| 研究生: |
吳柏裕 Wu, Po-yu |
|---|---|
| 論文名稱: |
注氣井套管水泥界面受經常性熱應力變化之疲乏破壞研究 Study of Fatigue Failure in Casing Cement Bonding Interface of Gas Injection Well Due to Regularly Fluctuating Thermal Stress |
| 指導教授: |
林再興
Lin, Zsay-shing 王建力 Wang, Chein-lee |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 有限元素分析 、套管水泥 、界面疲乏破壞 、注氣井 |
| 外文關鍵詞: | Finite Element Method (FEM), Gas injection well, Casing cement, Interface fatigue failure |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究模擬施作接近實際井底套管水泥熱應力變化之實驗工作,先以ANSYS有限元素軟體模擬,評估套管水泥因溫度變化致熱應力變化最可能發生破壞之結合界面。經實際進行不同溫度變化範圍之套管水泥結合界面疲乏破壞試驗,並建立溫度變化循環之套管水泥封固結合界面疲乏破壞之試驗系統。本研究以ANSYS有限元素軟體建立套管水泥受經常熱應力變化時最易發生徑向張應力破壞位置之數值分析評估技術。經評估在30℃~115℃、55℃~115℃、80℃~115℃溫度變化時,其最大熱應力變化範圍分別為22.50~ -59.94 MPa、10.91~ -1.90 MPa、5.23~ -1.90 MPa,其對應實驗明顯疲乏破壞之循環次數分別為第5~24次、第450~525次,而80℃~115℃變化時即使在3125次以上仍無明顯大幅降壓。兩種不同溫差套管水泥熱應力(S, Mpa)變化對循環破壞次數(N)之對數關係可表示為:log(S) = 1.3546-0.000605*log(N)。
The purpose of this work was to study the casing cement interface debonding due to frequent temperature changes. A finite element software ANSYS was used to design laboratory experiments and to check the experimental results. A system of testing casing cement bonding interface fatigue failure due to temperature fluctuations was established in the laboratory. A numerical analysis technique was developed to evaluate the most possible failure location of tensile stress when casing cement frequently encountering thermal stress changes. The results showed the ranges of the largest thermal stress variation are 22.50 ~ -59.94 MPa, 10.91 ~ -1.90, and 5.23 ~ -1.90 for the cases of temperature changes of 30℃ ~ 115℃, 55℃ ~ 115℃, and 80℃ ~115℃, respectively. For the cases of temperature changes of 30℃ ~ 115℃ and 55℃ ~ 115℃, the obvious fatigue failure cycle numbers were 5~24 and 450~525, respectively. No obvious fatigue failure was observed for 80℃ ~ 115℃ fluctuations when the cycle number reached 3125. The correlation between thermal stress variations on casing cement and the number of cycles was established in this study.
Abdel Wahab, M. M., Ashcroft, I. A., Crocombe, A. D., Smith, P. A., “ Numerical Prediction of Fatigue Crack Propogation Lifetime in Adhesively Bonded Structures,” Intl. J. of Fatigue, Vol.24, No. 6, P. 705-709, 2002.
Atkinson, C. and Eftaxiopoulos, D., “A Plane Model for the Stress Field around an Inclined, Cased and Cemented Wellbore,” Intl. J. Numerical and Analytical Methods in Geomechanics, Vol. 20, No. 8, P.549-564, 1996.
Carpenter, R.B., Brady, J. L., and Blount, C. G., “Effects of Temperature and Cement Admixes on Bond Strength,” Journal of Petroleum Technology, P.880-885&941, August, 1992.
Carslaw, H. S. , and Jaeger, J. C., Conduction of Heat in Solids, second edition , Oxford University Press, New York, 510 Pages, 1959.
Carter L.G., and Evans, G.W., “A Study of Cement-Pipe Bonding,” Journal of Petroleum Technology, P.157-160, Feb, 1964
CRANE : VALVES, FITTINGS, PIPE, FABRICATED, PIPING, CATALOG No.49 , CRANE CO., 836 S. MICHIGAN AVENUE, CHICAGO 5, ILLINOIS, Printed in U. S. A., 1949.
Curley, A.J., Hadavinia, H., Kinloch, A.J., and Taylor, A.C., ”Predicting the Service-life of dhesively-bonded Joints,” International Journal of Fracture, vol. 103, P.41-69, 2000.
Chung, Y. L., Chang, C. Y., and Chien, C. C., “Boundary Element Analysis of Interface Cracks Subjected to Non-Uniform Thermal Loading,” International Journal of Fracture, Vol.110, P.137-154, 2001.
Edorgan, F., “Stress Distribution in Bonded Dissimilar Materials with Crack,” Journal of Applied Mechanics, Vol. 32, P.403-410, 1959.
Green, Don W., and Willhite, G. Paul, Enhanced Oil Recovery, SPE Textbook Series, Vol. 6, 545 Pages, Richardson, TX. , 1988.
Ikeda, T. and Sun C. T., “Stress Intensity Factor Analysis for an Interface Crack between Dissimillar Isotropic Materials under Thermal Stress,” International Journal of Fracture, Vol. 111, P.229-249, 2001.
Kuguoglu, L., Binienda, W. K. and Hajjafar, A., “Analytical Modeling of Imperfected Bond between Coated Fibers and Matrix Material,” International Journal of Fracture, Vol.123, P.63-80, 2003.
Lake, Larry W., Enhanced Oil Recovery, Prentice-Hall, Inc., 550 Pages, New Jersey, 1989
Lyons, W., Standard Handbook of Petroleum & Natural Gas Engineering Volume 1, Gulf Publishing Company, 1431 Pages, 1996.
Manson, S.S., Thernal Stress and Low-Cycle Fatigue, McGraw-Hill, Inc., 404 Pages, 1966.
Miyazaki, N., Ikeda, T., Soda, T., and Munakata, T., “Stress Intensity Factor Analysis of Interface Crack Using Boundary Element Method (Application of Virtual Crack Extension Method),” JSME International Journal (Series A), Vol. 36-1, P. 36-42. 1993.
Moaveni, S., Finite Element Analysis-Theory and Applications with ANSYS, Prentice-Hall, New Jersey, 527Pages, 1999.
Nelson, E.B. (Editor), Well Cementing, Elsevier Science Publishing Co., N.Y., 1990.
Nikishin, V.S., Thernal Stresses in a Composite Cylinder, with an Arbitrary Temperature Distribution Along its Length, Plenain Press Data Division, Pages, New York, 1966.
Noda, N., Hetnarski , R. B., and Tanigawa, Y., Thermal Stresses, 2nd.ed., Published in Great Britain by Taylor & Francis, London., 2003.
Ozbek, T., and Erdogan, F., “Some elasticity problems in fiber- reinforced composites with imperfect bonds,” Int J Eng Science, Vol. 7, No. 9, P. 931-46, Sept, 1969.
Placido, Joao C.R., Ademar, P. Jr., Paulo, Lutz A.B.F., “Stress Analysis of Casing String Submitted to Cyclic Steam Injection,” Paper SPE 38978 presented at Latin American and Caribbean Petroleum Engineering Conference, 30 August-3 September, 1997.
Ravi, K., Bosma, M., and Gastebled, O., “Safe and Economic Gas Wells through Cement Design for Life of the Well,” paper SPE 75700 presented at SPE Gas Technology Symposium held in Calgary, Alberta, 30 April-2 May, 2002
Rudi Rubiandini R.S., “New Additive for Improving Shearbond Strength in High Temperature and Pressure Cement,” Paper SPE 62750 presented at IADC/SPE Asia Pacific Drilling Technology, Kuala Lumpur, alaysia, 11-13 September 2000.
Thiercelin, M. J., Dargaud, B., Baret, J. F., and Rodriquez, W. J., “Cement Design Based on Cement Mechanical Response,” SPE Drilling & Completion, P.266-273, Dec., 1998.
Shi, Z. F., and Zhou, L. M., “Interfacial damage in fibre-reinforced composites subjected to tension fatigue loading,” Fatigue Fract. Engng. Mater. Struct., Vol. 25, P.445-457, 2002.
Sadd, Martin, H., Elasticity – Theory, Applications, and Numerics, Elsevier Academic Press, M. A., U. S. A., 461 Pages, 2005.
Smith D. K., Cementing, SPE Monograph Vol. 4, 1976.
Timoshenko, S. P., and Goodier, J. N., Theory of Elasticity, McGraw-Hill Book Company, third Ed., Singapore, 567 Pages, 1970.
Wang, C.T., Applied Elasticity, McGraw-Hill Book Company, Inc., 357 Pages, 1953.
莊明家,熱傳遞原理及應用(上),徐氏文教基金會出版(台北),780頁,2003年。
陳勇全,“套管水泥之熱傳導與破壞力學性質之研究”,國立成功大學資源工程研究所碩士論文,2006年。
劉晉奇、褚晴暉合著,有限元素分析與ANSYS的工程應用,滄海書局出版(台中),564頁,2006年。