簡易檢索 / 詳目顯示

研究生: 胡博堯
Hu, Bo-Yao
論文名稱: 自行車煞車套件性能檢測機構設計開發
Design and development of bicycle brake kit performance testing mechanism
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 71
中文關鍵詞: 自動化煞車性能測試測試載台設計
外文關鍵詞: Automation, brakes, performance testing, test platform design
相關次數: 點閱:31下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自行車作為人們常用的交通工具,隨著時代演變,自行車的功能早已不再侷限於基本的移動手段,而是逐漸延伸至休閒、運動、競賽乃至日常通勤等多元化用途。在此背景下,自行車煞車系統所承受的負荷亦同步增加,對其性能與可靠性的要求變得更加嚴格。良好的煞車效能不僅關乎騎乘者的安全,也影響整體車輛的控制穩定性。因此,煞車套件的性能檢測成為產品開發與品管流程中的關鍵環節。然而,傳統煞車套件的測試方式往往仰賴將產品實際安裝於測試機台或整車上,並透過長時間模擬真實騎乘情境進行測試,以評估其耐用性與效能表現。此類方法不僅耗時耗力,還需動用大量人力與設備資源,造成檢測成本偏高,且難以實現即時監控與快速回饋。
    為了解決上述問題,本研究開發出一套創新的煞車性能檢測設備,能夠有效模擬自行車實際運行過程中的動態狀況,包括不同速度、負載、氣候條件(如濕滑、高溫或低溫)以及緊急制動情境。此設備搭載感測器模組與數位控制單元,可即時量測煞車力道、反應時間、溫升變化與摩擦係數等關鍵指標,並透過物聯網技術將量測數據同步傳輸至雲端平台或本地電腦進行分析。使用者可即時監控煞車系統的性能變化,快速做出調整或品管決策。此技術不僅有效提升測試效率與資料精度,也大幅降低了產品測試的時間與人力成本,對於自行車製造業者而言,是一項具高附加價值的工具,亦可望作為未來智慧製造與產品驗證的重要支援系統之一。

    As a commonly used means of transportation, bicycles have evolved significantly over time. Their function is no longer limited to basic mobility, but has expanded to encompass diverse applications such as recreation, sports, competition, and daily commuting. Against this backdrop, the load borne by bicycle braking systems has also increased accordingly, resulting in more stringent requirements for their performance and reliability. Effective braking is not only critical to rider safety but also influences the overall stability and control of the bicycle.
    As a result, the performance testing of brake components has become a key step in product development and quality control processes. However, traditional methods for testing brake systems typically rely on mounting the product onto a test rig or a complete bicycle, followed by prolonged simulation of real-world riding scenarios to evaluate durability and performance. Such approaches are time-consuming and labor-intensive, requiring significant human and equipment resources, which leads to high testing costs and limits the ability to achieve real-time monitoring and rapid feedback.
    To address these challenges, this study proposes an innovative braking performance testing system capable of accurately simulating the dynamic conditions encountered during actual bicycle operation. These include variations in speed, load, environmental conditions (such as wet, high-temperature, or low-temperature environments. The system integrates a sensor module and digital control unit to continuously monitor key parameters such as braking force, response time, temperature rise, and coefficient of friction. Measurement data is transmitted in real time to a cloud platform or local computer using IoT technology for further analysis.
    The proposed system not only enhances testing efficiency and data accuracy but also significantly reduces the time and labor costs associated with product testing. For bicycle manufacturers, it serves as a high-value-added tool and holds promise as a key support system in the future of smart manufacturing and product validation.

    摘要 I EXTENDED ABSTRACT II 誌謝 XXVIII 目錄 XXIX 圖目錄 XXX 表目錄 XXXI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文獻回顧 2 1.4 論文架構 10 第二章 系統架構設計 12 2.1系統架構介紹 12 2.2 機構設計 12 2.3電控設計 18 第三章 機構測試結果 21 3.1煞車性能測試參數 21 3.2測試機構改善 22 3.3測試流程改善 23 第四章 結論 36 參考文獻 37

    [1] N. M. o. Australia, "Harry Clarke’s penny farthing bicycle." National Museum of Australia. https://www.nma.gov.au/explore/collection/highlights/harry-clarkes-penny-farthing-bicycle (accessed April 29, 2025).
    [2] P. Sareh, "The aesthetics of sustainable industrial design: Form and function in the circular design process." Sustainable Development, Vol. 32, No. 1, pp. 1310-1320, 2024, doi: https://doi.org/10.1002/sd.2731.
    [3] F. J. Berto, "bicycle." Encyclopaedia Britannica. https://www.britannica.com/ technology/bicycle (accessed Apr. 27, 2025).
    [4] S. M. Group, "Rover 'Safety' Bicycle, 1885." Science Museum Group. https:// collection.sciencemuseumgroup.org.uk/objects/co25833/rover-safety-bicycle-1885 (accessed April 28, 2025).
    [5] P. DeMaio, "Bike-sharing: History, Impacts, Models of Provision, and Future." Journal of Public Transportation, Vol. 12, No. 4, pp. 41-56, 2009/10/01/ 2009, doi: https://doi.org/10.5038/2375-0901.12.4.3.
    [6] M. Mendes, G. Duarte, and P. Baptista. "Introducing specific power to bicycles and motorcycles: Application to electric mobility." Transportation Research Part C: Emerging Technologies, Vol. 51, pp. 120-135, 2015/02/01/ 2015, doi: https://doi.org/ 10.1016/j.trc.2014.11.005.
    [7] Q. Chen, S. Ma, H. Li, N. Zhu, and Q.-C. He. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach." Transportation Research Part E: Logistics and Transportation Review, Vol. 184, p. 103477, 2024/04/01/ 2024, doi: https://doi.org/10.1016/j.tre.2024.103477.
    [8] J. Dill and G. Rose. "E-bikes and transportation policy: Insights from early adopters." Transportation Research Record, Vol. 2314, pp. 1-6, 2012.
    [9] P. Huertas-Leyva, M. Dozza, and N. Baldanzini. "Investigating cycling kinematics and braking maneuvers in the real world: e-bikes make cyclists move faster, brake harder, and experience new conflicts." Transportation Research Part F: Traffic Psychology and Behaviour, Vol. 54, pp. 211-222, 2018/04/01/2018, doi: https://doi. org/10.1016/j.trf.2018.02.008.
    [10] E. Fishman and C. Cherry. "E-bikes in the mainstream: Reviewing a decade of research." Transport Reviews, Vol. 36, No. 1, pp. 72-91, 2016/01/02 2016, doi: 10.1080/01441647.2015.1069907.
    [11] M. Salman, S. Chaturvedi, and W. Su. "Comprehensive study of E-bike braking dynamics: Modeling, simulation, and experimental validation," IEEE Access, Vol. 13, pp. 14998-15013, 2025, doi: 10.1109/ACCESS.2025.3532296.
    [12] F. Anderson. "Mechanical disc brakes explained | The pros, cons and how to service them." bikeradar. https://www.bikeradar.com/advice/buyers-guides/mechanical-disc- brakes (accessed January 17, 2025).
    [13] T. Asokan, U. Nirmal, and S. T. W. Lau, "Review on Research and Developments of Bicycle Brake Calipers using Natural Fiber," ABC Research Alert, Vol 5, No. 2, pp. 9-32, 2017.
    [14] MBR. "Magura launches MT7 and MT5 four piston brakes." MBR. https://www.mbr.co.uk/news/product_news/magura-launches-mt7-and-mt5-four-piston-brakes-321373 (accessed April 28, 2025).
    [15] Shimano. "BR-M375 機械式碟煞卡鉗." Shimano Bike Official. https://bike. shimano.com/zh-TW/products/components/pdp.P-BR-M375.html (accessed April 28, 2025).
    [16] Shimano. "BR-R353 V-BRAKE 煞車卡鉗." Shimano Bike Official. https://bike. shimano.com/zh-TW/products/components/pdp.P-BR-R353.html (accessed April 28, 2025).
    [17] A. Posmyk and M. Jezusek. "Influence of bicycle brake system on users safety." Quarterly Tribologia, Vol. 278, No. 2, pp. 111-116, 2018.
    [18] O. Maier, M. Pfeiffer, and J. Wrede. "Development of a braking dynamics assistance system for electric bicycles: design, implementation, and evaluation of road tests." IEEE/ASME Transactions on Mechatronics, Vol. 21, No. 3, pp. 1671-1679, 2016, doi: 10.1109/TMECH.2015.2505186.
    [19] A. Carbon. "檢驗與測試設備." AWF Carbon. https://awfcarbon.com/%E6%AA% A2%E9%A9%97%E8%88%87%E6%B8%AC%E8%A9%A6%E8%A8%AD%E5%82%99/ (accessed April 29, 2025).
    [20] O. Maier, B. Györfi, J. Wrede, T. Arnold, and A. Moia. "In-depth analysis of bicycle hydraulic disc brakes." Mechanical Systems and Signal Processing, Vol. 95, pp. 310-323, 2017/10/01/2017, doi: https://doi.org/10.1016/j.ymssp.2017.03.044.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE