| 研究生: |
黃稜淯 Huang, Leng-Yu |
|---|---|
| 論文名稱: |
以聚二氧乙基噻吩薄膜(PEDOT)作為有機太陽能電池電極之特性研究 The study of PEDOT thin film as electrode of organic solar cells |
| 指導教授: |
鄭弘隆
Cheng, Horng-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 有機高分子太陽能電池 、透明電極 、有機薄膜電極 |
| 外文關鍵詞: | Organic polymer solar cells, transparent electrode, Organic thin film electrode |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討處理後之聚二氧乙基噻吩(PEDOT)薄膜導電度影響,及其作為有機太陽能電池電極的可行性。利用兩個方法對薄膜進行處理,其一為將PEDOT薄膜浸泡於甲醇,透過簡單的處理方式提升薄膜導電度、穿透度以及電荷傳輸能力,其二為利用甲醇蒸氣對PEDOT薄膜進行處理,透過改善製程以更好地應用在有機太陽能元件製程上,並藉由元件電性分析確認此薄膜電極可取代傳統銦錫氧化物(ITO)電極。利用四點探針、霍爾量測系統、吸收光譜儀、拉曼光譜儀、原子力顯微鏡以及化學分析電子光譜儀對PEDOT薄膜進行量測及分析,並進一步了解PEDOT薄膜電極對太陽能元件的電性影響。
本研究亦將PEDOT薄膜應用於有機太陽能元件中,並選用兩種不同主動層材料系統:(1) 聚(3-己烷噻吩)(Poly(3-hexylthiophene),P3HT)摻雜碳六十衍生物([6,6]-phenyl-C61 butyric acid methyl ester,PCBM),溶劑為CB、(2) P3HT摻雜茚-碳六十的雙加成物(Indene-C60 bisadduct,ICBA),溶劑為DCB。由薄膜特性分析發現,處理過後的薄膜片電阻由未處理之薄膜為25000 Ω/Sq大幅下降為78.9 Ω/Sq,且處理過後的薄膜仍保有85%的透光度,元件電性分析可知,以甲醇溶液浸泡與甲醇蒸氣進行處理的PEDOT薄膜皆可作為電極使太陽能電池正常運作,且太陽能電池的光電轉換效率非常接近使用傳統ITO電極的電池元件,其中除了元件的短路電流密度(Jsc)未能有效提昇,但開路電壓(Voc)幾乎相同,填充因子FF 則有輕微增加。
In this study, we investigated the treatment methods for improving the conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films as the anode of organic solar cells (OSCs) employing polymer–fullerene bulk heterojunction. Two methods were proposed for the treatment of the PEDOT:PSS films; one is by immersing the film in a methanol solution, and the other is by treating the film with methanol vapor. The prepared PEDOT:PSS films were characterized by four-probe technique, absorption and Raman spectroscopy, conductive atomic microscopy, and X-ray photoelectron spectroscopy. The photovoltaic (PV) performance of OSCs using treated PEDOT:PSS anode were compared with that of OSCs using conventional indium tin oxide (ITO) anode. The sheet resistance of the methanol-treated PEDOT:PSS films is only 78.9 Ω/Sq, which decreases by more than 99% compared with that of the initial films (25000 Ω/Sq). The methanol-treated PEDOT:PSS films show high transparency, low sheet resistance, and excellent mechanical properties, which are the desired characteristics of a transparent electrode. Finally, we realized ITO-free polymer–fullerene-based OSCs using PEDOT:PSS as anode, and the PV performance is nearly equal to that of conventional OSCs with ITO anode.
[1] National Renewable Energy Laboratory (USA), 2016.
[2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (Version 34), Prog. Photovolt: Res. Appl. 17, 323, 2009.
[3] S. R. Forrest, The path to ubiquitous and low-cost organic
electronic appliances on plastic, Nature, 428, 911-917, 2004.
[4] J. Peet, M. L. Senatore, A. J. Heeger, G. C. Bazan, The role of processing in the fabrication and optimization of plastic solar cells, Adv. Mater. 21, 1521–1527, 2009.
[5] C. W. Tang, Two-layers organic photovoltaic cell, Appl. Phys. Lett. 48, 183-185, 1986.
[6] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270, 1789-1791, 1995.
[7] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudi, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science, 258, 1474-1476, 1992.
[8] J. C. Hummelen, B. W. Knight, F. LePeq, and F. Wudl, Preparation and characterization of fulleroid and methanofullerene derivatives, J. Org. Chem., 60, 535-536, 1995.
[9] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices, Syn. Met., 59, 333-352, 1993.
[10] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Effects of postproduction treatment on plastic solar cells, Adv. Funct. Mater. , 13, 85-88, 2003.
[11] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater., 15, 1617–1622, 2005.
[12] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nat. Mater., 6, 497–500, 2007.
[13] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, 135-138, 2010.
[14] G. Dennler, H. J. Prall, R. Koeppe, M. Egginger, R. Autengruber, N. S. Sariciftci, Enhanced spectral coverage in tandem organic solar cells, Appl. Phys. Lett., 89, 073502 ,2006.
[15] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante1, A. J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing, Science, 13, 222-225, 2007.
[16] D. I. K. Petritsch, Organic solar cell architectures, PhD Thesis, p.6, p.3, p.22, p.18, p.19, 2000.
[17] S. R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature, 428, 912, 2004.
[18] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Design rules for donors in bulk-eterojunction solar cells—towards 10 % energy-conversion efficiency, Adv. Mater., 18, 790, 2006.
[19] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys., 94, 6849-6854, 2003.
[20] http://www.greenrhinoenergy.com/solar/radiation/spectra.php
[21] D. R. Myers, K. Emery, Revising and validating spectral irradiance reference standards for photovoltaic performance, NREL/CP-560, p.1-8, 2002.
[22] V. Shrotriya, E. H. E. Wu, G. Li, Y. Yao, Y. Yang, Efficient light harvesting in multiple-device stacked structure for polymer solar cells, Appl. Phys. Lett., 88, 2006.
[23] G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew, F. Zhu, Optical enhancement in semitransparent polymer photovoltaic cells, Appl. Phys. Lett., 90 , 2007.
[24] T. Wang, Y. Qi, J. Xu, X. Hu, P. Chen, Effects of poly(ethylene glycol) on electrical conductivity of poly(3,4-ethylenedioxythiophene)–poly (styrenesulfonic acid) film, Appl. Surf. Sci., 250, 188–194, 2005.
[25] D. Alemu, H.-Y. Wei, K. C. Hoand, C. W. Chu, Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, Energy Environ. Sci., 5, 9662–9671, 2012.
[26] L.Tan, H. Zhou, T. Ji, L. Huang, Y. Chen, High conductive PEDOT via post-treatment by halobenzoic for high-efficiency ITO-free and transporting layer-free organic solar cells, Org. Electron., 33, 316-323, 2016.
[27] T. Ohgaki, N. Ohashi, S. Sugimura, H. Ryoken, I. Sakaguchi, Y. Adachi, H. Haneda, J. Mater, Positive hall coefficients obtained from contact misplacement on evident n-type ZnO films and crystals. Res., 23, 2293–2295, 2008.
[28] D. Alemu, H. Y. Wei, K. C. Hoand, C. W. Chu, Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, Energy Environ. Sci., 5, 9667, 2012.
[29] L. Tan, H. Zhou, T. Ji, L. Huang, Y. Chen, High conductive PEDOT via post-treatment by halobenzoic for high efficiency ITO-free and transporting layer-free organic solar cells, Org. Electron., 33, 316-323, 2016.
[30] F. C. Tang, J. Chang, F. C. Wu, H. L. Cheng, S. L. C. Hsu, J. S. Chen, W. Y. Chou, Alignment of poly(3,4-ethylenedioxythiophene) polymer chains in photovoltaic cells by ultraviolet irradiation, J. Mater. Chem., 22, 22409–22417, 2012.
[31] J. Ouyang, C. W. Chu, F. C. Chen, Q. Xu, Y. Yang, High-conductivity poly(3,4-Ethylenedioxythiophene:poly(styrene sulfonate) film and its application in polymer optoelectronic, Adv. Funct. Mater., 15, 203-208, 2005.
校內:2022-12-31公開