簡易檢索 / 詳目顯示

研究生: 黃稜淯
Huang, Leng-Yu
論文名稱: 以聚二氧乙基噻吩薄膜(PEDOT)作為有機太陽能電池電極之特性研究
The study of PEDOT thin film as electrode of organic solar cells
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 82
中文關鍵詞: 有機高分子太陽能電池透明電極有機薄膜電極
外文關鍵詞: Organic polymer solar cells, transparent electrode, Organic thin film electrode
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討處理後之聚二氧乙基噻吩(PEDOT)薄膜導電度影響,及其作為有機太陽能電池電極的可行性。利用兩個方法對薄膜進行處理,其一為將PEDOT薄膜浸泡於甲醇,透過簡單的處理方式提升薄膜導電度、穿透度以及電荷傳輸能力,其二為利用甲醇蒸氣對PEDOT薄膜進行處理,透過改善製程以更好地應用在有機太陽能元件製程上,並藉由元件電性分析確認此薄膜電極可取代傳統銦錫氧化物(ITO)電極。利用四點探針、霍爾量測系統、吸收光譜儀、拉曼光譜儀、原子力顯微鏡以及化學分析電子光譜儀對PEDOT薄膜進行量測及分析,並進一步了解PEDOT薄膜電極對太陽能元件的電性影響。
    本研究亦將PEDOT薄膜應用於有機太陽能元件中,並選用兩種不同主動層材料系統:(1) 聚(3-己烷噻吩)(Poly(3-hexylthiophene),P3HT)摻雜碳六十衍生物([6,6]-phenyl-C61 butyric acid methyl ester,PCBM),溶劑為CB、(2) P3HT摻雜茚-碳六十的雙加成物(Indene-C60 bisadduct,ICBA),溶劑為DCB。由薄膜特性分析發現,處理過後的薄膜片電阻由未處理之薄膜為25000 Ω/Sq大幅下降為78.9 Ω/Sq,且處理過後的薄膜仍保有85%的透光度,元件電性分析可知,以甲醇溶液浸泡與甲醇蒸氣進行處理的PEDOT薄膜皆可作為電極使太陽能電池正常運作,且太陽能電池的光電轉換效率非常接近使用傳統ITO電極的電池元件,其中除了元件的短路電流密度(Jsc)未能有效提昇,但開路電壓(Voc)幾乎相同,填充因子FF 則有輕微增加。

    In this study, we investigated the treatment methods for improving the conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films as the anode of organic solar cells (OSCs) employing polymer–fullerene bulk heterojunction. Two methods were proposed for the treatment of the PEDOT:PSS films; one is by immersing the film in a methanol solution, and the other is by treating the film with methanol vapor. The prepared PEDOT:PSS films were characterized by four-probe technique, absorption and Raman spectroscopy, conductive atomic microscopy, and X-ray photoelectron spectroscopy. The photovoltaic (PV) performance of OSCs using treated PEDOT:PSS anode were compared with that of OSCs using conventional indium tin oxide (ITO) anode. The sheet resistance of the methanol-treated PEDOT:PSS films is only 78.9 Ω/Sq, which decreases by more than 99% compared with that of the initial films (25000 Ω/Sq). The methanol-treated PEDOT:PSS films show high transparency, low sheet resistance, and excellent mechanical properties, which are the desired characteristics of a transparent electrode. Finally, we realized ITO-free polymer–fullerene-based OSCs using PEDOT:PSS as anode, and the PV performance is nearly equal to that of conventional OSCs with ITO anode.

    中文摘要 I ABSTRACT II 致謝 X 目錄 XI 表目錄 XV 圖目錄 XVI 第一章、緒論 1 1-1前言 1 1-2有機太陽能電池發展簡介 4 1-2-1單層結構 (Single layer) 4 1-2-2 P-N雙層異質接面結構 (Bilayer) 4 1-2-3 P-N單層異質接面結構 (Bulk heterojunction, BHJ) 5 1-2-4 串接結構 (Tandem) 6 1-3有機太陽能電池工作原理 8 1-3-1光子吸收 (Light absorption) 8 1-3-2 激子產生 (Exciton generation) 8 1-3-3 激子擴散 (Exciton diffusion) 9 1-3-4 電荷分離 (Charge dissociation) 9 1-3-5 電荷傳輸 (Charge transfer) 9 1-3-6 電荷收集 (Charge collection) 10 1-4太陽能電池之等效電路 11 1-4-1 理想等效電路模型 11 1-4-2 非理想等效電路模型 12 1-5有機太陽能電池參數介紹 13 1-5-1 開路電壓 (Open-circuit voltage) 13 1-5-2 短路電流密度 (Short-circuit current density) 13 1-5-3 填充因子 (Fill factor) 14 1-5-4 轉換效率 (Power conversion efficiency) 14 1-6太陽光頻譜 15 1-7研究動機 16 第二章 實驗方法與製程 23 2-1實驗材料 23 2-2元件製成流程 25 2-2-1 主動層溶液配置 25 2-2-2 透明電極製作 25 2-2-3 元件製程 26 2-3元件量測及分析 29 2-3-1太陽光模擬光源 29 2-3-2元件電流-電壓特性曲線量測 29 2-4薄膜與光學特性分析儀器 30 2-4-1紫外光-可見光分光光譜儀 (UV-vis Spectrophotometer) 30 2-4-2微拉曼光譜儀(Micro Raman Spectroscopy) 30 2-4-3原子力顯微鏡(Atomic Force Microscopy,AFM) 30 2-4-4四點探針 31 2-4-5化學分析電子光譜儀 (Electron Spectroscopy for Chemical Analysis,ESCA) 31 2-4-6霍爾量測 31 第三章 透明電極之特性研究 36 3-1 前言 36 3-2 透明電極對太陽能電池之光電特性影響 39 3-2-1太陽能電池光電特性 39 3-2-2紫外-可見光吸收光譜分析 41 3-2-3四點探針 42 3-2-4霍爾量測 43 3-2-5化學分析電子光譜分析 44 3-2-6拉曼光譜分析 46 3-2-7原子力顯微鏡影像分析 48 第四章 總結與未來展望 76 4-1 結語 76 4-2 未來展望 78 參考文獻 79

    [1] National Renewable Energy Laboratory (USA), 2016.

    [2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (Version 34), Prog. Photovolt: Res. Appl. 17, 323, 2009.

    [3] S. R. Forrest, The path to ubiquitous and low-cost organic
    electronic appliances on plastic, Nature, 428, 911-917, 2004.

    [4] J. Peet, M. L. Senatore, A. J. Heeger, G. C. Bazan, The role of processing in the fabrication and optimization of plastic solar cells, Adv. Mater. 21, 1521–1527, 2009.

    [5] C. W. Tang, Two-layers organic photovoltaic cell, Appl. Phys. Lett. 48, 183-185, 1986.

    [6] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270, 1789-1791, 1995.

    [7] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudi, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science, 258, 1474-1476, 1992.

    [8] J. C. Hummelen, B. W. Knight, F. LePeq, and F. Wudl, Preparation and characterization of fulleroid and methanofullerene derivatives, J. Org. Chem., 60, 535-536, 1995.

    [9] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices, Syn. Met., 59, 333-352, 1993.

    [10] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Effects of postproduction treatment on plastic solar cells, Adv. Funct. Mater. , 13, 85-88, 2003.

    [11] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater., 15, 1617–1622, 2005.

    [12] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nat. Mater., 6, 497–500, 2007.

    [13] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, 135-138, 2010.

    [14] G. Dennler, H. J. Prall, R. Koeppe, M. Egginger, R. Autengruber, N. S. Sariciftci, Enhanced spectral coverage in tandem organic solar cells, Appl. Phys. Lett., 89, 073502 ,2006.

    [15] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante1, A. J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing, Science, 13, 222-225, 2007.

    [16] D. I. K. Petritsch, Organic solar cell architectures, PhD Thesis, p.6, p.3, p.22, p.18, p.19, 2000.
    [17] S. R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature, 428, 912, 2004.

    [18] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Design rules for donors in bulk-eterojunction solar cells—towards 10 % energy-conversion efficiency, Adv. Mater., 18, 790, 2006.

    [19] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys., 94, 6849-6854, 2003.

    [20] http://www.greenrhinoenergy.com/solar/radiation/spectra.php

    [21] D. R. Myers, K. Emery, Revising and validating spectral irradiance reference standards for photovoltaic performance, NREL/CP-560, p.1-8, 2002.

    [22] V. Shrotriya, E. H. E. Wu, G. Li, Y. Yao, Y. Yang, Efficient light harvesting in multiple-device stacked structure for polymer solar cells, Appl. Phys. Lett., 88, 2006.

    [23] G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew, F. Zhu, Optical enhancement in semitransparent polymer photovoltaic cells, Appl. Phys. Lett., 90 , 2007.

    [24] T. Wang, Y. Qi, J. Xu, X. Hu, P. Chen, Effects of poly(ethylene glycol) on electrical conductivity of poly(3,4-ethylenedioxythiophene)–poly (styrenesulfonic acid) film, Appl. Surf. Sci., 250, 188–194, 2005.

    [25] D. Alemu, H.-Y. Wei, K. C. Hoand, C. W. Chu, Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, Energy Environ. Sci., 5, 9662–9671, 2012.

    [26] L.Tan, H. Zhou, T. Ji, L. Huang, Y. Chen, High conductive PEDOT via post-treatment by halobenzoic for high-efficiency ITO-free and transporting layer-free organic solar cells, Org. Electron., 33, 316-323, 2016.

    [27] T. Ohgaki, N. Ohashi, S. Sugimura, H. Ryoken, I. Sakaguchi, Y. Adachi, H. Haneda, J. Mater, Positive hall coefficients obtained from contact misplacement on evident n-type ZnO films and crystals. Res., 23, 2293–2295, 2008.

    [28] D. Alemu, H. Y. Wei, K. C. Hoand, C. W. Chu, Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, Energy Environ. Sci., 5, 9667, 2012.

    [29] L. Tan, H. Zhou, T. Ji, L. Huang, Y. Chen, High conductive PEDOT via post-treatment by halobenzoic for high efficiency ITO-free and transporting layer-free organic solar cells, Org. Electron., 33, 316-323, 2016.

    [30] F. C. Tang, J. Chang, F. C. Wu, H. L. Cheng, S. L. C. Hsu, J. S. Chen, W. Y. Chou, Alignment of poly(3,4-ethylenedioxythiophene) polymer chains in photovoltaic cells by ultraviolet irradiation, J. Mater. Chem., 22, 22409–22417, 2012.

    [31] J. Ouyang, C. W. Chu, F. C. Chen, Q. Xu, Y. Yang, High-conductivity poly(3,4-Ethylenedioxythiophene:poly(styrene sulfonate) film and its application in polymer optoelectronic, Adv. Funct. Mater., 15, 203-208, 2005.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE