Synergistic mechanism of Cu-Mn-Ce oxides in mesoporous ceramic base catalyst for VOCs microwave catalytic combustion. Chemical Engineering Journal, 2022. 429.
    54. Li, J.F., et al., Insight into copper-cerium catalysts with different Cu valence states for CO-SCR and in-situ DRIFTS study on reaction mechanism. Fuel, 2023. 339.
    55. Sun, T.L., et al., Using cerium modified ferric oxide as oxygen carrier for enhancement of fuel efficiency. Journal of the Energy Institute, 2023. 111.
    56. Qadeer, N., et al., Hydrothermal synthesis and characterization of transition metal (Mn/Fe/Cu) co-doped cerium oxide-based nano-additives for potential use in the reduction of exhaust emission from spark ignition engines. Rsc Advances, 2022. 12(24): p. 15564-15574.
    57. Wang, H.D. and G. Tsilomelekis, Catalytic performance and stability of Fe-doped CeOin propane oxidative dehydrogenation using carbon dioxide as an oxidant. Catalysis Science & Technology, 2020. 10(13): p. 4362-4372.
    58. Granados-Pichardo, A., et al., New CaO-based adsorbents prepared by solution combustion and high-energy ball-milling processes for CO adsorption: Textural and structural influences. Arabian Journal of Chemistry, 2020. 13(1): p. 171-183.
    59. Kafshgari, L.A., M. Ghorbani, and A. Azizi, Synthesis and characterization of manganese ferrite nanostructure by co-precipitation, sol-gel, and hydrothermal methods. Particulate Science and Technology, 2019. 37(7): p. 900-906.
    60. Rajaeiyan, A. and M.M. Bagheri-Mohagheghi, Comparison of sol-gel and co-precipitation methods on the structural properties and phase transformation of γ and α-AlO nanoparticles. Advances in Manufacturing, 2013. 1(2): p. 176-182.
    61. Al-luhaibi, A.A. and R.K. Sendi, Synthesis, potential of hydrogen activity, biological and chemical stability of zinc oxide nanoparticle preparation by sol-gel: A review. Journal of Radiation Research and Applied Sciences, 2022. 15(3): p. 238-254.
    62. Goulart-Gonçalves, S., et al., Direct synthesis of TiO2 nanoparticles without heat treatment: Effect of order of addition and precursor/reducing ratio. Journal of Physics and Chemistry of Solids, 2023. 180.
    63. Kang, W., D.O. Ozgur, and A. Varma, Solution Combustion Synthesis of High Surface Area CeO Nanopowders for Catalytic Applications: Reaction Mechanism and Properties. Acs Applied Nano Materials, 2018. 1(2): p. 675-685.
    64. Kim, B.G., et al., Synthesis of magnesium-based binary powders with high reactivity using a coprecipitation method. Journal of Nanoparticle Research, 2021. 23(4).
    65. Houshiar, M., et al., Synthesis of cobalt ferrite (CoFeO) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. Journal of Magnetism and Magnetic Materials, 2014. 371: p. 43-48.
    66. Deng, D.Y., et al., Electrochemical performance of CeO nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. Ionics, 2017. 23(1): p. 121-129.
    67. Chen, L., et al., Morphology control of trimer particles via one-step co-precipitation and controlled phase separation. Chemical Engineering Science, 2022. 250.
    68. Sheu, H.H., et al., Effect of rotational speed of an electromagnetic stirrer on neodymium-doped yttrium aluminum garnet nanoparticle size during co-precipitation. Microelectronic Engineering, 2017. 176: p. 33-39.
    69. Kim, K.H., E. Kabir, and S. Kabir, A review on the human health impact of airborne particulate matter. Environment International, 2015. 74: p. 136-143.
    70. Zhao, X.W. and Y.G. Yin, Hazards of pollutants and ventilation control strategy in industrial workshops: Current state and future trend. Building and Environment, 2024. 251.
    71. Domingo, J.L. and J. Rovira, Effects of air pollutants on the transmission and severity of respiratory viral infections. Environmental Research, 2020. 187.
    72. Skodras, G., et al., Particulate removal via electrostatic precipitators - CFD simulation. Fuel Processing Technology, 2006. 87(7): p. 623-631.
    73. Hu, S.Y., et al., Experimental study of the dust-removal performance of a wet scrubber. International Journal of Coal Science & Technology, 2021. 8(2): p. 228-239.
    74. Xu, Z.Y., et al., Distribution and emission characteristics of filterable and condensable particulate matter in the flue gas emitted from an ultra-low emission coal-fired power plant. Journal of Environmental Chemical Engineering, 2022. 10(3).
    75. Peng, Z.K., et al., Potential Strategy to Control the Organic Components of Condensable Particulate Matter: A Critical Review. Environmental Science & Technology, 2024. 58(18): p. 7691-7709.
    76. Feng, Y.P., Y.Z. Li, and L. Cui, Critical review of condensable particulate matter. Fuel, 2018. 224: p. 801-813.
    77. Wang, L., et al., The state of the art of condensable particulate matter. Fuel, 2022. 325.
    78. Zhang, X.Y., et al., Inhibition of coal-fired condensable particulate matter by addition of biomass. Fuel, 2022. 310.
    79. Fujitani, Y., et al., Characteristics of different volatility classes of organic compounds emitted by a municipal solid waste incineration plant. Atmospheric Environment-X, 2023. 17.
    80. Goto, Y., K. Nakamuta, and H. Nakata, Parent and alkylated PAHs profiles in 11 petroleum fuels and lubricants: Application for oil spill accidents in the environment. Ecotoxicology and Environmental Safety, 2021. 224.
    81. Yusuf, A.A., et al., Effects of hybrid nanoparticle additives in n-butanol/waste plastic oil/diesel blends on combustion, particulate and gaseous emissions from diesel engine evaluated with entropy-weighted PROMETHEE II and TOPSIS: Environmental and health risks of plastic waste. Energy Conversion and Management, 2022. 264.
    82. Wang, Q., et al., Chemistry of nitrogen-containing polycyclic aromatic formation under combustion conditions. Combustion and Flame, 2023. 249.
    83. Chang, M.W., et al., Characteristics of PM and PAHs Emitted from Oil-fired Process. Aerosol and Air Quality Research, 2024. 24(5).
    84. Hussain, K. and R.R. Hogue, Seasonal attributes of urban soil PAHs of the Brahmaputra Valley. Chemosphere, 2015. 119: p. 794-802.
    85. Verma, P.K., et al., Mutagenic and Cancer Risk Estimation of Particulate Bound Polycyclic Aromatic Hydrocarbons from the Emission of Different Biomass Fuels. Chemical Research in Toxicology, 2021. 34(3): p. 743-753.
    86. Ogbunuzor, C.C., et al., In-Cylinder Polycyclic Aromatic Hydrocarbons Sampled during Diesel Engine Combustion. Environmental Science & Technology, 2021. 55(1): p. 571-580.
    87. Bruce, E.D., et al., Comparing deterministic and probabilistic risk assessments for sites contaminated by polycyclic aromatic hydrocarbons (PAHs). Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2007. 42(6): p. 697-706.
    88. Szatylowicz, E. and E. Hawrylik, Assessment of Migration of PAHs Contained in Soot of Solid Fuel Combustion into the Aquatic Environment. Water, 2022. 14(19).
    89. Cho, M.C., et al., Numerical Study on Isokinetic Samplers with Different Nozzle Geometries. Applied Sciences-Basel, 2022. 12(19).
    90. Nie, Y.X., et al., Efficient Removal of SO from Flue Gas with Phosphate Rock Slurry and Investigation of Reaction Mechanism. Industrial & Engineering Chemistry Research, 2018. 57(44): p. 15138-15146.
    91. Tang, Z.Z., et al., Study on particle loss in high-temperature flue gas sampling during fuel conversion. Fuel, 2022. 316.
    92. Shah, A.H. and M.A. Rather, Pharmaceutical residues: New emerging contaminants and their mitigation by nano-photocatalysis. Advances in Nano Research, 2021. 10(4): p. 397-414.
    93. Shah, A.H. and M.A. Rather, Effect of Thermal Treatment on the Phase Composition and Surface Properties of WO-TiO Nanocomposites Synthesized via Hydro-Thermal Method. Chemistryselect, 2021. 6(5): p. 987-994.
    94. Liu, X.L., et al., Enhanced CdS quantum dots loading density and charge transport by Sn doping improve the photoelectrochemical performance of TiO nanosheets with highly exposed {001} facets. Applied Surface Science, 2019. 486: p. 28-36.
    95. Dastpak, M., M. Farahmandjou, and T.P. Firoozabadi, Synthesis and Preparation of Magnetic Fe-Doped CeO Nanoparticles Prepared by Simple Sol-Gel Method. Journal of Superconductivity and Novel Magnetism, 2016. 29(11): p. 2925-2929.
    96. Li, S.L., et al., Copper doped ceria porous nanostructures towards a highly efficient bifunctional catalyst for carbon monoxide and nitric oxide elimination. Chemical Science, 2015. 6(4): p. 2495-2500.
    97. Trovarelli, A., Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews-Science and Engineering, 1996. 38(4): p. 439-520.
    98. Mathieu, O., C.R. Mulvihill, and E.L. Petersen, Assessment of modern detailed kinetics mechanisms to predict CO formation from methane combustion using shock-tube laser-absorption measurements. Fuel, 2019. 236: p. 1164-1180.
    99. Liu, X., et al., Size-segregated carbonaceous aerosols emission from typical vehicles and potential depositions in the human respiratory system. Environmental Pollution, 2020. 264.
    100. Pankow, J.F., An Absorption-Model of Gas-Particle Partitioning of Organic-Compounds in the Atmosphere. Atmospheric Environment, 1994. 28(2): p. 185-188.
    101. Chimjarn, S., O. Delhomme, and M. Millet, Temporal Distribution and Gas/Particle Partitioning of Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere of Strasbourg, France. Atmosphere, 2021. 12(3).
    102. Leach, F.C.P., M. Davy, and B. Terry, Combustion and emissions from cerium oxide nanoparticle dosed diesel fuel in a high speed diesel research engine under low temperature combustion (LTC) conditions. Fuel, 2021. 288.
    103. Bralewska, K. and J. Rakowska, Concentrations of Particulate Matter and PM-Bound Polycyclic Aromatic Hydrocarbons Released during Combustion of Various Types of Materials and Possible Toxicological Potential of the Emissions: The Results of Preliminary Studies. International Journal of Environmental Research and Public Health, 2020. 17(9).
    104. Chang, K., et al., Application of Ceria in CO Conversion Catalysis. Acs Catalysis, 2020. 10(1): p. 613-631.
    105. Kim, M.G., et al., Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO Nanoparticles. Acs Omega, 2021. 6(16): p. 10668-10678.
    106. Patterson, R.I.A. and M. Kraft, Models for the aggregate structure of soot particles. Combustion and Flame, 2007. 151(1-2): p. 160-172.
    107. Zhao, J.Q., et al., FeO-CeO nanocomposites: an efficient and highly selective catalyst system for photothermal CO reduction to CO. Npg Asia Materials, 2020. 12(1).
    108. Lv, B.W., et al., Towards a better understanding on aggregation behavior of CeO nanoparticles in different natural waters under flow disturbance. Journal of Hazardous Materials, 2018. 343: p. 235-244.
    109. Meng, Z.W., et al., Experimental study of CeO2 after hydrothermal aging on emission characteristics of carbon black oxidation process. Process Safety and Environmental Protection, 2024. 183: p. 1071-1081.
    110. Fu, Y.F., et al., Cerium oxide nanoparticles formation and aggregation dynamics. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2024. 699.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE