簡易檢索 / 詳目顯示

研究生: 李崇根
Lei, Song-Kan
論文名稱: 藉由表面修飾調整金或銀之電洞注入能力於高分子發光二極體
Tuning the hole injection capability of silver/gold via surface modification for polymer light-emitting diodes
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 106
外文關鍵詞: surface modification, self-assembled monolayer, metal anode, polymer light-emitting diodes
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究包含兩個部份,第一部分利用氟取代基在不同位置之氟苯硫酚修飾金屬電極;第二部分利用噻吩及其衍生物修飾銀電極,探討其對高分子發光二極體 (PLEDs)電洞注入之影響並應用在上發光型高分子發光二極體 (T-PLEDs)。兩部分的內容分別敍述如下﹕
    在第一部分中,分別利用鄰-氟苯硫酚(2-FTP)、間-氟苯硫酚(3-FTP)和對-氟苯硫酚(4-FTP) 三種不同位置之氟取代基分子,分別修飾厚度為4nm和150nm的金、銀電極,探討不同位置之氟取代基對高分子發光二極體電洞注入之影響。藉由分析元件之電流-電位特徵圖,可以得知經修飾後元件的電洞注入能力大小分別為: 4-FTP > 3-FTP > 2-FTP,顯示出表面偶極會到受氟原子位置的影響。此外,經由動態接觸角跟化學分析能譜的分析,可得知氟苯硫酚分子在金、銀以及在不同厚度的基板上,其分子的排列會有所不同,尤其是2-FTP分子。2-FTP 的分子排向很容易受到銀不同的表面型態所影響,使2-FTP在不同厚度的銀基板上有不同的分子排向,不同的分子排向導致產生不同大小的表面偶極。
    在第二部分中,利用不同濃度(分別為1mM和1M)的噻吩(TP)、3-甲基噻吩(CH3TP)、3-氰基噻吩(CNTP)來修飾銀電極並探討對高分子發光二極體電洞注入之影響。由反射式UV-Vis光譜的分析得知高濃度(1M)的TP和CH3TP 會在銀的表面上自發性聚合,同時形成多層結構的高分子膜。但是,低濃度(1mM)的TP、CH3TP、CNTP以及高濃度(1M)的CNTP只是單純吸附在銀的表面上,且在銀的表面上比較傾向於平躺的結構。元件電洞注入能力的大小分別為:在高濃度(1M)時,CNTP > Ag > CH3TP > TP;但在低濃度(1mM)時,TP、 CH3TP 、CNTP > Ag,由此可知元件經由不同濃度(1mM和1M)的噻吩衍生物修飾過以後,元件具有不同的電性特性,這是因為經由低濃度噻吩衍生物修飾過以後,由於表面偶極效應使得元件的起始電壓能夠提前;而在高濃度的時候,由於聚合的TP、 CH3TP所形成的多層高分子膜引起阻擋電洞進入的效應,使得元件的起始電壓會大大的增加。

    In this study, fluorothiophenol, and thiophene derivatives were used to modified metal anode and study the effect on hole injection for polymer light-emitting diodes (PLEDs), respectively, and their application on top-emissive PLEDs (T-PLEDs), respectively. The contents include two parts:
    In first section, we have investigated the effect of fluorothiophenol (2-FTP, 3-FTP and 4-FTP) modified nano-scale (4nm) and bulk (150nm) metal (Ag and Au) substrates on hole injection for PLEDs. The hole injection ability increases in the order: 4-FTP > 3-FTP > 2-FTP, demonstrating that the surface dipole depends strongly on the position of the fluorine atom. We also observe that the arrangement of thiols layer on Ag is different from that on Au, as well as the thickness of metals. Especially for 2-FTP, its molecular orientation is affected strongly by the surface morphology of Ag substrate. The different orientations of 2-FTP would affect the magnitude of dipole moment normal to the surface.
    In second section, two different concentrations (1mM and 1M) of thiophene (TP), 3-methylthiophene (CH3TP), and 3-cyanothiophene (CNTP) were used to modify Ag anode and study the effect of thiophene derivatives on hole injection. Spontaneous polymerization of TP and CH3TP absorbed on Ag surfaces at 1M concentration was observed and formed multilayer structure on Ag surface. However, all the adsorbed TP, CH3TP, and CNTP molecules as SAMs have a dominated flat-lying configuration on Ag surface at low concentration (1mM) as well as high concentration (1M) CNTP. The hole injection ability increases in the order: CNTP > Ag > CH3TP > TP at 1M concentration, but TP, CH3TP, CNTP > Ag at 1mM concentration. The variant electrical properties of thiophene derivatives-modified devices at 1mM and 1M concentration is due to the surface dipole effect and blocking hole effect by forming multilayer polymer film, respectively.

    Contents 中文摘要..................................................i Abstract................................................iii 誌謝......................................................v Contents.................................................vi List of Figures..........................................ix List of Tables.........................................xiii Symbols and abbreviation................................xiv Chapter 1 Introduction....................................1 1-1 Organic Light-Emitting Diodes.........................1 1-1-1 Small molecule and polymer OLEDs....................2 1-1-2 Mechanism of electroluminescence for PLEDs..........4 1-1-3 Bottom-emissive and top-emissive O/PLEDs............7 1-1-4 Anode modifications in top-emissive PLEDs...........9 1-2 Self-Assembled Monolayer.............................10 1-2-1 Application of SAMs on T-PLEDs.....................12 1-2-2 Thiol molecules on silver and gold surfaces........14 1-2-2-1 Effect of growth time on SAMs....................14 1-2-2-2 Effect of solvent on SAMs........................15 1-2-2-3 Effect of surface roughness on SAMs..............16 1-2-2-4 Effect of temperature on SAMs....................16 1-2-2-5 Orientations of SAMs on metal surfaces...........16 1-3 Research Motivation..................................18 1-3-1 The effect of SAMs based on fluorothiophenol on PLEDs....................................................18 1-3-2 The effect of SAMs based on thiophene derivatives on PLEDs....................................................19 Chapter 2 Surface modification of metal anode using fluorothiophenols and its effect on hole injection.......32 2-1 Foreword.............................................32 2-2 Experiment...........................................33 2-2-1 Materials..........................................33 2-2-2 Fabrication of PLEDs devices and measurements......33 2-2-2-1 Etching of ITO-coated glass......................33 2-2-2-2 Cleaned ITO-coated glass.........................34 2-2-2-3 Prepared metal substrates and formation of thiols layer....................................................34 2-2-2-4 Fabricated hole dominated PLEDs and T-PLEDs......34 2-2-2-5 Device measurement and other analysis............35 2-3 Results and discussion...............................37 2-3-1 Surface wettability of SAMs-modified metals........37 2-3-2 Surface composition on metals and interaction of thiol with metals........................................40 2-3-3 Relation between surface energy and work function for SAMs modification....................................42 2-3-4 Hole injection ability of PLEDs with SAMs-modified anode....................................................45 2-3-5 Top-emissive PLEDs performance with SAMs-modified anode....................................................46 2-4 Conclusion...........................................48 Chapter 3 Surface modification of thiophene derivatives on Ag anode and its effect on hole injection................64 3-1 Foreword.............................................64 3-2 Experiment...........................................65 3-2-1 Materials..........................................65 3-2-2 Fabrication of PLEDs devices and other measurements65 3-3 Results and discussion...............................67 3-3-1 Optical property of thiophene derivatives on Ag surface..................................................67 3-3-2 Surface characteristic of thiophene derivatives on Ag surface...............................................69 3-3-3 Hole injection ability of PLEDs with thiophene derivatives-modified anode...............................72 3-3-4 Thermal annealing effect on hole injection ability with CH3TP-modified anode................................74 3-3-5 Top-emissive PLEDs performance with thiophene-modified anode...........................................76 3-4 Conclusion...........................................78 Chapter4 Summary.........................................92 References...............................................94 Appendix................................................101 Curriculum Vitae........................................106

    References
    1. M. Pope, H. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals. The Journal of Chemical Physics. 1963, 38, 2042.
    2. C. W. Tang, S. A. Vanslyke, Organic Electroluminescent Diodes. Applied Physics Letters. 1987, 51, 913.
    3. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Light-emitting-diodes based on conjugated polymers. Nature, 1990, 347, 539.
    4. J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. Journal of Applied Physics, 1998, 84, 6859.
    5. S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices. Applied Physics A: Materials Science & Processing, 1999, 68, 447.
    6. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer. Applied Physics Letters, 1999, 75, 1679.
    7. M. H. Lu and J. C. Sturm, Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment. Journal of Applied Physics, 2002, 91, 595.
    8. S. K. So, W. K. Choi, L. M. Leung, K. Neyts, Interference effects in bilayer organic light-emitting diodes. Applied Physics Letters, 1999, 74, 1939.
    9. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, S. R. Forrest, Weak microcavity effects in organic light-emitting devices. Physical Review B, 1998, 58, 3730.
    10. K. Neyts, P. De Visschere, D. K. Fork, G. B. Anderson, Semitransparent metal or distributed Bragg reflector for wide-viewing-angle organic light-emitting-diode microcavities. Journal of the Optical Society of America B-Optical Physics, 2000, 17, 114.
    11. H. W. Choi, S. Y. Kim, K. B. Kim, Y. H. Tak, J. L. Lee, Enhancement of hole injection using O2 plasma-treated Ag anode for top-emitting organic light-emitting diodes. Applied Physics Letters, 2005, 86, 012104.
    12. C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, C. C. Wu, Top-emitting organic light-emitting devices using surface-modified Ag anode. Applied Physics Letters, 2003, 83, 5127.
    13. G. G. Malliaras, J. C. Scott, The roles of injection and mobility in organic light emitting diodes. Journal of Applied Physics, 1998, 83, 5399.
    14. H. Aziz, Z.D. Popovic, Degradation phenomena in small-molecule organic light-emitting devices. Chemistry of Materials, 2004, 16, 4522.
    15. J. Cao, X. Jiang, Z. Zhang, MoOx modified Ag anode for top-emitting organic light-emitting devices. Applied Physics Letters, 2006, 89, 252108.
    16. H. Peng, J. Sun, X. Zhu, X. Yu, M. Wong, H. S. Kwok, High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode. Applied Physics Letters, 2006, 88, 073517.
    17. J. Y. Lee, Efficient hole injection in organic light-emitting diodes using C60 as a buffer layer for Al reflective anodes. Applied Physics Letters, 2006, 88, 073512.
    18. B de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh, P. W. M. Blom, Tuning of metal work functions with self-assembled monolayers. Advanced Materials, 2005, 17, 621.
    19. L. W. Chong, Y. L. Lee, T. C. Wen, T. F. Guo, Self-assembled monolayer-modified Ag anode for top-emitting polymer light-emitting diodes. Applied Physics Letters, 2006, 89, 233513.
    20. K. Walzer, E. Marx, N. C. Greenham, R. J. Less, P. R. Raithby, K. Stokbro, Scanning tunneling microscopy of self-assembled phenylene ethynylene oligomers on Au(111) substrates. Journal of the American Chemical Society, 2004, 126, 1229.
    21. A. Jakubowicz, H. Jia, R. M. Wallace, B. E. Gnade, Adsorption Kinetics of p-Nitrobenzenethiol Self-Assembled Monolayers on a Gold Surface. Langmuir, 2005, 21, 950.
    22. R. F. Dou, X. C. Ma, L. Xi, H. L. Yip, K. Y. Wong, W. M. Lau, J. F. Jia, Q. K. Xue, W. S. Yang, H. Ma, A. K. Y. Jen, Self-Assembled Monolayers of Aromatic Thiols Stabilized by Parallel-Displacedπ-π Stacking Interactions. Langmuir, 2006, 22, 3049.
    23. Y. Zhang, Y. Guan, S. Yang, J. Xu, C. C. Han, High-brightness blue light-emitting polymer diodes via anode modification using a self-assembled monolayer. Advanced Materials, 2003, 15, 835.
    24. J. Cui, Q. Huang, Q. Wang, T. J. Ma, Nanoscale Covalent Self-Assembly Approach to Enhancing Anode/Hole-Transport Layer Interfacial Stability and Charge Injection Efficiency in Organic Light-Emitting Diodes. Langmuir, 2001, 17, 2051.
    25. R. W. Zehner, B. F. Parsons, R. P. Hsung, L. R. Sita, Tuning the Work Function of Gold with Self-Assembled Monolayers Derived from X-[C6H4-C C-]nC6H4-SH (n = 0, 1, 2; X = H, F, CH3, CF3, and OCH3). Langmuir, 1999, 15, 1121.
    26. I. H. Campbell, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov, J. P. Ferraris, Controlling charge injection in organic electronic devices using self-assembled monolayers. Applied Physics Letters, 1997, 71, 3528.
    27. J. K. Lim, I. H. Kim, K. H. Kim, K. S. Shin, W. Kang, J. Choo, S. W. Joo, Adsorption of dimethyl sulfide and methanethiolate on Ag and Au surfaces: Surface-enhanced Raman scattering and density functional theory calculation study. Chemical Physics, 2006, 330, 245.
    28. C. P. Cho, Y. T. Tao, Tuning of Metal Work Function with Organic Carboxylates and Its Application in Top-Emitting Electroluminescent Devices. Langmuir, 2007, 23, 7090.
    29. A. Ulman, Formation and structure of self-assembled monolayers. Chemical Reviews, 1996, 96, 1533.
    30. J. E. Malinsky, G. E. Jabbour, S. E. Shaheen, J. D. Anderson, A. G. Richter, T. J. Marks, N. R. Armstrong, B. Kippelen, P. Dutta, N. Peyghambarian, Self-assembly processes for organic LED electrode passivation and charge injection balance. Advanced Materials, 1999, 11, 227.
    31. Y. Koide, Q. Wang, J. Cui, D. D. Benson, T.J. Marks, Patterned Luminescence of Organic Light-Emitting Diodes by Hot Microcontact Printing (H CP) of Self-Assembled Monolayers. Journal of the American Chemical Society, 2000, 122, 11266.
    32. C. C. Hsiao, C. H. Chang, M. C. Hung, N. J. Yang, S. A. Chen, Self-assembled monolayer modification of indium tin oxide anode surface for polymer light-emitting diodes with poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene] for high performance. Applied Physics Letters, 2005, 86, 223505.
    33. B. Choi, J. Rhee, H. H. Lee, Tailoring of self-assembled monolayer for polymer light-emitting diodes. Applied Physics Letters, 2001, 79, 2109.
    34. J. Lee, B. J. Jung, J. I. Lee, H. Y. Chu, L. M. Do, H. K. Shim, Modification of an ITO anode with a hole-transporting SAM for improved OLED device characteristics. Journal of Materials Chemistry, 2002, 12, 3494.
    35. S. Khodabakhsh, D. Poplavskyy, S. Heutz, J. Nelson, D. D. C. Bradley, H. Murata, T. S. Jones, Using self-assembling dipole molecules to improve hole injection in conjugated polymers. Advanced Functional Materials, 2004, 14, 1205.
    36. R. A. Hatton, M. R. Willis, M. A. Chesters, F. J. M. Rutten, D. Briggs, Enhanced hole injection in organic light-emitting diodes using a SAM-derivatised ultra-thin gold anode supported on ITO glass. Journal of Materials Chemistry, 2003, 13, 38.
    37. J. Cui, Q. Huang, J. G. C. Veinot, H. Yan, T. J. Marks, Interfacial microstructure function in organic light-emitting diodes: Assembled tetraaryldiamine and copper phthalocyanine interlayers. Advanced Materials, 2002, 14, 565-569.
    38. S. F. J. Appleyard, S. R. Day, R. D. Pickford, M. R. Willis, Organic electroluminescent devices: enhanced carrier injection using SAM derivatized ITO electrodes. Journal of Materials Chemistry, 2000, 10, 169.
    39. K. Y. Wu, Y. T. Tao, H. W. Huang, Tuning hole injection and charge recombination with self-assembled monolayer on silver anode in top-emitting organic light-emitting diodes. Applied Physics Letters, 2007, 90, 241104.
    40. M. C. Hung, K. Y. Wu, Y. T. Tao, H. W. Huang, Highly efficient top-emitting organic light-emitting diodes with self-assembed monolayer-modified Ag as anodes. Applied Physics Letters, 2006, 89, 203106.
    41. P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, R. G. Nuzzo, Comparison of the structures and wetting properties of self-assembled monolayers of normal-alkanethiols on the coinage metal-surfaces Cu, Ag, Au. Journal of the American Chemical Society, 1991, 113, 7152.
    42. H. Sellers, A. Ulman, Y. Shnidman, J. E. Eilers, Structure and Binding of Alkanethiolates on Gold and Silver Surfaces: Implications for Self-Assembled Monolayers. Journal of the American Chemical Society, 1993, 115, 9389.
    43. H. Rieley, G. K. Kendall, R. G. Jones, D. P. Woodruff, X-ray Studies of Self-Assembled Monolayers on Coinage Metals. 2. Surface Adsorption Structures in 1-Octanethiol on Cu(111) and Ag(111) and Their Determination by the Normal Incidence X-ray Standing Wave Technique. Langmuir, 1999, 15, 8856.
    44. G. E. Poirier and M. J. Tarlov, The c(4x2) superlattice of n-alkanethiol monolayers self-assembled on Au(111). Langmuir, 1994, 10, 2853.
    45. S. Frey, V. Stadler, K. Heister, W. Eck, M. Zharnikov, M. Grunze, Structure of Thioaromatic Self-Assembled Monolayers on Gold and Silver. Langmuir, 2001, 17, 2408.
    46. R. G. Nuzzo,, L. H. Dubois, and D. L. Allara, Fundamental Studies of Microscopic Wetting on Organic Surfaces. 1. Formation and Structural Characterization of a Self-Consistent Series of Polyfunctional Organic Monolayers. Journal of the American Chemical Society, 1990, 112, 558.
    47. A. Michota, A. Kudelski, J. Bukowska, Chemisorption of Cysteamine on Silver Studied by Surface-Enhanced Raman Scattering. Langmuir, 2000, 16, 10236.
    48. T. Matsuura, M. Nakajima, Y. Shimoyama, Growth of self-assembled monolayer of thiophene on gold surface: An infrared spectroscopic study. Japanese Journal of Applied Physics, 2001, 40, 6945.
    49. D. Kafer, G. Witte, P. Cyanik, A. Terfort, C. Woll, A Comprehensive Study of Self-Assembled Monolayers of Anthracenethiol on Gold: Solvent Effects, Structure, and Stability. Journal of the American Chemical Society, 2006, 128, 1723.
    50. S. Y. Lee, J. Noh, E. Ito, H. Lee, M. Hara , Solvent effect on formation of cysteamine self-assembled monolayers on Au(111). Japanese Journal of Applied Physics, 2003, 42, 236.
    51. T. Kondo, M. Yanagida, X. Q. Zhang, K. Uosaki, Effect of Surface Morphology of a Gold Substrate on Photocurrent Efficiency at a Gold Electrode Modified with a Self-Assembled Monolayer of a Porphyrin-Ferrocene-Thiol Linked Molecule. Chemistry Letters, 2000, 29, 964.
    52. W. Azzam, A. Bashir, A. Terfort, T. Strunskus, C. Wöll , Combined STM and FTIR Characterization of Terphenylalkanethiol Monolayers on Au(111): Effect of Alkyl Chain Length and Deposition Temperature. Langmuir, 2006, 22, 3647.
    53. M. H. Dishner, J. C. Hemminger, F. J. Feher, Formation of a self-assembled monolayer by adsorption of thiophene on Au(111) and its photooxidation. Langmuir, 1996, 12, 6176.
    54. S. Terada, T. Yokoyama, M. Sakano, A. Imanishi, Y. Kitajima, M. Kiguchi, Y. Okamoto, T. Ohta., Thiophene adsorption on Pd(111) and Pd(100) surfaces studied by total-reflection S K-edge X-ray absorption fine-structure spectroscopy. Surface Science, 1998, 414, 107.
    55. X. Chen, E. R. Frank, R. J. Hamers, Spatially and rotationally oriented adsorption of molecular adsorbates on Ag(111) investigated using cryogenic scanning tunneling microscopy. Journal of Vacuum Science & Technology B, 1996, 14, 1136.
    56. A. Nambu, H. Kondoh, I. Nakai, K. Amemiya, T. Ohta, Film growth and X-ray induced chemical reactions of thiophene adsorbed on Au(111). Surface Science, 2003, 530, 101-110.
    57. P. K. Milligan, B. Murphy, D. Lennon, B. C. C. Cowie, M. Kadodwala, A Complete Structural Study of the Coverage Dependence of the Bonding of Thiophene on Cu(111). J. Phys. Chem. B, 2001, 105, 140.
    58. G. R. Schoofs, R. E. Preston, and J. B. Benziger, Adsorption and desulfurization of thiophene on nickel(111). Langmuir, 1985, 13, 13.
    59. L. Cheng, A. B. Bocarsly, S. L. Bernasek, T. A . Ramanarayanan, Adsorption and reaction of thiophene on the Fe(100) surface: selective dehydrogenation and polymerization. Surface Science, 1997, 374, 357.
    60. G. Compagnini, A. D. Bonis, R. S. Cataliotti, G. Marletta, Spectroscopic evidence for adsorption-induced polymerisation of terthiophene at silver surfaces. Physical Chemistry Chemical Physics, 2000, 2, 5298.
    61. K. Tamada, J. Nagasawa, F. Nakanishi, K. Abe, Structure and Growth of Hexyl Azobenzene Thiol SAMs on Au(111). Langmuir, 1998, 14, 3264.
    62. E. L. Decker, S. Garoff, Contact Line Structure and Dynamics on Surfaces with Contact Angle Hysteresis. Langmuir, 1997, 13, 6321.
    63. M. J. Pellerite, E. J. Wood, V. W. Jones, Dynamic Contact Angle Studies of Self-Assembled Thin Films from Fluorinated Alkyltrichlorosilanes1. J. Phys. Chem. B, 2002, 106, 4746.
    64. C. E. Taylor, S. D. Garvey, J. E. Pemberton, Carbon Contamination at Silver Surfaces: Surface Preparation Procedures Evaluated by Raman Spectroscopy and X-ray Photoelectron Spectroscopy. Anal. Chem., 1996, 68, 2401.
    65. C. S. Dulcey, Jr. J. H. Georger, M. S. Chen, S. W. McElvany, C. E. O'Ferrall, V. I. Benezra, J. M. Calvert, Photochemistry and Patterning of Self-Assembled Monolayer Films Containing Aromatic Hydrocarbon Functional Groups. Langmuir, 1996, 12, 1638.
    66. P. Wang, G. Wu, Ultraviolet laser excited surface enhanced Raman scattering of thiocyanate ion on the Au electrode. Chemical Physics Letters, 2004, 385, 96.
    67. C. Majumder, T. Briere, H. Mizuseki, Y. Kawazoe, Interactions of a conjugated molecular diode with small metal clusters of Cu, Ag, and Au: First-principles calculations. The Journal of Chemical Physics, 2002, 117, 7669.
    68. T. Ishida, N. Choi, W. Mizutani, H. Tokumoto, I. Kojima, H.Azehara, H. Hokarv, U.Akiba, M. Fujihira, High-Resolution X-ray Photoelectron Spectra of Organosulfur Monolayers on Au(111): S(2p) Spectral Dependence on Molecular Species. Langmuir, 1999. 15(20): p. 6799-6806.
    69. J. Lee, T. Willey, J. Nilsson, L. Terminello, J. D. Yoreo, T. V. Buuren, Effect of Ring Substitution Position on the Structural Conformation of Mercaptobenzoic Acid Self-Assembled Monolayers on Au(111). Langmuir, 2006, 22, 11134.
    70. J. T. Wolan, G. B. Hoflund, Surface characterization study of AgF and AgF2 powders using XPS and ISS. Applied Surface Science, 1998, 125, 251.
    71. M. Zenkiewicz, Comparative study on the surface free energy of a solid calculated by different methods. Polymer Testing, 2007, 26, 14.
    72. H. Sugimura, K. Hayashi, N. Saito, O. Takai, N. Nakagiri, Kelvin probe force microscopy images of microstructured organosilane self-assembled monolayers. Japanese Journal of Applied Physics, 2001, 40, 4373.
    73. M. Bruening, E. Moons, D. Cahen, J. Libman, A. Shanzer, Polar Ligand Adsorption Controls Semiconductor Surface Potentials. Journal of the American Chemical Society, 1994, 116, 2972.
    74. K. X. Ma, T. S. Chung, Effect of -C(CF3)2- on the Surface Energy of Main-Chain Liquid Crystalline and Crystalline Polymers. J. Phys. Chem. B, 2001, 105, 4145.
    75. N. Balachander, C. N. Sukenik, Monolayer Transformation by Nucleophilic Substitution: Applications to the Creation of New Monolayer Assemblies. Langmuir, 1990, 6, 1621.
    76. S. R. Wasserman, Y. T. Tao, G. M. Whitesides, Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates. Langmuir, 1989, 5, 1074.
    77. N. Shukla, E. B. Svedberg, J. Ell, FePt nanoparticle adsorption on a chemically patterned silicon-gold substrate. Surface and Coatings Technology, 2006, 201, 1256.
    78. D. Janssen, R. D. Palma, S. Verlaak, P. Heremans, W. Dehaen, Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films, 2006, 515, 1433.
    79. J. T. Sullivan, K. E. Harrison, J. P. Mizzell, S. M. Kilbey, Contact Angle and Electrochemical Characterization of Multicomponent Thiophene-Capped Monolayers. Langmuir, 2000, 16, 9797.
    80. M. Lu, X. H. Li, H. L. Li, Synthesis and characterization of conducting copolymer nanofibrils of pyrrole and 3-methylthiophene using the template-synthesis method. Materials Science and Engineering A, 2002, 334, 291.
    81. F. Uckert, Y. H. T. K. M. l. H. B., 2,7-Poly(9-fluorenone): A Trap-Free Electron-Injection Material with a High Charge Carrier Mobility for Use in Light-Emitting Diodes. Advanced Materials, 2000, 12, 905.

    下載圖示 校內:2011-06-24公開
    校外:2011-06-24公開
    QR CODE