簡易檢索 / 詳目顯示

研究生: 南火
Rahmansyah, Nandho
論文名稱: 聚氧化乙烯/奈米銀板複合材料在等溫與非等溫結晶的研究
Isothermal and Non-isothermal Crystallization of Poly(ethylene oxide)/Silver Nanoplate Composites
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 105
外文關鍵詞: isothermal crystallization, anti-nucleation agent, PEO/Silver nanoplate composites
相關次數: 點閱:63下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們觀察在等溫與非等溫結晶過程中,在聚氧化乙烯(PEO)掺和銀奈米板所造成的影響。在等溫結晶複合物中,我們發現銀奈米板的加入PEO會使得球晶成長速率上升。另外,銀奈米板阻礙了PEO一級成核而導致結晶速率的下降。 從實驗結果可知銀奈米板在複合物的結晶過程中扮演抗成核基團。利用Lauritzen-Hoffman的理論分析實驗數據能發現,成核常數和表面自由能隨著摻和奈米盤的量增加而下降。這是因為銀奈米板在結晶和基板之間, 對於高分子在表面結晶的促進比在聚合物內部來的多。此外,純PEO和它的複合物表現出類似的q,此現象指出銀奈米板的存在對於PEO之二級成核結構並沒有太大的影響,但卻能引發高分子結晶的形成。
    我們利用熱卡掃描儀(DSC)對複合物進行非等溫結晶行為的研究。對純PEO而言Avrami指數 (n) 範圍介於2.51~2.53,對複合物卻微高於此數值, 大約2.54~3.16,表示這些複合物表現出球型結晶構型。從結晶半生期(t1/2)觀察則指出,純PEO和其複合物的結晶速率隨著冷卻速率而增加,且純PEO結晶速率比複合物來的快。經由成核活性的分析,我們發現成核能力隨的銀奈米板的量上升而增加。和之前的研究比較我們倒出, 在添加不同形狀及大小的銀奈米板的情況下會造成不定型的結晶行為,而這現象這完全取決於高分子鏈和填充物之間的作用力。

    This research was accomplished to investigate the effect of the incorporation of silver nanoplates on both the isothermal and non-isothermal crystallization of poly(ethylene oxide) (PEO)/nanoplate composites. In isothermal crystallization of composites, it was obtained that the addition of the nanoplates into the PEO causes an increase in the spherulite growth rate. In addition, the silver nanoplates hinder the primary nucleation of PEO and thus reduce the crystallization rate. This result suggests that silver nanoplates act as an anti-nucleation agent for the crystallization of composites. By analyzing the experimental data using the Lauritzen-Hoffman’s theory, both the nucleation constant (Kg) and surface free energy (σσe) decrease with the incorporation amount of nanoplates. This is because the nanoplates promote the creation of the corresponding free polymer crystal surface more dominant than that of the interface between polymer crystals and substrate. Additionally, the neat PEO and its composites exhibit similar q, indicating that the existence of silver nanoplates has no significant effect on the formation of the secondary nuclei of PEO, but induce the formation of free polymer crystals.
    Differential scanning calorimetry (DSC) was employed to investigate the non-isothermal crystallization of these composites. The Avrami exponent (n) for neat PEO ranged from 2.51 to 2.53 whereas that for composites showed slightly higher values between 2.54 to 3.16, indicating that these composites exhibit spherical crystal morphology. The half time for crystallization (t1/2) showed that the crystallization rate of neat PEO and its composites increase with increasing cooling rate and the crystallization rate of neat PEO is faster than that of composites. By analyzing the nucleation activity, we obtained that the nucleation ability increases with an increase in the content of silver nanoplates. Derived from the comparison with a few previous researches, the crystallization behavior of polymer with the addition of nanoparticles with different shape and size is atypical. It depends highly on the interaction between the polymer chains and the fillers.

    LIST OF CONTENTS ABSTRACT (In CHINESE) iii ABSTRACT (In ENGLISH) iv x LIST OF CONTENTS vi LIST OF TABLES viii LIST OF FIGURES ix ACKNOWLEDGEMENT xii CHAPTER 1 INTRODUCTION 1 References 3 CHAPTER 2 LITERATURE REVIEW 4 2.1. Polymer Nanocomposites 4 2.1.1. Manufacturing Techniques for Composites 10 2.1.2. Characterization Techniques for Nanocomposites 13 2.2. Properties of Nanocomposites 15 2.2.1. Thermal Properties 15 2.2.1.1. Melting Point 15 2.2.1.2. Thermal Stability and Degradation 15 2.2.1.3. Coefficient of Thermal Expansion (CTE) 16 2.2.1.4. Heat Distortion Temperature (HDT) 16 2.3. Polymer/clay Nanocomposites 16 2.4. Polymer/Carbon Nanotubes (CNT) Composites 19 2.4.1. Structure and Properties of Carbon Nanotubes 19 2.5. Polymer-inorganic Particle Nanocomposites 21 2.5.1. Preparation and Processing 22 2.5.2. Properties, Manufacturing, and Applications 22 2.6. Polymer Crystallization 24 2.6.1. Thermodynamics of Crystallization and Melting 29 2.6.2. Polymer Nucleation 30 2.6.3. Kinetics of Polymer Crystallization 32 2.6.3.1. Spherulite Growth Rate 32 2.6.3.2. Bulk Crystallization Kinetics 33 2.6.3.3. Lauritzen and Hoffman Parameter 34 2.7. References 35 CHAPTER 3 RESEARCH OBJECTIVES 41 3.1. Scope of Research 41 3.2. Overview of the Thesis 42 CHAPTER 4 ISOTHERMAL CRYSTALLIZATION OF POLY(ETHYLENE OXIDE)/SILVER NANOPLATE COMPOSITES 43 4.1. Abstract 43 4.2. Introduction 44 4.2.1. Lauritzen-Hoffman’s theory 47 4.3. Experimental part 52 4.3.1. Materials 52 4.3.2. Synthetic procedure of silver nanoplates 52 4.3.3. Preparation of PEO/silver nanoplate composites 53 4.3.4. Dispersion of silver nanoplates in PEO 53 4.3.5. Characterization of PEO/silver nanoplate composites 53 4.4. Results and Discussion 53 4.4.1. Silver nanoplates 53 4.4.2. Isothermal crystallization of PEO/silver nanoplate composites 55 4.4.3. Spherulite growth rate 56 4.4.4. Lauritzen and Hoffman Parameters 60 4.5. Conclusion 66 4.6. References 67 CHAPTER 5 NON-ISOTHERMAL CRYSTALLIZATION OF POLY(ETHYLENE OXIDE) / SILVER NANOPLATE COMPOSITES 69 5.1. Abstract 69 5.2. Introduction 69 5.2.1. Theory of non-isothermal crystallization 72 5.2.2. Nucleation activity (φ) 74 5.3. Experimental Part 75 5.3.1. Materials 75 5.3.2. Synthetic procedure of silver nanoplates 75 5.3.3. Preparation of PEO/silver nanoplate composites 76 5.3.4. Dispersion of silver nanoplates in PEO 76 5.3.5. Characterization of PEO/silver nanoplate composites 76 5.4. Results and Discussion 77 5.4.1. Silver nanoplates 77 5.4.2. Non-isothermal crystallization of PEO/silver nanoplate composites 78 5.5. Conclusion 100 5.6. References 101 CHAPTER 6 CONCLUSION 103

    1. J.P. Jog, Materials Science and Technology, 2006, 22, 797.
    2. N.Herron, D. L. Thorn, Advanced Materials, 1998, 10, 1173.
    3. E. Ruckenstein, Y. N. Yuan, Polymer, 1997, 38, 3855.
    4. W.Helbert, J.Y. Cavaille, A.Dufresne, Polymer Composites, 1996, 17,604.
    5. P.Hajji, J. Y. Cavaille, V.favier, C. Gauthier, G. Vigier, Polymer Composites, 1996, 17, 612.
    6. BKG Theng, The chemistry of clay-organic reactions. Wiley, New York, 1974.
    7. B. K. G. Theng, formation and properties of clay polymer complexes. Elsevier, NewYork, 1979.
    8. Y. Kojima, A. Usuki, M. Kawaasumi, A. Okada, Y. Fukushima, T. Kuruanchi, O. Kamigaito, Journal of Materials Research, 1993, 1, 1185.
    9. S. Vyazovkin, J. Stone and N. Sbirrazuoli: Journal of Thermal Analysis and Calorimetry, 2005, 80, 177.

    1. Wagner, D.; Vaia, R. Nanocomposites: issues at the interface. Materials Today. November. 2004. ISSN:1369 7021 © Elsevier Ltd.
    2. Luo, J.J. and Daniel, I.M. Characterization and Modeling of Mechanical Behavior of Polymer/Clay Nanocomposites, Compos. Sci. Technology. 2006. 63(11): 1607–1616.
    3. RTO Lecture Series, EN-AVT-129, May. 2005.
    4. Thostenson, E., Li, C. and Chou, T. Review Nanocomposites in Context. Journal of Composites Science & Technology. 2005. 65: 491–516.
    5. Schmidt, D., Shah, D. and Giannelis, E.P. New Advances in Polymer/Layered Silicate Nanocomposites. Current Opinion in Solid State and Materials Science. 2002. 6(3): 205–212.
    6. Alexandre, M. and Dubois, P. Polymer-layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng. Rep. 2000. 28: 1–63.
    7. Gorga, R.E. and Cohen, R.E. Toughness Enhancements in Poly(methyl methacrylate) by Addition of Oriented Multiwall Carbon Nanotube. J. Polym. Sci., Part B: Polym. Phys. 2004. 42(14):2690–2702.
    8. Park, C., Park, O., Lim, J. and Kim, H. The Fabrication of Syndiotactic Polystyrene/ Organophilic Clay Nanocomposites and Their Properties. Polymer. 2001. 42: 7465–7475.
    9. Gorga, R.E. and Cohen, R.E. Toughness Enhancements in Poly(methyl methacrylate) by Addition of Oriented Multiwall Carbon Nanotube. J. Polym. Sci., Part B: Polym. Phys. 2004. 42(14):2690–2702.
    10. Christopher, O.O. and Lerner, M. Nanocomposites and Intercalation Compound. Encyclopedia of Physical Science and Technology. 2001. 10(3).
    11. Mazumder, S.K. (ed. Composites Manufacturing, Materials, Product and Process Engineering. 2002. CRC Taylor & Francis, ISBN 0-8493-0585-3.
    12. Roy, S., Hussain, F., Lu, H. and Narasimhan, K. Characterization and Modeling of Strength Enhancement Mechanism in Polymer Clay Nanocomposites. 2005. In: AIAA Conference Proceedings, Texas.
    13. Octeau, M.A., Yousefpour, A. and Hojjati, M. Procedure Manual for using Resin Transfer Molding (RTM). Manufacturing Set-up. August 2004. LM-AMTC-0025.
    14. Fielding, J.C., Chen, C. and Borges, J. Vacuum Infusion Process for Nanomodified Aerospace Epoxy Resins. In: SAMPE Symposium & Exhibition, Long beach, CA. 2004.
    15. Hussain F., Derrick, D., Haque, A. and Shamsuzzoha, A.M. S2 Glass/Vinyl Ester Polymer Nanocomposites: Manufacturing, Structures, Thermal and Mechanical Properties. Journal of Advanced Materials. 2005. 37(1): 16–27.
    16. Chen, J. and Tanguay, M. Autoclave Processing in the Aerospace Manu-facturing Technology Center (AMTC). In: Internal Technical Paper for, AMTC, NRC (under reviewing). 2004.
    17. Mahfuz, H., Baseer, M.A. and Zeelani, S. Fabrication, Characterization and Mechanical Properties of Nano Phased Carbon Prepag Laminates. In: SAMPE Journal. 2005. 41(2).
    18. Meyyappan, M. (ed.). Carbon Nanotubes, Science and Application, CRC. 2004. (Reproduced in part with permission from Taylor & Francis, USA. 2006.)
    19. Giannelis, E.P. Polymer Layered Silicates Nanocomposites. Adv. Mater. B. 1996. 8: 29–35.
    20. Reichert, P., Kressler, J., Thomann, R., Mulhaupt R. and Stoppelmann, G. Nanocomposites Based on a Synthetic Layer Silicate and Polyamide-12. Acta Polymer. 1998. 49(2–3): 116–123.
    21. Yano, K. and Usuki, A. Synthesis and Properties of Polyimide-Clay Hybrid. J. Polym. Sci., Part A: Polym. Chem. 1993. 31: 2493–2498.
    22. Yano, K., Usuki, A., Okada, A. and Kurauchi, T. Synthesis and Properties of Polyimide-Clay Hybrid. Polymer Prep. (Jpn). 1991. 32(1): 65.
    23. Park, J.H. and Jana, S. Mechanism of Exfoliation of Nanoclay Particles in Epoxy-Clay Nanocomposites. Macromolecules. 2003. 36: 2758–2768.
    24. Chen, T.K., Tien, Y.I. and Wei, K.H. Synthesis and Characterization of Novel Segmented Polyurethane/Clay Nanocomposites via Poly ("-caprolactone)/Clay. J. Polym. Sci., Part A: Poly. Chem. 1999. 37(13): 2225–2233.
    25. J. H. Chang, B. S. Soe, D. H. Hwang, Polymer. 2002. 43: 2969.
    26. I. Y. Phang, K. P. Pramoda, T. Liu, C. He, Polymer international. 2004. 53: 1282.
    27. Y.Q. Zhang, J. H. Lee, J. M. Rhee, K. Y. Rhee. Composites Science and Technology. 2004. 64:1383.
    28. A. Blumstein, Journal of Polymer Science. 1965. A3: 2665.
    29. T. Agag, T. Koga, T. Takeichi, Polymer. 2001. 42: 3399.
    30. P. J. Yoon, T. D. Fornes, D. R. Paul, Polymer. 2002. 43: 6727.
    31. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kuranchi, O.Kamigaito, Journal of Materials Research. 1993. 8:1185.
    32. J. S. Shelley, P. T. Mather, K. L. DeVries, Polymer.2001. 42: 5849.
    33. Wypych, F.; Satyanarayana, K. Functionalization of single layers and nanofibers: a new strategy to produce polymer nanocomposites with optimized properties. Journal of Colloid and Interface Science. In press. 2005.
    34. Denault, J.; Labrecque, B. Technology Group on Polymer Nanocomposites – PNC-Tech. Industrial Materials Institute. National Research Council Canada, 75 de Mortagne Blvd. Boucherville, Québec, J4B 6Y4. 2004.
    35. Ray, S.S. and Okamoto, M. Polymer/layered Silicate Nanocomposite: A Review from Preparation to Processing. Prog. Polymer Sci. 2003. 28: 1539–1641.
    36. Kawasumi, M., Hasegawan, M., Usuki, A. and Okada, A. Preparation and Mechanical Properties of Polypropylene–Clay Hybrids. Macromolecules. 1997. 30: 6333–6338.
    37. Kornmann, X., Linderberg, H. and Bergund, L.A. Synthesis of Epoxy–Clay Nanocomposites: Influence of the Nature of the Clay on Structure. Polymer. 2001. 42: 1303–1310.
    38. Kornmann, X., Linderberg, H. and Bergund, L.A. Synthesis of Epoxy–Clay Nanocomposites: Influence of the Nature of the Curing Agent on Structure. Polymer. 2001. 42: 4493–4499.
    39. Becker, O., Cheng, Y.B., Varley, R.J. and Simon, G.P. Layered Silicate Nanocomposites Based on Various High-functionality Epoxy Resins: The Influence of Cure Temperature on Morphology, Mechanical Properties, and Free Volume. Macromolecules. 2003. 36: 1616–1625.
    40. Dennis, H.R., Hunter, D., Chang, D., Kim, S. and Paul, D.R. Effect of Melt Processing Condition on the Extent of Exfoliation in Organoclay-based Nanocomposites. Polymer. 2001. 42:9513–9522.
    41. Okada, A. and Usuki, A. The Chemistry of Polymer-Clay Hybrids. Mater. Sci. Eng. 1995. C3: 109–115.
    42. Lan, T., Kaviratna, P.D. and Pinnavaia, T.J. Mechanism of Clay Tactoid Exfoliation in Epoxy–Clay Nanocomposites. Chem. Mater. 1995. 7(11): 2144–2150.
    43. Lan, T. and Pinnavaia, T.J. On the Nature of Polyimide-Clay Hybrid Nanocomposites. Chem. Mater. 1994. 6(5): 573–575.
    44. Lan, T. and Pinnavaia, T.J. Clay Reinforced Epoxy Nanocomposites. Chem. Mater. 1994. 6(12): 2216–2219.
    45. Vaia, R.A., Jant, K.D., Kramer, E.J. and Giannelis E.P. Microstructural Evaluation of Melt-intercalated Polymer-Organically Modified Layered Silicate Nanocomposites. Chem. Mater. 1996. 8: 2628–2635.
    46. Vaia, R.A., Ishii, H. and Giannelis, E.P. Synthesis and Properties of 2-dimensional Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates. Chem. Mater. 1993. 5: 1694–1696.
    47. Chen, C., Cloos, L. and Rice, B.P. Carbon Fiber Composites: Part I, SAMPE Journal. 2001. 37(5).
    48. Iijima, S. Helical Microtubules of Graphitic Carbon. Nature. London, United Kingdom. 1991. 354(6348): 56.
    49. Iijima, S. and Ichihashi, T. Single-shell Carbon Nanotubes of 1-nm Diameter. Nature, London, United Kingdom. 1993. 363(6430): 603–605.
    50. Bower, C., Rosen, R., Jin, L., Han, J., Zhou, O. Deformation of Carbon Nanotubes in Nanotube-polymer Composites. Applied Physics Letters. 1999. 74(22): 3317–3319.
    51. Cooper, C.A., Ravich, D., Lips, D., Mayer, J. and Wagner, H.D. Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix. Composites Science and Technology. 2002. 62(7–8): 1105–1112.
    52. Haggenmueller, R., Gommans, H.H., Rinzler, A.G., Fischer, J.E. and Winey, K.I. Aligned Single-wall Carbon Nanotubes in Composites by Melt Processing Methods. Chemical Physics Letters. 2000. 330(3–4): 219–225.
    53. Jin, L., Bower, C. and Zhou, O. Alignment of Carbon Nanotubes in a Polymer Matrix by Mechanical Stretching. Applied Physics Letters. 1999. 73(9): 1197–1199.
    54. Jin, Z., Pramoda, K.P., Xu, G. and Goh, S.H. Dynamic Mechanical Behavior of Melt- processed Multi-walled Carbon Nanotube/Poly (Methyl Methacrylate) Composites. Chemical Physics Letters. 2001. 337(1–3): 43–47.
    55. Kearns, J.C. and Shambaugh, R.L. Polypropylene Fibers Reinforced with Carbon Nanotubes. Journal of Applied Polymer Science. 2002. 86(8): 2079–2084.
    56. Lozano, K. and Barrera, E.V. Nanofiber-reinforced Thermoplastic Composites. Thermo Analytical and Mechanical Analyses. Journal of Applied Polymer Science. 2001. 79(1): 125–133.
    57. Potschke, P., Fornes, T.D. and Paul, D.R. Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites. Polymer. 2002. 43(11): 3247–3255.
    58. Safadi, B., Andrews, R. and Grulke, E.A. Multiwalled Carbon Nanotube Polymer Composites: Synthesis and Characterization of Thin Films. Journal of Applied Polymer Science. 2002. 84(14): 2660–2669.
    59. Schadler, L.S., Giannaris, S.C. and Ajayan, P.M. Load Transfer in Carbon Nanotube Epoxy Composites. Applied Physics Letters. 1998. 73(26): 3842–3844.
    60. Lau, K.T. and Hui, D. The Revolutionary Creation of New Advanced Materials- carbon Nanotube Composites. Composites Part B. 2002. 33: 263.
    61. Liu, J., Fan, S. and Dai, H. Recent Advances in Methods of Forming Carbon Nanotubes. MRS Bulletin. April. 2004: 244–250.
    62. Thostenson, E.T., Ren, Z. and Chou, T.W. Advances in the Science and Technology of Carbon Nanotubes and their Composites. a Review, Composites Science and Technology. 2001. 61(13): 1899–1912.
    63. Nanoscience and Nanotechnologies. The Royal Society & the Royal Academy of Engineering. 2004.
    64. Tang, J., Wang, Y., Liu, H., Xia, Y. and Schneider, B. Effect of Processing on Morphological Structure of Polyacrylonitrile Matrix Nano-ZnO Composites. J. of Applied Polymer Science. 2003. 90: 1053–1057.
    65. Zheng, Y.P., Zheng Y. and Ning, R.C. Effects of Nanoparticles SiO2 on the Performance of Nanocomposites. Materials Letters. 2003. 57(19): 2940–2944.
    66. Chen, Y.C., Zhou, S.X. and Wu, L.M. European Polymer Journal. 2005.
    67. Ma, D., Hugener, T.A., Siegel, R.W., Christerson, A., Martensson, E., Onneby, C. and Schadler, L. Influence of Nanoparticle Surface Modification on the Electrical Behaviour of Polyethylene Nanocomposites. Nanotechnology. 2005. 16: 724–731.
    68. Chen, Y.C., Zhou, S.X., Yang, H.H. and Wu, L.M. Structure and Properties of Polyurethane/Nanosilica Composites. Journal of Applied Polymer Science. 2005. 95(5): 1032–1039.
    69. Zhang, M. and Singh, R. Mechanical Reinforcement of Unsaturated Polyester by Al2O3 Nanoparticles. Materials Letters. 2004. 58: 408–412.
    70. Yong, V. and Hahn, H.T. Processing and Properties of SiC/Vinyl Ester Nanocomposites. Nanotechnology. 2004. 15: 1338.
    71. Lao, S., Ho, W., Ngyuen, K., Koo, J.H., et al. Micro Structural Analysis of Nylon 11 Nanocomposites. SAMPE, Seattle, WA. 2005.
    72. Wu, C.L., Zhang, M.Q., Rong, M.Z. and Friedrich, K. Tensile Performance Improvement of Low Nanoparticles Filled-polypropylene Composites. Composite Science and Technology. 2002. 62: 1327–1340.
    73. Zhang, Z. and Yang, J.L. Creep Resistant Polymeric Nanocomposites. Polymer. 2004. 45: 3481–3485.
    74. Koo, J.H., Pilato, L.A. and Wissler, G.E. Polymer Nanostructured Materials for Propulsion System. In: Conference Proceedings for AIAA-2005-3606, 41st AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, Tucson, AZ, 10–13 July . 2005.
    75. Koo, J.H., Stretz, J., Weispfenning, Z., Luo, P. and Wootan, W. Nanocomposite Rocket Ablative Materials. Subscale Ablation Test, In: SAMPE Symposium, Long Beach, California, May, 2004.
    76. Koo, J.H., Pilato, L.A., Wissler, G., Lee, A., Abusafieh, A. and Weispfenning, J. Epoxy Nanocomposites for Carbon Reinforced Polymer Matrix Composites. SAMPE, CA. 2005.
    77. Ou, Y., Yang, F. and Yu, Z. A New Conception on the Toughness of Nylon 6/Silica Nanocomposites Prepared via In Situ Polymerization. J. Polym. Sci., Part B: Polym. Phys. 1998. 36: 789–795.
    78. Jiang, L., Lam, Y.C., Tam, K.C., Chua, T.H., Sim, G.W. and Ang, L.S. Strengthening Acrylonitrile-Butadiene-Styrene (ABS) with Nano-sized and Micron-sized Calcium Carbonate. Polymer. 2005. 46: 243–252.
    79. Lopez, L. Song, B.M.K. and Hahn, H.T. The Effect of Particles Size in Alumina Nanocomposites. ICCM-2203 CA.
    80. Chisholm, N., Mahfuz, H., Rangari, V.K. and Jeelani, S. Fabrication and Mechanical Characterization of Carbon/SiC-epoxy Nanocomposites. Composite Structures. 2005. 67(1): 115–124.
    81. Avalle, M., Belingardi, G. and Montanini, R. Characterization of Polymeric Structural Foams under Compressive Impact Loading by means of Energy-absorption Diagram. Int. J. Impact Engineering. 2001. 25(5): 455–472.
    82. Mahfuz, H., Islam, M.S., Rangari, V.K. and Jeelani, S. Fabrication, Synthesis and Mechanical Characterization of Nanoparticles Infused Polyurethane Foams. Composites. 2004. Part A, 35: 453–460.
    83. Uddin, M., Mahfuz, H., Saha, M., Ragari, V.K. and Jeelani, S. Strain Rate Effects on Nanophased Polyurethane Foams. In: International SAMPE Symposium and Exhibition (Proceedings), v 49, SAMPE Conference Proceedings. 2004: 2291–2304.
    84. Ten Wolde PR, Frenkel D. Science. 1997. 277:1975–1978.
    85. Imai M, Mori K, Mizukami T, Kaji K, Kanaya T. Polymer. 1992. 33:4451–4456.
    86. Imai M, Mori K, Mizukami T, Kaji K, Kanaya T. Polymer. 1992. 33:4457–4462.
    87. Imai M, Kaji K, Kanaya T. Phys Rev Lett. 1993. 71:4162–4165.
    88. Imai M, Kaji K, Kanaya T. Macromolecules. 1994. 27:7103–7108.
    89. Imai M, Kaji K, Kanaya T, Sakai Y. Physica B. 1995. 213/214:718–720.
    90. Imai M, Kaji K, Kanaya T, Sakai Y. Phys Rev B. 1995. 52:12696–12704.
    91. Matsuba G, Kaji K, Nishida K, Kanaya T, Imai M. Macromolecules. 1999. 32:8932–8937.
    92. Matsuba G, Kaji K, Nishida K, Kanaya T, Imai M. Polymer J. 1999. 31:722–727.
    93. Matsuba G, Kanaya T, Saito M, Kaji K, Nishida K. Phys Rev E. 2000. 62:R1497–R1500.
    94. Matsuba G, Kaji K, Kanaya T, Nishida K. Phys Rev E. 2002. 65:061801–1807.
    95. Nishida K, Kaji K, Kanaya T, Matsuba G, Konishi T. J Polym Sci B Polym Phys. 2004. 42:1817–1822.
    96. Nishida K, Konishi T, Kanaya T, Kaji K. Polymer. 2004. 45:1417–1421.
    97. Kaji K, Imai M. In: Yonezawa F, Tsuji K, Kaji K, Doi M, Fujiwara T (eds). The Physics of Complex Liquids. World Scientific, Singapore. 1998: 258–273.
    98. Kaji K. In: Fakirov S (ed). Handbook of Thermoplastic Polyesters. Wiley, Weinheim. 2002. 1: 225–251.
    99. Schultz, J. M. Polymer Crystallization: The Development of Crystalline Order in Thermoplastic Polymers; Oxford University Press: New York. 2001.
    100. Gibbs, J.W. in On the equilibrium of heterogeneous substances. Trans. Conn. Acad. III, 343. Also, “The scientific works of J. Willard Gibbs,” Longmans, Green, New York. 1906. 1: 219.
    101. Wunderlich, B., Macromolecular Physics. Crystal Nucleation, Growth, Annealing. Academic Press, New York. 1976. Vol. 2.
    102. Blundell, D.J., Keller, A. and Kovacs, A.J. J. Polm. Sci. Part B. 1966. 4: 481.
    103. Hoffman, J. D. Polymer. 1982. 23: 656-670.
    104. Hoffman, J. D. Polymer. 1983. 24: 3-26.
    105. J. D. Hoffman, G. T. Davis and J. I. Lauritzen Jr. In: Treatise on Solid State Chemistry. N. B. Hannay, Ed.; Plenum, NY. 1976. 3: 497.
    106. S. Vyazovkin and N. Sbirrazzuoli, Macromol. Rapid Commun. 2004. 25: 733.
    107. S. Vyazovkin, J. Comput. Chem. 1997. 18: 393.
    108. S. Vyazovkin, J. Comput. Chem. 2001. 22: 178.

    1. Fornes, T. D.; Paul, D. R. Polymer. 2003. 44: 3945-3961.
    2. Strawhecker, K. E.; Manias, E. Chem. Mater. 2003. 15: 844-849.
    3. A. R. Bhattacharya, T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge and R. E. Smalley. Polymer. 2003. 44: 2373.
    4. L. Valentini, J. Biagiotti, J. M. Kenny and S. Santucci. Comp. Sci. Technol. 2003. 63: 1149.
    5. M. A. Lopez Manchado, L. Valentini, J. Biagiotti and J. M. Kenny. Carbon. 2005. 43: 1499.
    6. Yudin et al. Macromol. Rapid. Commun. 2005. 26: 885.
    7. Kennedy, M.; Turturro, G.; Brown, G. R.; Stpierre, L. E. Nature (London). 1980. 287: 316-317.
    8. Kennedy, M. A.; Brown, G. R.; Stpierre, L. E. Polym. Compos. 1984. 5: 307-311.
    9. Kennedy, M. A.; Brown, G. R.; Stpierre, L. E. Polym. Eng. Sci. 1990. 30: 769-775.
    10. Kennedy, M. A.; Turturro, G.; Brown, G. R.; Stpierre, L. E. J. Polym. Sci., Part B: Polym. Phys. 1983. 21: 1403-1413.
    11. Burke, M.; Young, R. J.; Stanford, J. L. Polym. Bull. (Berlin). 1993. 30: 361-368.
    12. Raimo, M.; Martuscelli, E. J. Appl. Polym. Sci. 2003. 90: 3409-3416.
    13. Wang, K.; Wu, J. S.; Zeng, H. M. Eur. Polym. J. 2003. 39: 1647-1652.
    14. F. Yang, Y. Ou and Z. Yu. J. Appl. Polym. Sci., 1998. 69: 355.
    15. Hoffman, J.D. and Lauritzen, J.I., Jr. J. Research NBS. 1961. 65A: 297.
    16. Hoffman, J.D. SPE Transactions, Oct. 1964. 315.
    17. Hoffman, J.D. and Miller, R.L. Polymer. 1997. 38: 3151.
    18. Hoffman, J.D. and Miller, R.L. Macromolecules. 1988. 21: 3038.
    19. Hoffman, J.D. and Miller, R.L., Marand, H. and Roitman, D.B.. Macromolecules. 1992. 25: 2221.
    20. Hoffman, J.D. Polymer. 1991. 32: 2828.
    21. Maiti, P.; Nam, P. H.; Okamoto, M.; Hasegawa, N.; Usuki, A. Macromolecules. 2002. 35: 2042-2049.
    22. Somwangthanaroj, A.; Lee, E. C.; Solomon, M. J. Macromolecules. 2003. 36: 2333-2342.
    23. Mansfield, M.L. J. Phys. Chem. 1990. 94: 6144.
    24. Hoffman, J.D. and Miller, R.L. Polymer. 1997. 38: 3151.
    25. Lovinger, A.J. and Davis, D.D. J. Appl. Phys. 1985. 58: 2843.
    26. Hoffman, J.D. and Lauritzen, J.I., Jr. J. Appl. Phys. 1973. 44: 4340.
    27. Hoffman, J.D., Frolen, L.J., Ross, G.S. and Lauritzen, J.I., Jr. J. Research NBS Sect. A. 1975. 79: 671.
    28. Hoffman, J.D., Guttman, C.M. and Di Marzio, E.A. Organization of the Macromolecules in the condensed Phase, Faraday Discussions of the Royal Society of Chemistry. 1979. 68: 177.
    29. Hoffman, J.D., Polymer. 1983. 24: 3.
    30. Snyder, C.R. and Marand, H. Macromolecules. 1997. 30: 2759.
    31. Marand, H and Hoffman, J.D. Macromolecules. 1990. 23: 3682.
    32. Allen, R.C. and Mandelkern, L. Polym. Bull. 1987. 17: 473.
    33. Fatou, J.G., Marco, C. and Mandelkern, L. Polymer. 1990. 31: 890.
    34. Heberer, D.P., Cheng, S.Z.D., Barley, J.S., Lien, S.H.S., Bryant, R.G. and Harris, F.W. Maromolecules. 1991. 24: 1890.
    35. Xu, J., Srinivas, S. and Marand, H. Macromolecules. 1998. in print.
    36. Liang Lee, Chien. et al. Nanotechnology. 2008. 19: 1-4.
    37. Schultz, J.M. Polymer. 1991. 32: 3268-3283.
    38. S.H. Kim and S.H. Ahn. Polymer. 2003. 44: 5625–5634.
    39. Kovacs, A. J. et al. Prog. Colloid Polym. Sci. 1975. 58: 44.
    40. Cheng, S. Z. D.; Chen, J.; Janimak, J. J. Polymer. 1990. 31: 1018.
    41. Talibuddin, S.; Wu, L.; Runt, J.; Lin J. S. Macromolecules. 1996. 29: 7527.
    42. Wunderlich, B. Macromolecular Physics; Academic Press: New York. 1980. Vol. 3.
    43. Alfonso, G. C.; Russell, T. P. Macromolecules. 1986. 19: 1143.
    44. M. Mucha, Z. Krolikowski. J. Therm. Anal. Cal. 2003. 74: 549.
    45. Hoffman, J.D. Macromolecules. 1986. 19: 1124.
    46. T. Radhakrishnan et al. Colloid Polym Sci. 2008. 286: 683–689.
    47. J. J. Point, P. Damman and J. J. Janimak. Polymer. 1993. 34: 3771.
    48. G. C. Alfonso and T. P. Russell. Macromolecules. 1986. 1143.
    49. L. Wu, M. Lisowski, S. Talibuddin and J. Runt. Macromolecules. 1999. 32: 1576.
    50. J. M. Marentette and G. R. Brown. Polymer. 1998. 39: 1405.
    51. Xie J. et al. Solid State Ionics. 2004. 175: 755-758.
    52. Alan John W. et al. Polymer Journal. 2002. 34: 876-881.
    53. T. Radhakrishnan et al. Colloid Polym Sci. 2008. 286: 683–689.
    54. T.T. Wang and T. Nishi. Macromolecules. 1977. 10: 421.
    55. Chen X. Journal of Polymer Science: Part B: Polymer Physics. 2006. 44: 2112–2121.
    56. Kim J.Y. et al. Macromolecular Research. 2006. 14: 146-154.
    57. Dong Wook Chae. Kwang Bo Shim. Byoung Chul Kim. Journal of Applied Polymer Science. 2008. 109: 2942–2947.
    58. Dong Wook Chae. Kwang Bo Shim. Byoung Chul Kim. Journal of Applied Polymer Science. 2004. 42: 790-799.
    59. Borodin O, Smith GD, Bandyopadhyaya R, Byutner O. Macromolecules. 2003. 36: 7873.
    60. Sayed Mehdi G. et al. Bull. Korean Chem. Soc. 2005. 26: 4.

    5.6. References
    1. Monasse B, Haudin JM. Coll Polym Sci. 1986. 264:117–122.
    2. X. H. Liu and Q. J. Wu. Eur. Polym. J. 2002. 38: 1383.
    3. K. E. Strawhecker and E. Manias. Chem. Mater. 2003. 15: 844.
    4. W. Xu, M. Ge and P. He. J. Appl. Polym. Sci. 2001. 82: 2281.
    5. S. D. Wanjale. Personal communication. Natl. Chem. Lab. India. 2005.
    6. M. Lai et al. Polym. Int. 2004. 53: 1479.
    7. G. P. Karayannidis et al. Therm. Acta. 2005. 427: 117.
    8. D. W. Chae, S. G. Oh and B. C. Kim. J. Polym. Sci. B: Polym. Phys. 2004. 42B: 790.
    9. S. H. Kim, S. H. Ahn and T. Hirai. Polymer. 2003. 44: 5625.
    10. Avrami M. J Chem Phys. 1939. 7: 1103.
    11. Avrami M. J Chem Phys. 1940. 8: 212.
    12. Avrami M. J Chem Phys. 1941. 9: 177.
    13. Wunderlich B. Macromolecular physics, vol. 2: crystal nucleation, growth, annealing. New York: Academic Press. 1976.
    14. Ziabicki A. Appl Polym Symp. 1967. 6: 1.
    15. Jeziorny, A. Polymer. 1978. 19: 1142.
    16. Patel RM, Bheda JH, Spruiell JE. J Appl Polym Sci. 1991. 42: 1671.
    17. J. Liu and Z. Mo. Acta Polym. Sin. 1993. 1: 1.
    18. Chan TW, Isayev AI. Polym Engng Sci. 1994. 34: 461–471.
    19. A. Dobreva. I. Gutzow. J. Non-Cryst. Solids. 1993. 162: 1.
    20. A. Dobreva. I. Gutzow. J. Non-Cryst. Solids. 1993. 162: 13.
    21. S.H. Kim. S.H. Ahn. T. Hirai. Polymer. 2003. 44: 5625.
    22. M. Alonso. J.I. Velasco. J.A. De Saja. European Polymer Journal. 1997. 33: 255.
    23. Di Lorenzo, M.L.; Silvestre, C. Prog. Polym. Sci. 1999. 24: 917.
    24. W. Xu, M. Ge, and P. He. J. Polym. Sci, Part B, Polym. Phys. 2002. 40 (5): 408.
    25. J. Ma, S. Zhang, Z. Qi, G. Li, and Y. Hu. J. Appl. Polym. Sci. 2002. 83 (9): 1978.
    26. J.Y. Kim, H.S. Park, and S.H. Kim. Polymer. 2006. 47(4): 1379.
    27. D.S. Achilias, G.Z. Papageorgiou, and G.P. Karayannidis. J. Polym. Sci. Part. B. Polym. Phys. 2004. 42(20): 3775.
    28. Chen, X. J. Appl. Polym. Sci. 2008. 109: 3753-3762.
    29. T. Radhakrishnan et al. Colloid Polym Sci. 2008. 286: 683–689.
    30. Renate M.R. Wellen and Marcelo S.R. Journal of Appl. Polym. Sci. 2010. 116: 1077-1087.
    31. Keith. H.D. Padden. F.J. Jr. J. Applied Phys. 1964. 35: 1270.
    32. Di Lorenzo, M. L.; Silvestre. C. Prog Polym Sci. 1999. 24: 917.
    33. Avrami, M. J. Chem Phys. 1939. 7: 1130.
    34. Jeziorny, A. Polymer. 1978. 19: 1142.
    35. J. Jin, M. Song, F. Pan. Thermochimica Acta. 2007. 456: 25–31.
    36. J.M. Schultz. Polymer Crystallization: The Development of Crystalline Order in Thermoplastic Polymers, American Chemical Society. Washington. 2001.
    37. Hiemenz, P.C. Polymer Chemistry: The Basic Concepts Marcel Dekker. New York.
    1984. 219.
    38. J. Liu and Z. Mo. Acta Polym. Sin. 1993. 1: 1.
    39. Chen X. et al. Journal of Applied Polym. Sci. 2008. 109: 3753-3762.
    40. Chen X. et al. Polymer Eng. Sci. 2009. 49: 2342-2349.
    41. H.E. Kissinger. J. Res. Natl. Bur. Stand. 1956. 57(4): 217.
    42. Hoffman, J.D. Macromolecules. 1986. 19: 1124.
    43. Ozawa T. Polymer. 1971. 12: 150-157.
    44. Meng Wu et al. Materials Chemistry and Physics. 2008. 109: 547–555.
    45. Kang Zheng et al. Journal of Macromolecular Science. 2008. 47: 217–229.
    46. Pitt S. et al. Journal of Applied Polymer Science. 2004. 92: 201–212.
    47. Pukanszky. B. Fekete. E. Polym Compos. 1998. 6: 313.
    48. T. Radhakrishnan et al. Colloid Polym Sci. 2008. 286: 683–689.
    49. Deki S, Yanagimoto H, Hiraoka S, Akamatsu K, Gotoh K. Chem Mater. 2003. 15: 4916.
    50. Huang X. et al. Polymer Engineering and Science. 2007. 47: 1052-1061.
    51. A. J. Kovacs and A. Gonthier. Kolloid Z. Z. Polym. 1972. 250: 530.
    52. A. J. Kovacs, A. Gonthier, and C. Straupe. J. Polym .Science. Polym. Symp. 1975. 50: 283.
    53. A. J. Kovacs, C. Straupe, and A. Gonthier. J. Polym. Science. Polym. Symp. 1977. 59: 31.
    54. A. J. Kovacs and C. Straupe. J. Cryst. Growth. 1980. 48: 210.
    55. A. J. Kovacs and C. Straupe. Faraday Disc. Chem. Soc. 1979. 68: 225.
    56. S. Z. D. Cheng et al. Journal of Polymer Science: Part B: Polymer Physics. 1991. 29: 287-297.

    下載圖示 校內:2012-07-16公開
    校外:2012-07-16公開
    QR CODE