簡易檢索 / 詳目顯示

研究生: 吳柏裕
Wu, Po-yu
論文名稱: 注氣井套管水泥界面受經常性熱應力變化之疲乏破壞研究
Study of Fatigue Failure in Casing Cement Bonding Interface of Gas Injection Well Due to Regularly Fluctuating Thermal Stress
指導教授: 林再興
Lin, Zsay-shing
王建力
Wang, Chein-lee
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 113
中文關鍵詞: 有限元素分析套管水泥界面疲乏破壞注氣井
外文關鍵詞: Finite Element Method (FEM), Gas injection well, Casing cement, Interface fatigue failure
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究模擬施作接近實際井底套管水泥熱應力變化之實驗工作,先以ANSYS有限元素軟體模擬,評估套管水泥因溫度變化致熱應力變化最可能發生破壞之結合界面。經實際進行不同溫度變化範圍之套管水泥結合界面疲乏破壞試驗,並建立溫度變化循環之套管水泥封固結合界面疲乏破壞之試驗系統。本研究以ANSYS有限元素軟體建立套管水泥受經常熱應力變化時最易發生徑向張應力破壞位置之數值分析評估技術。經評估在30℃~115℃、55℃~115℃、80℃~115℃溫度變化時,其最大熱應力變化範圍分別為22.50~ -59.94 MPa、10.91~ -1.90 MPa、5.23~ -1.90 MPa,其對應實驗明顯疲乏破壞之循環次數分別為第5~24次、第450~525次,而80℃~115℃變化時即使在3125次以上仍無明顯大幅降壓。兩種不同溫差套管水泥熱應力(S, Mpa)變化對循環破壞次數(N)之對數關係可表示為:log(S) = 1.3546-0.000605*log(N)。

    The purpose of this work was to study the casing cement interface debonding due to frequent temperature changes. A finite element software ANSYS was used to design laboratory experiments and to check the experimental results. A system of testing casing cement bonding interface fatigue failure due to temperature fluctuations was established in the laboratory. A numerical analysis technique was developed to evaluate the most possible failure location of tensile stress when casing cement frequently encountering thermal stress changes. The results showed the ranges of the largest thermal stress variation are 22.50 ~ -59.94 MPa, 10.91 ~ -1.90, and 5.23 ~ -1.90 for the cases of temperature changes of 30℃ ~ 115℃, 55℃ ~ 115℃, and 80℃ ~115℃, respectively. For the cases of temperature changes of 30℃ ~ 115℃ and 55℃ ~ 115℃, the obvious fatigue failure cycle numbers were 5~24 and 450~525, respectively. No obvious fatigue failure was observed for 80℃ ~ 115℃ fluctuations when the cycle number reached 3125. The correlation between thermal stress variations on casing cement and the number of cycles was established in this study.

    摘要 ---------------------------------------------------------------------------------- I Abstract ----------------------------------------------------------------------------- II 誌謝 -------------------------------------------------------------------------------- III 目錄 --------------------------------------------------------------------------------- V 表目錄 ----------------------------------------------------------------------------- IX 圖目錄 ----------------------------------------------------------------------------- XI 符號表 -------------------------------------------------------------------------- XVII 第一章 前言 --------------------------------------------------------------------- 1 1.1 概述 ------------------------------------------------------------------------- 1 1.2 本研究之目的、範圍與流程 ------------------------------------------- 2 第二章 前人之相關研究 ------------------------------------------------------ 7 2.1 井底套管與水泥及井孔應力分析之有關文獻 ---------------------- 7 2.2 鋼鐵材料與水泥結合及疲乏破壞之有關文獻 --------------------- 11 第三章 理論基礎 -------------------------------------------------------------- 17 3.1 熱傳導理論 --------------------------------------------------------------- 17 3.2 彈性力學理論 ------------------------------------------------------------ 19 3.3 圓柱體之熱應力 --------------------------------------------------------- 21 第四章 數值模擬 -------------------------------------------------------------- 25 4.1 有限元素分析軟體ANSYS ------------------------------------------- 27 4.2 材料參數之決定 --------------------------------------------------------- 33 4.2.1 油氣井水泥 ------------------------------------------------------ 33 4.2.1.1 油氣井微粒水泥及其力學性質 ---------------------- 33 4.2.1.2 套管及其力學性質 ------------------------------------- 38 4.3 分析評估最可能之破壞位置 ------------------------------------------ 40 4.3.1 ANSYS數值分析模型 ------------------------------------------ 40 4.3.1.1 選用座標系統及相關假設 ------------------------------ 40 4.3.1.2 ANSYS分析流程與驗證 -------------------------------- 42 4.3.2 水泥與套管結合界面徑向應力 ------------------------------ 52 4.3.2.1 4-1/2吋套管外側與水泥結合界面因溫度變化產生之徑向應力 ------------------------------------------------ 57 4.3.2.2 水泥與9-5/8吋套管內側結合界面因溫度變化產生之徑向應力 ------------------------------------------------ 59 4.3.3 水泥與套管結合界面切向應力 ------------------------------ 61 4.3.3.1 4-1/2吋套管外側與水泥結合界面因溫度變化產生之切向應力 ----------------------------------------------------- 66 4.3.3.2 水泥與9-5/8吋套管內側結合界面因溫度變化產生之切向應力 -------------------------------------------------- 68 4.3.4 水泥部分因溫度變化之應力 --------------------------------- 70 4.3.5 綜合討論 --------------------------------------------------------- 72 第五章 循環熱應力試驗 ----------------------------------------------------- 75 5.1 循環熱應力試驗之建構 ----------------------------------------------- 75 5.2 溫度差之設定 ------------------------------------------------------------ 80 5.3 結合界面疲乏解離之壓力差設定 ------------------------------------ 80 5.4 疲乏破壞試驗之進行與結果 ------------------------------------------ 81 5.4.1 30℃~115℃間之循環熱應力試驗 ---------------------------- 81 5.4.2 30℃~115℃破壞後之滲透率試驗 ---------------------------- 82 5.4.3 80℃~115℃間之循環熱應力試驗 ---------------------------- 83 5.4.4 55℃~115℃間之循環熱應力試驗 ---------------------------- 85 5.5 試驗結果分析與討論 --------------------------------------------------- 87 第六章 結論與建議 ----------------------------------------------------------- 92 6.1 結論 ------------------------------------------------------------------------ 92 6.2 建議事項 ------------------------------------------------------------------ 94 參考文獻 -------------------------------------------------------------------------- 95 附錄一 圖5-1之4-1/2吋與9-5/8吋套管間水泥環孔上半部組合示意圖 --------------------------------------------------------------------------- 101 附錄二 ANSI 150 lb.法蘭 --------------------------------------------------- 102 附錄三 ANSI 300 lb.法蘭 --------------------------------------------------- 104 附錄四 螺栓規格(Crane公司型錄) ----------------------------------- 106 附錄五 ANSI 300 lb.~400 lb.法蘭頸孔規格 ----------------------------- 112 個人自述 ------------------------------------------------------------------------ 113

    Abdel Wahab, M. M., Ashcroft, I. A., Crocombe, A. D., Smith, P. A., “ Numerical Prediction of Fatigue Crack Propogation Lifetime in Adhesively Bonded Structures,” Intl. J. of Fatigue, Vol.24, No. 6, P. 705-709, 2002.
    Atkinson, C. and Eftaxiopoulos, D., “A Plane Model for the Stress Field around an Inclined, Cased and Cemented Wellbore,” Intl. J. Numerical and Analytical Methods in Geomechanics, Vol. 20, No. 8, P.549-564, 1996.
    Carpenter, R.B., Brady, J. L., and Blount, C. G., “Effects of Temperature and Cement Admixes on Bond Strength,” Journal of Petroleum Technology, P.880-885&941, August, 1992.
    Carslaw, H. S. , and Jaeger, J. C., Conduction of Heat in Solids, second edition , Oxford University Press, New York, 510 Pages, 1959.
    Carter L.G., and Evans, G.W., “A Study of Cement-Pipe Bonding,” Journal of Petroleum Technology, P.157-160, Feb, 1964
    CRANE : VALVES, FITTINGS, PIPE, FABRICATED, PIPING, CATALOG No.49 , CRANE CO., 836 S. MICHIGAN AVENUE, CHICAGO 5, ILLINOIS, Printed in U. S. A., 1949.
    Curley, A.J., Hadavinia, H., Kinloch, A.J., and Taylor, A.C., ”Predicting the Service-life of dhesively-bonded Joints,” International Journal of Fracture, vol. 103, P.41-69, 2000.
    Chung, Y. L., Chang, C. Y., and Chien, C. C., “Boundary Element Analysis of Interface Cracks Subjected to Non-Uniform Thermal Loading,” International Journal of Fracture, Vol.110, P.137-154, 2001.
    Edorgan, F., “Stress Distribution in Bonded Dissimilar Materials with Crack,” Journal of Applied Mechanics, Vol. 32, P.403-410, 1959.
    Green, Don W., and Willhite, G. Paul, Enhanced Oil Recovery, SPE Textbook Series, Vol. 6, 545 Pages, Richardson, TX. , 1988.
    Ikeda, T. and Sun C. T., “Stress Intensity Factor Analysis for an Interface Crack between Dissimillar Isotropic Materials under Thermal Stress,” International Journal of Fracture, Vol. 111, P.229-249, 2001.
    Kuguoglu, L., Binienda, W. K. and Hajjafar, A., “Analytical Modeling of Imperfected Bond between Coated Fibers and Matrix Material,” International Journal of Fracture, Vol.123, P.63-80, 2003.
    Lake, Larry W., Enhanced Oil Recovery, Prentice-Hall, Inc., 550 Pages, New Jersey, 1989
    Lyons, W., Standard Handbook of Petroleum & Natural Gas Engineering Volume 1, Gulf Publishing Company, 1431 Pages, 1996.
    Manson, S.S., Thernal Stress and Low-Cycle Fatigue, McGraw-Hill, Inc., 404 Pages, 1966.
    Miyazaki, N., Ikeda, T., Soda, T., and Munakata, T., “Stress Intensity Factor Analysis of Interface Crack Using Boundary Element Method (Application of Virtual Crack Extension Method),” JSME International Journal (Series A), Vol. 36-1, P. 36-42. 1993.
    Moaveni, S., Finite Element Analysis-Theory and Applications with ANSYS, Prentice-Hall, New Jersey, 527Pages, 1999.
    Nelson, E.B. (Editor), Well Cementing, Elsevier Science Publishing Co., N.Y., 1990.
    Nikishin, V.S., Thernal Stresses in a Composite Cylinder, with an Arbitrary Temperature Distribution Along its Length, Plenain Press Data Division, Pages, New York, 1966.
    Noda, N., Hetnarski , R. B., and Tanigawa, Y., Thermal Stresses, 2nd.ed., Published in Great Britain by Taylor & Francis, London., 2003.
    Ozbek, T., and Erdogan, F., “Some elasticity problems in fiber- reinforced composites with imperfect bonds,” Int J Eng Science, Vol. 7, No. 9, P. 931-46, Sept, 1969.
    Placido, Joao C.R., Ademar, P. Jr., Paulo, Lutz A.B.F., “Stress Analysis of Casing String Submitted to Cyclic Steam Injection,” Paper SPE 38978 presented at Latin American and Caribbean Petroleum Engineering Conference, 30 August-3 September, 1997.
    Ravi, K., Bosma, M., and Gastebled, O., “Safe and Economic Gas Wells through Cement Design for Life of the Well,” paper SPE 75700 presented at SPE Gas Technology Symposium held in Calgary, Alberta, 30 April-2 May, 2002
    Rudi Rubiandini R.S., “New Additive for Improving Shearbond Strength in High Temperature and Pressure Cement,” Paper SPE 62750 presented at IADC/SPE Asia Pacific Drilling Technology, Kuala Lumpur, alaysia, 11-13 September 2000.
    Thiercelin, M. J., Dargaud, B., Baret, J. F., and Rodriquez, W. J., “Cement Design Based on Cement Mechanical Response,” SPE Drilling & Completion, P.266-273, Dec., 1998.
    Shi, Z. F., and Zhou, L. M., “Interfacial damage in fibre-reinforced composites subjected to tension fatigue loading,” Fatigue Fract. Engng. Mater. Struct., Vol. 25, P.445-457, 2002.
    Sadd, Martin, H., Elasticity – Theory, Applications, and Numerics, Elsevier Academic Press, M. A., U. S. A., 461 Pages, 2005.
    Smith D. K., Cementing, SPE Monograph Vol. 4, 1976.
    Timoshenko, S. P., and Goodier, J. N., Theory of Elasticity, McGraw-Hill Book Company, third Ed., Singapore, 567 Pages, 1970.
    Wang, C.T., Applied Elasticity, McGraw-Hill Book Company, Inc., 357 Pages, 1953.
    莊明家,熱傳遞原理及應用(上),徐氏文教基金會出版(台北),780頁,2003年。
    陳勇全,“套管水泥之熱傳導與破壞力學性質之研究”,國立成功大學資源工程研究所碩士論文,2006年。
    劉晉奇、褚晴暉合著,有限元素分析與ANSYS的工程應用,滄海書局出版(台中),564頁,2006年。

    下載圖示 校內:2011-08-25公開
    校外:2011-08-25公開
    QR CODE