簡易檢索 / 詳目顯示

研究生: 李馨慈
Lee, Shing-Tsz
論文名稱: 重大地震地表擾動衰減特性於震後高強度降雨之山崩潛勢分析
The Analysis of Potential in Heavy Rainfall-induced Landslides Affected by the Attenuation Pattern of Ground Disturbing after a Major Seismic Event
指導教授: 余騰鐸
Yu, Teng-To
共同指導教授: 王建力
Wang, Chein-Lee
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 127
中文關鍵詞: 山崩潛勢分析邏輯斯迴歸集集地震颱風
外文關鍵詞: landslide hazard analysis, logistic regression, Chi-Chi earthquake, typhoon
相關次數: 點閱:116下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣誘發山崩的主要因子為重大地震及高強度降雨兩種,尤其在1999年發生台灣百年來最大的集集地震,不但造成嚴重崩塌,震後土石鬆動使後續的颱風事件伴隨高強度降雨亦造成更多崩塌災害。
    以集集地震為例,本文研究該次地震地表擾動對於後續降雨引發山崩之影響。利用集集地震引發山崩潛勢模型作為地震之殘餘影響,以此模型推估不同時間內降雨誘發之山崩,藉由預測正確率曲線觀察地震力的影響。接著利用颱風引發之山崩建立降雨引發山崩潛勢模型,藉由山崩影響因子的顯著性變遷過程,及模型選入的相關因子,評估地震力於每次強降雨引發山崩之影響性。本研究將山區地形起伏所導致之地震強度放大現象,利用三維波傳模型計算考慮地形效應之地震強度參數Arias Intensity(Ia),結合地質、地形、區位、地表覆蓋與地震力,並利用邏輯斯迴歸分析山崩潛勢模型。利用地震引發山崩模型推估颱風誘發山崩,由預測正確率曲線顯示,桃芝颱風有高達92.17%之預測正確率,證實地震對於後續颱風引致山崩的顯著影響力;而在預估2004年敏督利颱風之預測率降為76.45%,顯示地震力影響會逐年衰減。以此衰減特性可推估,集集地震影響後續降雨引發山崩,短時間內有顯著的影響,然此影響持續至10年後,2009年莫拉克颱風已幾乎與地震引發山崩潛勢模型無相關。另外,地震前後降雨引發山崩潛勢分析中,利用各因子對於山崩事件之顯著性檢定,以及震前與震後之模式選定之因子之轉變,亦可作為地震事件對於山崩影響衰減的佐證之一。

    Major factors that trigger landslides in Taiwan are seismic events and heavy rainfall. The Chi-Chi earthquake in 1999 was the most largest in a century. It triggered severe coseismic landslides and disturbed the ground surface, which led to subsequent typhoons with heavy rainfall triggering more landslides. Using the Chi-Chi earthquake as a case study, this research discusses the effect of ground disruption after major seismic events on subsequent typhoon-induced landslides. Landslides triggered by major earthquakes are used to develop an earthquake-induced landslide model. The model is validated using landslides triggered by typhoons after an earthquake. The effect of the earthquake is measured using the accuracy curves method. Landslides triggered by typhoons are then used to develop a rainfall-induced landslide model. The model results before and after the Chi-Chi earthquake are used to estimate the influence of seismic events on rainfall-induced landslides. Earthquake-induced landslide hazards are studied using seismic shaking intensity based on the topographic amplification effect. A set of independent parameters, including lithology, elevation, slope gradient, slope aspect, terrain roughness, land use, and Arias intensity (Ia) with the topographic effect are used. The models are then validated using landslides triggered by typhoons Toraji and Mindulle The prediction accuracy for the former was 92.17% and that for the latter was 76.45%. The landslides in 2009 have little correlation with the earthquake-induced landslide model. Nevertheless, after a period of 10 years, the Chi-Chi earthquake still affects landslides in the study area. The attenuation of the effect of earthquakes on rainfall-induced landslides is confirmed.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 1.3 研究流程與架構 2 第二章 文獻回顧 4 2.1 地震與降雨誘發之山崩 4 2.1.1 地震誘發之山崩特性 4 2.1.2 強降誘發之山崩特性 7 2.1.3 地震對降雨誘發山崩之影響 7 2.2 山崩潛勢分析 10 2.2.1 統計方法於山崩潛勢分析 10 2.2.2 邏輯斯迴歸分析與應用 11 2.2.3 評估準確性的指標 18 2.3 山崩影響因子 21 2.4 地形放大效應 26 2.4.1 地形放大效應的觀察 26 2.4.2 地形放大效應與山崩的關係 27 2.4.3 考慮地形效應之山崩潛勢分析 29 第三章 研究方法 31 3.1 基本資料蒐集與整理 31 3.1.1 基本資料蒐集 31 3.1.2 山崩資料整理 31 3.2 山崩影響因子初選與計算 37 3.2.1 地質因子 38 3.2.2 地形因子 40 3.2.3 區位因子 41 3.2.4 地震因子 45 3.2.5 降雨因子 50 3.3 邏輯斯模型建立 52 3.4 預測正確率曲線繪製 53 3.5 地表擾動衰減特性評估 56 第四章 案例分析 57 4.1 研究區域概述 57 4.2 研究區地形與地質 60 4.3 地震與降雨誘發山崩 67 4.4 地形放大效應 70 4.5 山崩影響因子與崩塌密度 74 4.5.1 地質參數 75 4.5.2 地形參數 76 4.5.3 區位參數 81 4.5.4 地表覆蓋參數 84 4.5.5 地震強度參數 85 4.6 地震引發山崩潛勢模型 86 4.6.1 山崩模型建立 86 4.6.2 山崩模式驗證 92 4.7 地震山崩模型推估降雨引發山崩 94 4.8 降雨引發山崩潛勢分析 97 4.8.1 降雨參數 98 4.8.2 降雨引致山崩潛勢分析 101 第五章 結果與討論 104 5.1 九九峰研究區結果 104 5.2 陳有蘭溪集水區結果 104 5.3 綜合討論 105 5.3.1 地形放大效應討論 105 5.3.2 山崩影響因子 106 5.3.3 地震影響衰減特性 106 第六章 結論與建議 108 6.1 結論 108 6.2 建議 108 參 考 文 獻 110

    工業技術研究院能源與資源研究所(2000),「921震災系列調查(一)-崩塌地調查與治理規劃」, 行政院農業委員會水土保持局。
    王文能、尹承遠、 陳志清與李木青(2000) ,「九二一地震崩塌地現況與災害防治」,九二一震後中日土砂災害調查及治理研討會。
    王濟川與郭志剛(2004), Logistic迴歸模型:方法及應用,台北:五南。
    朱聖心(2001),「應用地理資訊系統製作地震及降雨所引致之山崩危險圖」, 國立臺灣大學土木工程學研究所碩士論文。
    吳佐川(1992),「台灣地區崩塌地區域特性之研究」, 國立台灣大學森林學系碩士論文。
    呂政諭(2000),「地震與颱風作用下阿里山地區公路邊坡崩壞特性之研究」, 國立成功大學土木工程學系碩士論文。
    李三畏(1984),「台灣崩塌問題探討」, 地工技術,第7期:頁 43-79。
    李錫堤(2009),「山崩及土石流災害分析的方法學回顧與展望」,台灣公共工程學刊,第5期第1卷,頁1-29。
    李馨慈(2004),「應用累積位移法於地震引起之山崩潛勢分析」,國立成功大學資源工程學系碩士論文。
    林冠瑋(2004),「陳有蘭溪流域的山崩作用在颱風及地震事件中與河流輸砂量之相對關係」, 臺灣大學地質科學研究所碩士論文。
    國家地震工程研究中心(1999),921集集大地震大地工程震災調查報告。
    張子瑩(2001),「降雨與地震對形成崩塌區位之比較研究」, 國立臺灣大學 地理環境資源學研究所碩士論文。
    張弼超(2004),「運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例」, 國立中央大學應用地質研究所碩士論文。
    許煜煌(2001),「以不安定指數法進行地震引致坡地破壞模式分析」, 國立臺灣大學土木工程學研究所。
    陳信洲(2004),「邊坡破壞潛勢分析-以阿里山台18線公路為例」, 國立成功大學 土木工程學系碩博士班碩士論文。
    彭文飛(2008),「地震引起山崩之潛勢圖製作-考慮地形放大效應與土體滑動堆積行為」, 國立成功大學資源工程學系博士論文。
    黃婷卉(2002),「土石流發生降雨特性之研究-以陳有蘭溪流域為主」, 國立成功大學 水利及海洋工程學系碩士論文。
    黃漢淨(2005),「德基水庫集水區崩塌地潛感分布與林地使用衝突之研究」, 屏東科技大學森林系碩士論文。
    黃臺豐(1998),「瑞里地震誘發之山崩」, 國立中央大學 應用地質研究所碩士論文。
    溫振宇(2004),「結合地震與颱風因子之山崩模式分析」, 國立成功大學地球科學系碩士論文。
    經濟部中央地質調查所(2008),「易淹水地區上游集水區地質調查與資料庫建置(第1期96年度)-集水區地質調查及山崩土石流調查與發生潛勢評估計畫」,經濟部中央地質調查所。
    詹仕堅與孫志鴻(2000),「網格式數值高程模型擷取河系集流閾值之探討」,國立台灣大學地理學報,第28期,頁27-45。
    廖文涵、陳昭旭、李馨慈與闕禮琳(2010),「降雨誘發之山崩塌潛勢分析」, 岩盤工程研討會」,高雄。
    廖軒吾(1999),「集集地震誘發之山崩」, 國立中央大學地球物理研究所碩士論文。
    劉守恆(2001),「衛星影像於崩塌地自動分類組合之研究」, 國立成功大學 地球科學系碩士論文。
    潘國樑(2005),環境地質與防災科技,台北:地景。
    蔡玉琴(1994),「淡水河流域降雨時空分析及推估:地理資訊系統的應用」, 國立臺灣師範大學地理研究所碩士論文。
    鄭傑銘(2003),「應用GIS進行豪雨及地震引致山崩之潛感性分析」, 國立臺灣大學土木工程學研究所碩士論文。
    鄭錦桐、李錫堤與蔡義本(2000),集集大地震斷層破裂面幾何形貌及強地動振幅衰減模式,中國地質學會八十九年年會。
    簡李濱(1991),「應用地理資訊系統建立坡地安定評估之計量方法」, 國立中興大學土木工程研究所碩士論文。
    Akgun, A., and Bulut, F.(2007), “GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region”, Environmental Geology, 51(8), pp. 1377-1387.
    Akgun, A., Dag, S., and Bulut, F.(2008), “Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models”, Environmental Geology, 54(6), pp. 1127-1143.
    Arias, A.(1970), “A measure of earthquake intensity”, In: Hansen RJ (ed) Seismic design for nuclear power plants. Massachusetts Institute of Technology Pres ed., Cambridge.
    Assimaki, D., Gazetas, G., and Kausel, E.(2005), “Effects of local soil conditions on the topographic aggravation of seismic motion: Parametric investigation and recorded field evidence from the 1999 Athens earthquake”, Bulletin of the Seismological Society of America, 95(3), pp. 1059-1089.
    Athanasopoulos, G. A., Pelekis, P. C., and Leonidou, E. A.(1999), “Effects of surface topography on seismic ground response in the egion (Greece) 15 June 1995 earthquake”, Soil Dynamics and Earthquake Engineering, 18(2), pp. 135-149.
    Atkinson, P., Jiskoot, H., Massari, R., and Murray, T.(1998), “Generalized linear modelling in geomorphology”, Earth Surface Processes and Landforms, 23(13), pp. 1185-1195.
    Ayalew, L., Yamagishi, H., and Ugawa, N.(2004), “Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan”, Landslides, 1(1), pp. 73-81.
    Ayalew, L., and Yamagishi, H.(2005), “The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan”, Geomorphology, 65(1-2), pp. 15-31.
    Baeza, C., and Corominas, J.(2001), “Assessment of shallow landslide susceptibility by means of multivariate statistical techniques”, Earth Surface Processes and Landforms, 26(12), pp. 1251-1263.
    Baeza, C., Lantada, N., and Moya, J.(2010), “Validation and evaluation of two multivariate statistical models for predictive shallow landslide susceptibility mapping of the Eastern Pyrenees (Spain)”, Environmental Earth Sciences, 61(3), pp. 507-523.
    Bai, S. B., Zhou, P. G., Wang, J., Hou, S. S., Lu, G. N., and Zhang, F. Y.(2007), GIS-based susceptibility mapping with comparisons of results from data-driven bivariate versus logistic regression in the three Gorges area, China, 12th Conference of the International Association for Mathematical Geology, Beijing, China, pp.163-165.
    Bai, S. B., Wang, J., Pozdnoukhov, A., and Kanevski, M.(2008), Validation of spatial prediction models for landslide susceptibility maps, 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Shanghai, China, pp. 280-286.
    Bai, S. B., Wang, J., Lu, G. N., Zhou, P. G., Hou, S. S., and Xu, S. N.(2010), “GIS-based logistic regression for landslide susceptibility mapping of the zhongxian segment in the three Gorges area, China”, Geomorphology, 115(1-2), pp. 23-31.
    Bard, P.-Y., and Riepl-Thomas, J.(1999), Wave propagation in complex geological structures and their effects on strong ground motion, Wave motion in earthquake engineering, international series advances in earthquake engineering, edited by: Kausel, E., and Manolis, G., Boston: WIT Press.
    Barredo, J. I., Benavides, A., Hervas, J., and Westen, C. J. v.(2000), “Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana Basin, Gran Canaria Island, Spain”, JAG, 2(1), pp. 9-23
    Biswajeet, P., and Saied, P.(2010), “Comparison between prediction capabilities of neural network and fuzzy logic techniques for l and slide susceptibility mapping”, Disaster Advances, 3(3), pp. 26-34.
    Brenning, A.(2005), “Spatial prediction models for landslide hazards: Review, comparison and evaluation”, Natural Hazards and Earth System Sciences, 5(6), pp. 853-862.
    Carrasco, R. M., Pedraza, J., Martin-Duque, J. F., Mattera, M., Sanz, M. A., and Bodoque, J. M.(2003), “Hazard zoning for landslides connected to torrential floods in the Jerte Valley (Spain) by using GIS techniques”, Natural Hazards, 30(3), pp. 361-381.
    Carro, M., De Amicis, M., Luzi, L., and Marzorati, S.(2003), “The application of predictive modeling techniques to landslides induced by earthquakes: The case study of the 26 September 1997 Umbria-Marche earthquake (Italy)”, Engineering Geology, 69(1-2), pp. 139-159.
    Cevik, E., and Topal, T.(2003), “Gis-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey)”, Environmental Geology, 44(8), pp. 949-962.
    Chang, K. T., Chiang, S. H., and Hsu, M. L.(2007), “Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression”, Geomorphology, 89(3-4), pp. 335-347.
    Chau, K. T., and Lo, K. H.(2004), “Hazard assessment of debris flows for Leung King Estate of Hong Kong by incorporating GIS with numerical simulations”, Natural Hazards and Earth System Sciences, 4(1), pp. 103-116.
    Chau, K. T., Sze, Y. L., Fung, M. K., Wong, W. Y., Fong, E. L., and Chan, L. C. P.(2004), “Landslide hazard analysis for Hong Kong using landslide inventory and GIS”, Computers & Geosciences, 30(4), pp. 429-443.
    Chen, S. C., and Wu, C. H.(2006), “Slope stabilization and landslide size on Mt. 99 peaks after ChiChi earthquake in Taiwan”, Environmental Geology, 50(5), pp. 623-636.
    Chen, Z. H., and Wang, J. F.(2007), “Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada”, Natural Hazards, 42(1), pp. 75-89.
    Chung, C. J., and Fabbri, A. F.(1997), Sensitivity analysis of quantitative prediction models based on map overlays: An application to landslide hazard zonation., Proceedings of the Int. Congr, Geomorphology, Bologna, Italy, 28 August–3 September.
    Chung, C. J. F., and Fabbri, A. G.(2003), “Validation of spatial prediction models for landslide hazard mapping”, Natural Hazards, 30(3), pp. 451-472.
    Conoscenti, C., Di Maggio, C., and Rotighano, E.(2008), “GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy)”, Geomorphology, 94(3-4), pp. 325-339.
    Cox, D. R., and Snell, E. J.(1989), Analysis of binary data, London: Chapman and Hall.
    Dadson, S. J.(2004), “ Erosion of an active mountain belt”, University of Cambridge Department of Earth Sciences, Ph.D. Thesis.
    Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., and Paudyal, P.(2008a), “Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence”, Geomorphology, 102(3-4), pp. 496-510.
    Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., and Nishino, K.(2008b), “GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping”, Environmental Geology, 54(2), pp. 311-324.
    Dai, F. C., and Lee, C. F.(2001), “Terrain-based mapping of landslide susceptibility using a geographical information system: A case study”, Canadian Geotechnical Journal, 38(5), pp. 911-923.
    Dai, F. C., Lee, C. F., Li, J., and Xu, Z. W.(2001), “Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong”, Environmental Geology, 40(3), pp. 381-391.
    Dai, F. C., and Lee, C. F.(2003), “A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression”, Earth Surface Processes and Landforms, 28(5), pp. 527-545.
    Das, I., Sahoo, S., van Westen, C., Stein, A., and Hack, R.(2010), “Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the Northern Himalayas (India)”, Geomorphology, 114(4), pp. 627-637.
    Davis, J. C., Chung, C. J., and Ohlmacher, G. C.(2006), “Two models for evaluating landslide hazards”, Computers and Geosciences, 32(8), pp. 1120-1127.
    Dominguez-Cuesta, M. J., Jimenez-Sanchez, M., and Berrezueta, E.(2007), “Landslides in the central coalfield (Cantabrian Mountains, NW Spain): Geomorphological features, conditioning factors and methodological implications in susceptibility assessment”, Geomorphology, 89(3-4), pp. 358-369.
    Dominguez-Cuesta, M. J., Jimenez-Sanchez, M., Colubi, A., and Gonzalez-Rodriguez, G.(2010), “Modelling shallow landslide susceptibility: A new approach in logistic regression by using favourability assessment”, International Journal of Earth Sciences, 99(3), pp. 661-674.
    Ercanoglu, M., and Gokceoglu, C.(2004), “Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey)”, Engineering Geology, 75(3-4), pp. 229-250.
    Ercanoglu, M., Gokceoglu, C., and Van Asch, T. W. J.(2004), “Landslide susceptibility zoning North of Yenice (NW Turkey) by multivariate statistical techniques”, Natural Hazards, 32(1), pp. 1-23.
    Ercanoglu, M., Kasmer, O., and Temiz, N.(2008), “Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping”, Bulletin of Engineering Geology and the Envioronment, 67(4), pp. 565-578.
    Ermini, L., Catani, F., and Casagli, N.(2005), “Artificial neural networks applied to landslide susceptibility assessment”, Geomorphology, 66(1-4), pp. 327-343.
    Falaschi, F., Giacomelli, F., Federici, P. R., Puccinelli, A., Avanzi, G. D., Pochini, A., and Ribolini, A.(2009), “Logistic regression versus artificial neural networks: Landslide susceptibility evaluation in a sample area of the Serchio River Valley, Italy”, Natural Hazards, 50(3), pp. 551-569.
    Fernandez, C. I., Del Castillo, T. F., El Hamdouni, R., and Montero, J. C.(1999), “Verification of landslide susceptibility mapping: A case study”, Earth Surface Processes and Landforms, 24(6), pp. 537-544.
    Fernandez, T., Irigaray, C., El Hamdouni, R., and Chacon, J.(2003), “Methodology for landslide susceptibility mapping by means of a GIS. Application to the contraviesa area (Granada, Spain)”, Natural Hazards, 30(3), pp. 297-308
    Garcia-Rodriguez, M. J., Malpica, J. A., Benito, B., and Diaz, M.(2008), “Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression”, Geomorphology, 95(3-4), pp. 172-191.
    Geli, L., Bard, P. Y., and Jullien, B.(1988), “The effect of topography on earthquake ground motion - a review and new results”, Bulletin of the Seismological Society of America, 78(1), pp. 42-63.
    Gokceoglu, C., and Aksoy, H.(1996), “Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques”, Engineering Geology, 44(1-4), pp. 147-161.
    Gomes, A., Gaspar, J. L., Goulart, C., and Queiroz, G.(2005), “Evaluation of landslide susceptibility of Sete Cidades Volcano (S. Miguel Island, Azores)”, Natural Hazards and Earth System Sciences, 5(2), pp. 251-257.
    Gomez, H., and Kavzoglu, T.(2005), “Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela”, Engineering Geology, 78(1-2), pp. 11-27.
    Gorsevski, P. V., Gessler, P., and Foltz, R. B.(2000), “Spatial prediction of landslide hazard using discriminant analysis and GIS”, GIS in the Rockies 2000 Conference and Workshop, Denver, Colorado.
    Graves, R. W.(1996), “Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences”, Bulletin of the Seismological Society of America, 86(4), pp. 1091-1106
    Greco, R., Sorriso-Valvo, M., and Catalano, E.(2007), “Logistic regression analysis in the evaluation of mass movements susceptibility: The aspromonte case study, Calabria, Italy”, Engineering Geology, 89(1-2), pp. 47-66.
    Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.(1999), “Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy”, Geomorphology, 31(1-4), pp. 181-216.
    Hair, J. F., Black, B., Babin, B., Anderson, R. E., and Tatham, R. L.(2006), Multivariate data analysis (6th ed.), Upper Saddle River, N.J.: Prentice Hall.
    Harp, E. L., and Jibson, R. W.(1995), “Seismic instrumentation of landslides - building a better model of dynamic landslide behavior”, Bulletin of the Seismological Society of America, 85(1), pp. 93-99.
    Harp, E. L., and Jibson, R. W.(1996), “Landslides triggered by the 1994 Northridge, California, earthquake”, Bulletin of the Seismological Society of America, 86(1), pp. S319-S332.
    Harp, E. L., and Jibson, R. W.(2002), “Anomalous concentrations of seismically triggered rock falls in pacoima canyon: Are they caused by highly susceptible slopes or local amplification of seismic shaking?”, Bulletin of the Seismological Society of America, 92(8), pp. 3180-3189.
    Horton, R. E.(1945), “Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology”, Geological Society of America Bulletin, 56, pp. 275-370.
    Hosmer, D. W., and Lemeshow, S.(1989), Applied logistic regression, New York: Wiley.
    Hosmer, D. W., and Lemeshow, S.(2000), Applied logistic regression(2nd ed.), edited by: al., N. A. C. C. e., New York: Wiley.
    Hovius, N., Stark, C. P., and Allen, P. A.(1997), “Sediment flux from a mountain belt derived by landslide mapping”, Geology, 25(3), pp. 231-234.
    Jibson, R. W.(1987), “Summary of research on the effects of topographic amplification of earthquake shaking on slope stability”, U. S. Geological Survey, Open-File Report 87-268.
    Jibson, R. W., Harp, E. L., and Michael, J. A.(2000), “A method for producing digital probabilistic seismic landslide hazard maps”, Engineering Geology, 58(3-4), pp. 271-289.
    Keefer, D. K.(1984), “Landslides caused by earthquakes”, Geological Society of America Bulletin, 95, pp. 406-421.
    Keefer, D. K.(2000), “Statistical analysis of an earthquake-induced landslide distribution - the 1989 Loma Prieta, California event”, Engineering Geology, 58(3-4), pp. 231-249.
    Kojima, H., and Obayashi, S.(2006), “An inverse analysis of unobserved trigger factor for slope stability evaluation”, Computers & Geosciences, 32(8), pp. 1069-1078.
    Koukis, G., and Ziourkas, C.(1991), “Slope instability phenomena in greece:a statistical analysis”, Bulletin of the International Association of Engineering Geology, 43, pp. 47-60.
    Lan, H. X., Zhou, C. H., Wang, L. J., Zhang, H. Y., and Li, R. H.(2004), “Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China”, Engineering Geology, 76(1-2), pp. 109-128.
    Lee, C. T., Cheng, C. T., Liao, C. W., and Tsai, Y. B.(2001), “Site classification of Taiwan free-field strong-motion stations”, Bulletin of the Seismological Society of America, 91(5), pp. 1283-1297.
    Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., and Dong, J. J.(2008), “Statistical approach to earthquake-induced landslide susceptibility”, Engineering Geology, 100(1-2), pp. 43-58.
    Lee, S.-T., Yu, T.-T., Peng, W.-F., and Wang, C.-L.(2010), “Incorporating the effects of topographic amplification in the analysis earthquake-induced landslide hazards using logistic regression”, Natural Hazards and Earth System Sciences, DOI:10.5194/nhess-10-1-20109.
    Lee, S., and Min, K.(2001), “Statistical analysis of landslide susceptibility at Yongin, Korea”, Environmental Geology, 40(9), pp. 1095-1113.
    Lee, S., Chwae, U., and Min, K. D.(2002), “Landslide susceptibility mapping by correlation between topography and geological structure: The Janghung area, Korea”, Geomorphology, 46(3-4), pp. 149-162.
    Lee, S.(2004), “Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS”, Environmental Management, 34(2), pp. 223-232.
    Lee, S.(2005), “Application and cross-validation of spatial logistic multiple regression for landslide susceptibility analysis”, Geosciences Journal, 9(1), pp. 63-71.
    Lee, S., and Evangelista, D. G.(2006), “Earthquake-induced landslide-susceptibility mapping using an artificial neural network”, Natural Hazards and Earth System Sciences, 6(5), pp. 687-695.
    Lee, S., and Sambath, T.(2006), “Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models”, Environmental Geology, 50(6), pp. 847-855.
    Lee, S.(2007), “Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea”, Earth Surface Processes and Landforms, 32(14), pp. 2133-2148.
    Lee, S., and Pradhan, B.(2007), “Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models”, Landslides, 4(1), pp. 33-41.
    Lee, S., Ryu, J. H., and Kim, I. S.(2007), “Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: Case study of Youngin, Korea”, Landslides, 4(4), pp. 327-338.
    Lin, C. W., Shieh, C. L., Yuan, B. D., Shieh, Y. C., Liu, S. H., and Lee, S. Y.(2004), “Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: Example from the Chenyulan river watershed, Nantou, Taiwan”, Engineering Geology, 71(1-2), pp. 49-61.
    Lin, C. W., Liu, S. H., Lee, S. Y., and Liu, C. C.(2006), “Impacts of the chi-chi earthquake on subsequent rainfall-induced landslides in Central Taiwan”, Engineering Geology, 86(2-3), pp. 87-101.
    Lin, G. W., Chen, H., Chen, Y. H., and Homg, M. J.(2008), “Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge”, Engineering Geology, 97(1-2), pp. 32-41.
    Lin, M. L., and Tung, C. C.(2004), “A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake”, Engineering Geology, 71(1-2), pp. 63-77.
    Liu, J. G., Mason, P. J., Clerici, N., Chen, S., Davis, A., Miao, F., Deng, H., and Liang, L.(2004), “Landslide hazard assessment in the three Gorges area of the Yangtze River using Aster Imagery: Zigui-Badong”, Geomorphology, 61(1-2), pp. 171-187.
    Luzi, L., and Pergalani, F.(2000), “A correlation between slope failures and accelerometric parameters: The 26 september 1997 earthquake (Umbria-Marche, Italy)”, Soil Dynamic and Earthquake Engineering, 20(5-8), pp. 301-313.
    Mathew, J., Jha, V. K., and Rawat, G. S.(2007), “Application of binary logistic regression analysis and its validation for landslide susceptibility mapping in part of Garhwal Himalaya, India”, International Journal of Remote Sensing, 28(10), pp. 2257-2275.
    Maxx Dilley, Robert S. Chen, Deichmann, U., Lerner-Lam, A. L., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B., and Yetman, G.(2005), “Natural disaster hotspots: A global risk analysis”, World Bank and Columbia University.
    Menard, S.(2002), Applied logistic regression analysis(2nd ed.), edited by: Lewis-Beck, M. S., Thousand Oaks, Calif.: Sage.
    Moreiras, S. M.(2005), “Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina”, Geomorphology, 66(1-4), pp. 345-357.
    Murphy, W., Petley, D. N., Bommer, J., and Mankelow, J. M.(2002), “Uncertainty in ground motion estimates for the evaluation of slope stability during earthquakes”, Quarterly Journal of Engineering Geology and Hydrogeology, 35, pp. 71-78.
    Nagarajan, R., Roy, A., Kumar, R. V., Mukherjee, A., and Khire, M. V.(2000), “Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions”, Bulletin of Engineering Geology and the Environment, 58(4), pp. 275-287.
    Nagarajan, R.(2002), “Rapid assessment procedure to demarcate areas susceptible to earthquake-induced ground failures for environment management – a case study from parts of Northeast India”, Bulletin of Engineering Geology and the Environment, 61(2), pp. 99-119.
    Nagelkerke, N. J. D.(1991), “A note on a general definition of the coefficient of determination”, Biometrika, 78(3), pp. 691-692.
    Newmark, N. M.(1965), “Effects of earthquake on dams and embankments.”, Geotechnique, 15(2), pp. 139-159.
    Ohlmacher, G. C., and Davis, J. C.(2003), “Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA”, Engineering Geology, 69(3-4), pp. 331-343.
    Ohminato, T., and Chouet, B. A.(1997), “A free-surface boundary condition for including 3D topography in the finite-difference method”, Bulletin of the Seismological Society of America, 87(2), pp. 494-515.
    Paolucci, R.(2002), “Amplification of earthquake ground motion by steep topographic irregularities”, Earthquake Engineering & Structural Dynamics, 31(10), pp. 1831-1853.
    Pelaez, J. A., Delgado, J., and Casado, C. L.(2005), “A preliminary probabilistic seismic hazard assessment in terms of Arias intensity in Southeastern Spain”, Engineering Geology, 77(1-2), pp. 139-151.
    Peng, W. F., Wang, C. L., Chen, S. T., and Lee, S. T.(2009a), “A seismic landslide hazard analysis with topographic effect, a case study in the 99 Peaks region, Central Taiwan”, Environmental Geology, 57(3), pp. 537-549.
    Peng, W. F., Wang, C. L., Chen, S. T., and Lee, S. T.(2009b), “Incorporating the effects of topographic amplification and sliding areas in the modeling of earthquake-induced landslide hazards, using the cumulative displacement method”, Computers & Geosciences, 35(5), pp. 946-966.
    Perotto-Baldiviezo, H. L., Thurow, T. L., Smith, C. T., Fisher, R. F., and Wu, X. B.(2004), “GIS-based spatial analysis and modeling for landslide hazard assessment in steeplands, Southern Honduras”, Agriculture Ecosystems & Environment, 103(1), pp. 165-176.
    Pradhan, B.(2010), “Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia”, Advances in Space Research, 45(10), pp. 1244-1256.
    Ramli, M. F., Yusof, N., Yusoff, M. K., Juahir, H., and Shafri, H. Z. M.(2010), “Lineament mapping and its application in landslide hazard assessment: A review”, Bulletin of Engineering Geology and the Environment, 69(2), pp. 215-233.
    Remondo, J., Gonzalez-Diez, A., De Teran, J. R. D., and Cendrero, A.(2003), “Landslide susceptibility models utilising spatial data analysis techniques. A case study from the lower Deba Valley, Guipuzcoa (Spain)”, Natural Hazards, 30(3), pp. 267-279.
    Santacana, N., Baeza, B., Corominas, J., De Paz, A., and Marturia, J.(2003), “A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet area (Eastern Pyrenees, Spain)”, Natural Hazards, 30(3), pp. 281-295.
    Sepulveda, S. A., Murphy, W., Jibson, R. W., and Petley, D. N.(2005a), “Seismically induced rock slope failures resulting from topographic amplification of strong ground motions: The case of Pacoima Canyon California”, Engineering Geology, 80(3-4), pp. 336-348.
    Sepulveda, S. A., Murphy, W., and Petley, D. N.(2005b), “Topographic controls on coseismic rock slides during the 1999 Chi-Chi earthquake, Taiwan”, Quarterly Journal of Engineering Geology and Hydrogeology, 38, pp. 189-196.
    Smart, J. S.(1968), “Statistical properties of stream lengths”, Water Resources Research, 4, pp. 1001-1014.
    Stafford, P., Berrill, J., and Pettinga, J.(2009), “New predictive equations for arias intensity from crustal earthquakes in New Zealand”, Journal of Seismology, 13(1), pp. 31-52.
    Strahler, A. N.(1952), “Hypsometric (area-altitude) analysis of erosional topography”, Geological Society of America Bulletin, 63, pp. 1117-1142.
    Suzen, M. L., and Doyuran, V.(2004), “A comparison of the gis based landslide susceptibility assessment methods: Multivariate versus bivariate”, Environmental Geology, 45(5), pp. 665-679.
    Tabachnick, B. G., and Fidell, L. S.(2001), Using multivariate statistics(4th ed.), Boston, MA: Allyn & Bacon.
    Turcotte, D. L.(1997), Fractals and Chaos in geology and geophysics, Cambridge: Cambridge Univ. Press.
    Upton, G. J. G., and Fingleton, B.(1989), Spatial data analysis by example John Wiley.
    Uromeihy, A., and Mahdavifar, M. R.(2000), “Landslide hazard zonation of the Khorshrostam area, Iran”, Landslide hazard zonation of the Khorshrostam area, 58(3), pp. 207-213.
    Vahidnia, M. H., Alesheikh, A. A., Alimohammadi, A., and Hosseinali, F.(2009), “Landslide hazard zonation using quantitative methods in GIS”, International Journal of Civil Engineering, 7(3), pp. 176-189.
    Van Westen, C. J., Rengers, N., and Soeters, R.(2003), “Use of geomorphological information in indirect landslide susceptibility assessment”, Natural Hazards, 30(3), pp. 399-419.
    van Westen, C. J., van Asch, T. W. J., and Soeters, R.(2006), “Landslide hazard and risk zonation - why is it still so difficult?”, Bulletin of Engineering Geology and the Envioronment, 65(2), pp. 167-184.
    vanWesten, C. J., Rengers, N., Terlien, M. T. J., and Soeters, R.(1997), “Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation”, Geologische Rundschau, 86(2), pp. 404-414.
    Wang, H. B., Sassa, K., and Xu, W. Y.(2007), “Assessment of landslide susceptibility using multivariate logistic regression: A case study in Southern Japan”, Environmental & Engineering Geoscience, 13(2), pp. 183-192.
    Wang, H. B., Wang, G., Wang, F., Sassa, K., and Chen, Y. P.(2008), “Probabilistic modeling of seismically triggered landslides using Monte Carlo simulations”, Landslides, 5(4), pp. 387-395.
    Weissel, J. K., and Stark, C. P.(2001), Landslides triggered by the 1999 Mw7.6 Chi Chi earthquake in Taiwan and their relationship to topography, International Geoscience and Remote Sensing Symposium (IGARSS).
    Wilson, J. P., and Gallant, J. C.(2000), Digital terrain analysis, Terrain analysis-principles and applications, edited by: Wilson, J. P., and Gallant, J. C., New York: John Wiley&Sons.
    Yilmaz, I.(2009), “Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey)”, Computers & Geosciences, 35(6), pp. 1125-1138.
    Zezere, J. L., Reis, E., Garcia, R., Oliveira, S., Rodrigues, M. L., Vieira, G., and Ferreira, A. B.(2004), “Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal)”, Natural Hazards and Earth System Sciences, 4(1), pp. 133-146.

    下載圖示 校內:2013-01-28公開
    校外:2013-01-28公開
    QR CODE