簡易檢索 / 詳目顯示

研究生: 陳仁炯
Chen, Ren-Jiong
論文名稱: 滿管流雨水下水道輸水能力之研究
Study on the delivery of the pipe flow storm sewer
指導教授: 蔡長泰
Tsai, Chang-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 72
中文關鍵詞: 損失係數人孔雨水下水道
外文關鍵詞: manhole, storm sewer, loss coefficient
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雨水下水道中之流況,可以是明渠流、管流、閘流或混合型的流動型態。設計時,一般要求為明渠流。但雨水下水道因豪雨期間之流入流量超過設計容量而發生滿管流,也可因下游匯流井或人孔之高水位迴水影響而發生滿管流。滿管流時,若匯流井或人孔深度不足,將使得水由人孔或道路邊溝進水口溢流至地表面而泛濫。
    陡坡渠道可因下游發生亞臨界流況而導致水躍,但只要有超臨界流段,則此一下游亞臨界流將不影響上游輸水能力,故本研究以緩坡雨水下水道為研究對象。本研究由矩形斷面規則渠道之臨界坡一般化水流關係式導出封頂涵管之緩坡條件,進而推導緩坡雨水下水道發生明渠流,局部滿管流及全部滿管流之條件,以分類雨水下水道內之水流型態,進而推導各流況之輸水能力近似解。此一近似解可用於豪雨期間由人孔或匯流井水位分析雨水下水道之輸水能力。
    由各流況之比較分析,顯示一般而言,滿管流況可能有較大之輸水能力,但若出口匯流井或人孔之水位可浸沒出口時,將高入口匯流井或人孔之水位,或降低雨水下水道之輸水能力。
    本研究進行水工實驗以驗證所推導之雨水下水道輸水能力模式。由實驗結果可看出因下游匯流井水位或尾水抬高所導致的迴水影響,可在低流量時形成滿管流動,甚至發生溢流的情形,均與理論分析之結果相符。故需維持雨水下水道出口匯流井或人孔之水位不浸沒出口,可確保雨水下水道之輸水能力,進而提升雨水下水道之輸水能力。
    由實驗觀察可看出匯流井內之水面呈現傾斜,最大水深皆明顯偏向出口壁面的水位超高現象,並因匯流井內水位之超高而導致溢流情形發生。在本研究之實驗範圍內,此一超高值小於匯流井內平均水位2%。
    由實驗資料分析,入口及出口浸沒之矩形斷面雨水下水道,因矩形斷面匯流井或人孔所造成之能量損失係數可取為0.36。此一結果可應用於演算浸沒管流流況之雨水下水道輸水能力。

    The storm sewer system in the urban area can be open channel flow, pipe flow, gate flow or compound flow, and it was generally designed for open channel flow. Pipe flow occurs the inflow exceeds the designed capacity during rainstorms and the backwater effect of the high water stage in downstream junction boxes or manholes. If the manhole is not deep enough, the flood occur overflow from the manholes of sewers or street curbs.
    The hydraulic jump occurs in subcritical flow at the downstream steep-slope channel, the subcritical flow can not affect the delivery at upstream channels as long as the supercritical flow exists. Therefore, mild-slope sewer flow is discussed in this study. The study deduces condition for mild-slope in the closed conduit by generalized-flow relation of the critical slope for rectangular channel. Also, deduces the conditions for open channel flow, partial-full pipe flow and full pipe flow to classify the flow regime in the urban drainage system and deduces the approximate solution of delivery for each flow regime. According to water depth of the manholes or junction chambers, the approximate solution of delivery in urban drainage can be analyzed during heavy rainfall events.
    More drainage ability in pipe flow can be indicated by analyzing flow regime. However, if the water level of junction chambers or manholes submerges the outlet, water level will be increased in the junction chamber or manhole or reduce the delivery of the storm sewers.
    The model is verified by hydraulic experiments. Laboratory investigations indicate that the rising of tailwater level are caused by the water level of the manhole in the downstream and backwater effect, and then result in pipe flow for low discharge and overflow even occurs. The experiment results conform to the theoretical analyses. Keeping the water level not submerging junction chambers or manholes, delivery of storm sewers can be maintained and even raised.
    Laboratory investigations also indicate that the water surface in the junction chamber is inclined and the maximum depth is approach to wall top in the outlet and overflow occurs. The surcharge value is smaller than 2 percent of average depth in the experiment.
    Based on the experimental results, the loss coefficient of the submerged-rectangular sewers is about 0.36. This result can be applied to estimate the delivery of drainage system with submerged pipe flow.

    中文摘要 I 英文摘要 Ⅲ 誌謝 V 目錄 VI 圖目錄 X 表目錄 XII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 前人研究 2 1-3 本文組織 5 第二章 緩坡雨水下水道滿管流分析 10 2-1 矩形斷面規則渠道之緩坡坡度 10 2-2 緩坡雨水下水道入口浸沒之滿管流分析 12 2-2.1 緩坡雨水下水道入口浸沒條件 12 2-2.2 緩坡雨水下水道之閘流浸溺 13 2-2.3 緩坡雨水下水道發生自由管流之條件 15 2-3 豪雨期間之雨水下水道流量演變 16 2-3.1 渠流段之流量及水面線分析 16 2-3.2 緩坡雨水下水道之流況類型 17 2-3.2.1 入口未浸沒( ) 17 1. 出口為自由跌流之M2水面線( ) 18 2. 出口未浸沒,但非自由跌流( ) 19 3. 出口浸沒( ) 20 2-3.2.2入口浸沒( ) 21 1. 出口未浸沒,出口段為渠流 21 (A) 出口為自由跌流之M2水面線 21 (B) 出口未浸沒,但非自由跌流 22 2. 出口未浸沒,但無渠流段 22 (A) 自由管流( ) 22 (B) 出口未浸沒之管流( ) 22 3. 出口浸沒 23 2-4 滿管流時匯流井及人孔之水位超高 23 第三章 實驗佈置與步驟 34 3-1 實驗目的 34 3-2 實驗設備 34 3-3 實驗方法 36 3-3.1 滿管流實驗 36 3-3.2 溢流實驗 37 第四章 結果與討論 46 4-1 滿管流之匯流井能量損失係數 46 4-2 匯流井水位超高 47 4-3匯流井溢流 48 4-4緩坡下水道輸水能力分析 49 第五章 結論與建議 57 5-1 結論 57 5-2 建議 58 參考文獻 59 附錄一 62 附錄二 65 圖目錄 圖1-1(a) 雨水下水道入口流況之種類[21,28] 6 圖1-1(b) 雨水下水道入口流況之種類[21,28] 6 圖1-1(c) 雨水下水道管內流況之種類[21,28] 7 圖1-2(a) 亞臨界流況下,上游水深固定時之輸水曲線[11] 8 圖1-2(b) 亞臨界流況下,下游水深固定時之輸水曲線[11] 8 圖1-3 亞臨界流之流量與上游及下游水深關係圖[11] 9 圖2-1(a) 矩形斷面規則渠道之臨界坡條件。曲線表示臨界坡,曲線左方為緩 坡,右方為陡坡 25 圖2-1(b) 內高 ,內寬 之雨水下水道之臨界條件 = 0, 0.5, 0.6, 0.8, 1.0 25 圖2-2緩坡雨水下水道之入口浸沒 26 圖2-3矩形斷面規則渠道之入口浸沒下限條件 26 圖2-4 緩坡雨水下水道之入口閘流 27 圖2-5緩坡雨水下水道入口浸沒,出口正好發生自由管流示意圖 27 圖2-6 應用標準步驟法時之演算斷面 27 圖2-7依雨水下水道之入口人孔及出口人孔之水頭分類緩坡雨水下水道流況類 型示意圖 28 圖2-8入口未浸沒,出口為自由跌流 29 圖2-9 入口未浸沒,出口非自由跌流 29 圖2-10 入口未浸沒,出口為滿管跌流,有一滿管段 29 圖2-11 入口浸沒,出口為自由跌流,有一滿管段 30 圖2-12入口浸沒,出口非自由跌流,有一滿管段 30 圖2-13入口浸沒,出口為自由管流 30 圖2-14入口浸沒,出口為半浸沒管流 31 圖2-15入口浸沒,出口為浸沒管流 31 圖2-16 實驗佈置及匯流井流況示意圖 32 圖3-1 試驗佈置示意圖 38 圖3-2 超音波流速儀架設方式 38 圖3-3 流量率定曲線 39 圖3-4-1 模型1、2、3佈置示意圖 40 圖3-4-2 模型4、5佈置示意圖 41 圖3-5 當Q=0.0057 cms時,兩支波高計在相同點位所量測到之水位 42 圖4-1浸沒管流之試驗量測值與理論公式之比較 51 圖4-2 設計流量下, 與 之關係圖 52 圖4-3 設計流量下, 與 之關係圖 53 圖4-4上游匯流井有溢流及無溢流時與下游匯流井水位比較 54 圖4-5下游匯流井水位固定時,上游匯流井水位與流量間之關係圖 54 圖4-6下游匯流井有溢流及無溢流時與上游流井水位比較 55 圖4-7緩坡雨水下水道流況示意圖 55 圖4-8緩坡雨水下水道與兩端匯流井水頭與流量之關係之試驗驗證 56 照片3-1 小型抽水馬達 42 照片3-2 超音波流速儀(OMEGA, FD-7000) 43 照片3-3 針尺(point gauge) 43 照片3-4 電磁式波高計 43 照片3-5 量測之點位示意圖 44 照片3-6-1 未溢流 44 照片3-6-2 將活動壓克力板抽出,發生溢流 44 照片4-1 匯流井水位之傾斜情形,水流方向為由又向左 56 表目錄 表2-1 依入口及出口人孔水頭分類緩坡雨水下水道類型及近似解方程式 33 表3-1 各組模型之流量分配表 45

    1. 台北市政府工務局,「台北市下水道工程設計標準」,民國80年5月。
    2. 張博超,「連續突縮突擴之明渠水流之研究」,國立成功大學水利及海洋研究所碩士論文,2004。
    3. 蔡長泰、顏清連,「通用水面線演算模式」,台灣水利季刊,第29卷,第3期,pp.11-18,1981。
    4. 賴政佑,「矩形斷面緩坡雨水下水道之水理研究」,國立成功大學水利及海洋研究所碩士論文,2005。
    5. 顏榮甫、林延郎、蔡長泰,「箱式涵洞水流之流量連續性及率定曲線」,台灣水利季刊,第42卷,第2期,pp.95-105,1994。
    6. 顏榮甫、蔡長泰、林志翰,「箱式涵洞控制長度及流型分界之研究」,台灣水利季刊,第15卷,第4期,pp.545-553,2000。
    7. Benjamin, T. B., “On the flow in channels when rigid obstacles are placed in the stream,” Journal of Fluid Mechanics, Vol. 1, part 2, pp. 227-248, 1956.
    8. Campbell, C. W. and Sullivan, S. M., “Simulating time-varying cave flow and water levels using the Storm Water Management Model,” Engineering Geology, Vol. 65, pp. 133-139, 2002.
    9. Chanson, H., “Hydraulics of large culvert beneath Roman aqueduct of Nmes,” Journal of Irrigation and Drainage Engineering, Vol. 128, No. 5, pp. 326-330, 2002.
    10. Chaudhry, M. H., Open-Channel Flow, Prentice Hall, 1993.
    11. Chow, V. T., Open-Channel Hydraulics, McGraw-Hill, New York, USA, 1959.
    12. Dasika, B., “New approach to design of culverts,” Journal of Irrigation and Drainage Engineering, Vol. 121, No. 3, pp. 261-264, 1995.
    13. Day, R. A., “Preliminary observations of turbulent flow at culvert in inlets,” Journal of Hydraulic Engineering, Vol.123, No. 2, pp.116-124, 1997.
    14. Del Giudice, G. and Hager, W. H., “Sewer sideweir with throttling pipe,” Journal of Irrigation and Drainage Engineering, Vol. 125, No. 5, pp. 298-306, 1999.
    15. Henderson, F. M., Open channel flow, Macmillan, New York, USA, 1966.
    16. Hilden, M., “Simulation of floods caused by overloaded sewer systems: extensions of shallow-water equations,” Hydrological Processes, Vol. 19, No. 5, pp. 1037-1053, 2005.
    17. Hsu, M. H., Chen, S. H., and Chang, T. J., “Inundation Simulation for Urban Basin with Storm Sewer System,” Journal of Hydrology, Vol. 234, pp. 21-37, 2000.
    18. Jones, L. E., and B. N. Tripathy, ”Generalised critical slope for trapezoidal channels,” J. of Hydr. Div., ASCE, pp. 85-91, 1965.
    19. Linsley, R. K., Franzini, J. B., Water-resources engineering, McGraw-Hill, New York, USA, 1979.
    20. Mark, O., Weesakul, S., Apirumanekul, C., Aroonnet, S. B., and Djordjevic, S., “Potentail and limitations of 1D modeling of urban flooding,” Journal of Hydrology, Vol. 299, pp. 284-299, 2004.
    21. Mays, L. W., Urban Stormwater Management Tools, McGraw-Hill, New York, N.Y., USA, 2004.
    22. Merlein, J., “Flow in submerged sewers with manholes,” Urban Water, Vol.2, pp. 251-255, 2000.
    23. Nasello, C. and Tucciarelli, T., “Dual Multilevel Urban Drainage Model,” Journal of Hydraulic Engineering, Vol. 131, pp. 748-754, 2005.
    24. Schmitt, T. G., Thomas, M., and Ettrich, N., “Analysis and modeling of flooding in urban drainage systems,” Journal of Hydrology, Vol. 299, pp. 300-311, 2004.
    25. Seckin, G., Yurtal, R., and Haktanir, T., “Contraction and expansion losses through bridge constriction,” Journal of Hydraulic Engineering, Vol.124, No. 5, pp. 546-549, 1998.
    26. Subramanya, K., Flow in Open Channel, Tata McGraw-Hill publishing Co., New Delhi, India.
    27. Takashi, S., Shuji, T., and Toshihiro, I., “Energy loss at surcharged manholes-model experiment,” Wat. Sci. Tech., Vol.36, No.8-9, pp. 65-70, 1997.
    28. Yen, B. C., “Hydraulics of Sewers” in Yen, B. C. ed., Advances in Hydroscience, Vol. 14, Academic Press, Orlando, pp. 1-122, 1986.

    下載圖示 校內:2008-07-31公開
    校外:2008-07-31公開
    QR CODE