簡易檢索 / 詳目顯示

研究生: 黃穎軒
Huang, Ying-Hsuan
論文名稱: 應用有限元素分析青少年脊椎側彎矯正手術 ─ 矯正桿、韌帶及椎間盤之探討
Adolescent idiopathic scoliosis correction surgery analysis by finite element method – the effects of rods, ligaments and intervertebral discs
指導教授: 陳重德
Chen, Chung-De
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 116
中文關鍵詞: S2AI脊椎側彎矯正手術有限元素分析矯正桿韌帶椎間盤
外文關鍵詞: S2AI scoliosis correction surgery, finite element analysis, rod, ligament, intervertebral disc
相關次數: 點閱:39下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討青少年脊椎側彎的矯正手術流程之力學分析,特別考慮大變形分析與椎間盤的超彈性材料性質的情況。本研究透過有限元素法(Finite Element Method, FEM)模擬脊椎側彎矯正手術流程,對矯正器械和脊椎結構之交互作用進行了詳細力學分析,以預測手術結果並優化手術規劃。
    研究首先建立了包含腰椎至骨盆的詳細有限元素模型,考慮到各種材料的機械性質對其做不同的材料性質設定,模型包括腰椎、骨盆、椎間盤、韌帶、矯正器械等結構。為了正確模擬手術過程,本研究在模型中設置適當之邊界條件、接觸行為、負載條件。本研究同時考慮了不同參數對於模擬之影響,例如有無腰椎韌帶、不同矯正桿直徑及小變形與大變形(幾何非線性)之分析。
    研究結果顯示,腰椎韌帶對脊椎穩定性有重要影響,並可減緩螺釘鬆脫之風險。而增大矯正桿直徑會因其剛性增強,進而防止脊椎在矯正後回彈過多的位移量,然而較大直徑之矯正桿會增加螺釘之軸向力,使螺釘鬆脫風險增高。本研究亦強調了開啟幾何非線性分析的重要性,因為它對於準確模擬手術後的生物力學變化至關重要。本研究通過有限元素模擬,提供青少年脊椎側彎矯正手術的見解,為臨床手術提供結果參考,有助於臨床醫師在手術前改善手術計畫並制定更為周全的手術策略。

    Scoliosis is a three-dimensional deformity of the spine that strongly affects patients' quality of life. Adolescent Idiopathic Scoliosis (AIS) is the most common type of scoliosis in children aged 10 to 18. Finite Element Analysis (FEA) has demonstrated its potential in simulating the spinal deformities. This study aims to simulate the adolescent idiopathic scoliosis correction surgery with Finite Element Method (FEM).
    The geometric model of L2 to the pelvis, including the lumbar vertebrae, intervertebral discs, endplates, sacrum, iliac, screws, and rods were established from the CT scan data according to a patient with adolescent scoliosis by using CAD software. The finite element mesh was generated using the commercial software ABAQUS. The analysis process during the adolescent idiopathic scoliosis correction surgery including vertebrae movement, contact between correction rods and screws, and the spring back of vertebrae were also simulated by ABAQUS.
    The results shows that larger diameter correction rods increase the stiffness of the entire correction device, which reduces spinal displacement postoperative but also raises axial forces on the screws, increasing the risk of screw loosening and bone fracture. The presence of lumbar ligaments plays a significant role in reducing both stresses on the cortical bones and the risk of screw loosening. All stress values in the simulation remained within safe limits according to tensile strength of bones in literature, indicating no significant risk of bone fractures. These insights are critical for optimizing surgical planning, rod selection, and minimizing potential complications in AIS correction procedures.

    摘要 I Extend Abstract III 致謝 XIII 目錄 XIV 表目錄 XVII 圖目錄 XVIII 第1章 前言 1 1.1 研究背景 1 1.2 研究動機 1 1.3 論文架構 3 第2章 脊椎解剖學之介紹 4 2.1 脊椎的功用 4 2.2 椎節構造與功能 5 2.2.1 椎骨構造介紹 6 2.3 軟組織結構 7 2.3.1 椎間盤構造 7 2.3.2 腰椎韌帶 8 2.4 骨盆構造 9 2.5 骨盆韌帶 10 第3章 脊椎側彎矯正手術簡介及文獻回顧 12 3.1 脊椎側彎定義及類型 12 3.2 骨盆固定術 14 3.3 有限元素法 15 3.4 材料性質 17 第4章 有限元素模型建立與分析 19 4.1 幾何模型建立 19 4.1.1 腰椎至骨盆之模型 19 4.1.2 矯正儀器之模型 21 4.1.3 椎間盤模型 26 4.1.4 腰椎與骨盆韌帶模型 27 4.2 有限元素分析設定 29 4.2.1 材料性質 29 4.2.2 有限元素網格參數設定 32 4.2.3 邊界條件(Boundary condition)及接觸(Contact)設定 36 4.3 有限元素分析過程 37 4.3.1 移動螺釘及椎節 37 4.3.2 螺釘與矯正桿接觸行為 40 4.3.3 螺釘之位移條件釋放 40 第5章 分析結果與討論 43 5.1 位移結果之定義 44 5.2 網格收斂性分析 52 5.3 脊椎與螺釘之位移變化 55 5.4 腰椎固定螺釘與S2AI之軸向力 64 5.5 皮質骨與鬆質骨應力分析與比較 72 5.6 討論 82 第6章 結論與未來展望 84 6.1 結論 84 6.2 未來展望 85 參考文獻 87

    [1] Wang, W., Baran, G. R., Betz, R. R., Samdani, A. F., Pahys, J. M., & Cahill, P. J. (2014). The use of finite element models to assist understanding and treatment for scoliosis: a review paper. Spine Deformity, 2 (1): 10–27.
    [2] Weinstein, S. L., Dolan, L. A., Wright, J. G., & Dobbs, M. B. (2013). Effects of bracing in adolescents with idiopathic scoliosis. New England Journal of Medicine, 369(16), 1512-1521.
    [3] 楊創先(2023), S2AI螺釘技術於脊椎畸形矯正手術流程之有限元素模型建置與生物力學分析, in 機械工程學系, 國立成功大學. p. 79.
    [4] Middleditch, A., & Oliver, J. (2005). Functional Anatomy of the Spine. Elsevier Health Sciences, United Kingdom.
    [5] Todd, C. (2022). Managing the Spino-Pelvic-Hip Complex. An Integrated Approach. Handspring Publishing, Great Britain.
    [6] Understanding Your Spine. Available from: https://www.materprivate.ie/health-information/helpful-tips/understanding-your-spine.
    [7] The Vertebral Column. Available from: https://med.libretexts.org/Bookshelves/Anatomy_and_Physiology/Human_Anatomy_%28Lange_et_al.%29/06%3A_Axial_and_Appendicular_Skeleton/6.04%3A_The_Vertebral_Column.
    [8] Pathomechanism and Biomechanics of Degenerative Disc Disease: Features of Healthy and Degenerated Discs - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Anatomical-composition-of-the-human-intervertebral-disc-Centrally-located-nucleus_fig1_351044697.
    [9] Understanding Spinal Anatomy: Ligaments, Tendons and Muscles. Available from: https://www.coloradospineinstitute.com/education/anatomy/ligaments-tendons-muscles/.
    [10] Pelvis Anatomy. Available from: https://www.orthobullets.com/recon/12768/pelvis-anatomy.
    [11] Ligaments of Pelvis. Available from: https://epomedicine.com/medical-students/ligaments-of-pelvis/.
    [12] Maaliw, R. R., et al. (2022). A deep learning approach for automatic scoliosis Cobb Angle Identification. In 2022 IEEE World AI IoT Congress (AIIoT) (pp. 111-117). IEEE.
    [13] What is scoliosis. Available from: https://www.scoliosis-expert.com/scoliosis/what-is-scoliosis.
    [14] Hsieh, P. C., & Mummaneni, P. V. (2016). Introduction to lumbosacral and sacropelvic fixation strategies. Neurosurgical focus, 41(videosuppl1), 1-1.
    [15] Jain, A., Hassanzadeh, H., Strike, S. A., Menga, E. N., Sponseller, P. D., & Kebaish, K. M. (2015). Pelvic fixation in adult and pediatric spine surgery: historical perspective, indications, and techniques: AAOS exhibit selection. Journal of Bone and Joint Surgery, 97(18), 1521-1528.
    [16] Gao, Z., et al. (2021). Comparative radiological outcomes and complications of sacral-2-alar iliac screw versus iliac screw for sacropelvic fixation. European Spine Journal, 30(8), 2257-2270.
    [17] Kebaish, K. M. (2010). Sacropelvic fixation: techniques and complications. Spine, 35(25), 2245-2251.
    [18] Park, Y. S., Hyun, S. J., Park, J. H., Kim, K. J., Jahng, T. A., & Kim, H. J. (2017). Radiographic and clinical results of freehand S2 alar-iliac screw placement for spinopelvic fixation: an analysis of 45 consecutive screws. Clinical Spine Surgery, 30(7), E877-E882.
    [19] Mazur, M. D., Ravindra, V. M., Schmidt, M. H., Brodke, D. S., Lawrence, B. D., Riva-Cambrin, J., & Dailey, A. T. (2015). Unplanned reoperation after lumbopelvic fixation with S-2 alar-iliac screws or iliac bolts. Journal of Neurosurgery: Spine, 23(1), 67-76.
    [20] Shin, J. K., Lim, B. Y., Goh, T. S., Son, S. M., Kim, H. S., Lee, J. S., & Lee, C. S. (2018). Effect of the screw type (S2-alar-iliac and iliac), screw length, and screw head angle on the risk of screw and adjacent bone failures after a spinopelvic fixation technique: a finite element analysis. PloS one, 13(8), e0201801.
    [21] O'Brien, J. R., Yu, W., Kaufman, B. E., Bucklen, B., Salloum, K., Khalil, S., & Gudipally, M. (2013). Biomechanical evaluation of S2 alar-iliac screws: effect of length and quad-cortical purchase as compared with iliac fixation. Spine, 38(20), E1250-E1255.
    [22] Zhang, Q., Chon, T., Zhang, Y., Baker, J. S., & Gu, Y. (2021). Finite element analysis of the lumbar spine in adolescent idiopathic scoliosis subjected to different loads. Computers in Biology and Medicine, 136, 104745.
    [23] Panico, M., et al. (2023). Effect of Sacropelvic Hardware on Axis and Center of Rotation of the Sacroiliac Joint: A Finite Element Study. International Journal of Spine Surgery, 17(1), 122-131.
    [24] Fradet, L., Bianco, R. J., Tatsumi, R., Coleman, J., & Aubin, C. É. (2020). Biomechanical comparison of sacral and transarticular sacroiliac screw fixation. Spine Deformity, 8, 853-862.
    [25] Sohn, S., Park, T. H., Chung, C. K., Kim, Y. J., Jang, J. W., Han, I. B., & Lee, S. J. (2018). Biomechanical characterization of three iliac screw fixation techniques: a finite element study. Journal of Clinical Neuroscience, 52, 109-114.
    [26] Li, J., An, Z., Wu, J., Gao, Y., Lu, S., He, D., & Zhao, Y. (2023). Construction of the adjusted scoliosis 3D finite element model and biomechanical analysis under gravity. Orthopaedic Surgery, 15(2), 606-616.
    [27] Zheng, J., Feng, X., Xiang, J., Liu, F., Leung, F. K., & Chen, B. (2021). S2 Alar Iliac Screw and S1 Pedicle Screw Fixation for the Treatment of Sacral Fractures: A Finite Element Study. Journal of Orthopaedic Surgery and Research, 16, 1-10
    [28] Casaroli, G., Galbusera, F., Chande, R., Lindsey, D., Mesiwala, A., Yerby, S., & Brayda-Bruno, M. (2019). Evaluation of iliac screw, S2 alar-iliac screw and laterally placed triangular titanium implants for sacropelvic fixation in combination with posterior lumbar instrumentation: a finite element study. European Spine Journal, 28, 1724-1732.
    [29] Yang, J., Zhao, G., Xu, H., & Wang, F. (2020). Three-Dimensional finite element analysis of the effects of ligaments on human sacroiliac joint and pelvis in two different positions. Journal of biomechanical engineering, 142(8), 081007.
    [30] Pawlikowski, M., Skalski, K., & Sowiński, T. (2013). Hyper-elastic modelling of intervertebral disc polyurethane implant. Acta of Bioengineering and Biomechanics, 15(2), 43-50.
    [31] Xiao, Z., Wang, L., Gong, H., Gao, J., & Zhang, X. (2010). Establishment and verification of a non-linear finite element model for human L4–L5 lumbar segment. In 2010 3rd International Conference on Biomedical Engineering and Informatics (Vol. 3, pp. 1171-1175). IEEE.
    [32] Little, J. P., & Adam, C. J. (2009). The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Spine, 34(2), E76-E82.
    [33] Park, W. M., Kim, K., & Kim, Y. H. (2013). Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Computers in biology and medicine, 43(9), 1234-1240.
    [34] Ruberté, L. M., Natarajan, R. N., & Andersson, G. B. (2009). Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments—a finite element model study. Journal of biomechanics, 42(3), 341-348.
    [35] Zhong, Z. C., Chen, S. H., & Hung, C. H. (2009). Load-and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 223(2), 143-157.
    [36] Xiong, Y. Z., Gao, R. N., Zhang, H., Dong, L. L., Li, J. T., & Li, X. (2020). Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications. Journal of the mechanical behavior of biomedical materials, 104, 103673.
    [37] Chen, Z., et al. (2020). Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Materials Science and Engineering: C, 106, 110289.
    [38] Zhong, W., et al. (2014). In vivo morphological features of human lumbar discs. Medicine, 93(28), e333.
    [39] Pintar, F. A., Yoganandan, N., Myers, T., Elhagediab, A., & Sances Jr, A. (1992). Biomechanical properties of human lumbar spine ligaments. Journal of biomechanics, 25(11), 1351-1356.
    [40] Zhao, Y., Li, J., Wang, D., Liu, Y., Tan, J., & Zhang, S. (2012). Comparison of stability of two kinds of sacro-iliac screws in the fixation of bilateral sacral fractures in a finite element model. Injury, 43(4), 490-494.
    [41] Friis, E. A., Arnold, P. M., & Goel, V. K. (2017). Mechanical testing of cervical, thoracolumbar, and lumbar spine implants. Mechanical Testing of Orthopaedic Implants (pp. 161-180). Woodhead Publishing.
    [42] Patwardhan, A. G., et al. (2003). Effect of compressive follower preload on the flexion–extension response of the human lumbar spine. Journal of Orthopaedic Research, 21(3), 540-546.
    [43] Lieberman, I. H., Khazim, R., & Woodside, T. (1998). Anterior vertebral body screw pullout testing: a comparison of Zielke, Kaneda, Universal Spine System, and Universal Spine System with pullout-resistant nut. Spine, 23(8), 908-910.
    [44] Hack, J., Safi, M., Bäumlein, M., Lenz, J., Bliemel, C., Ruchholtz, S., & Oberkircher, L. (2021). Is cement-augmented sacroiliac screw fixation with partially threaded screws superior to that with fully threaded screws concerning compression and pull-out force in fragility fractures of the sacrum?–a biomechanical analysis. BMC Musculoskeletal Disorders, 22, 1-7.
    [45] Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431.
    [46] Abul-Kasim, K., Karlsson, M. K., & Ohlin, A. (2011). Increased rod stiffness improves the degree of deformity correction by segmental pedicle screw fixation in adolescent idiopathic scoliosis. Scoliosis, 6, 1-8.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE