簡易檢索 / 詳目顯示

研究生: 謝思筠
Hsieh, Szu-Yun
論文名稱: 鉍基氧化物常溫碳酸化反應機制與結構關聯性之研究
Correlation between Crystal Structure and Carbonation Mechanism of Bismuth-based Oxides under Ambient Conditions
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 119
中文關鍵詞: BiOClBi12O17Cl2α-Bi2O3結構相似性碳捕捉
外文關鍵詞: BiOCl, Bi12O17Cl2, α-Bi2O3, structural similarity, carbon capture
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract II 致謝 XXXI 目錄 . XXXIII 表目錄 XXXVI 圖目錄 XXXVII 第一章 緒論1 1.1前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1鉍基氧化物 3 2.1.1 BiOCl 3 2.1.2 Bi12O17Cl2 4 2.1.3 α-Bi2O3 5 2.1.4 Bi2O2CO3 6 2.2晶格匹配性 (Lattice matching) 7 2.3 陰離子置換 9 2.4 二氧化碳捕捉技術 9 2.4.1 碳捕捉之化學吸收技術10 2.4.2 碳捕捉之物理吸附技術 10 2.4.3 氧化物碳捕捉之發展 11 第三章 研究方法 12 3.1 實驗藥品 12 3.2 鉍基氧化物合成 13 3.2.1 常溫化學沉澱法之不同氫氧化鈉濃度合成鉍基結構 13 3.2.2 化學沉澱法合成α-Bi2O3 14 3.3 碳酸化實驗 15 3.3.1 碳酸鈉水溶液反應實驗 15 3.3.2 室溫二氧化碳水溶液碳捕捉實驗 17 3.4 鉍基氧化物材料性質分析 18 3.4.1 X 射線繞射儀 (X-ray Diffraction, XRD) 18 3.4.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 19 3.4.3 傅立葉轉換紅外線 譜儀 (Fourier Transform Infrared Spectroscopy, FTIR, EQUINOX 55 Burker-AXS) 20 3.4.4 拉曼 譜儀 (Raman) 21 3.4.5 紫外可見 分 譜儀 21 3.4.6 穿透式電子顯微鏡 ( Transmission Electron Microscope, TEM) 22 3.4.7 熱重差同步分析儀 23 3.4.8 X 電子能譜儀 ( X-ray Photoelectron Spectrometer, XPS ) 23 3.4.9 結構模擬軟體 (Biovia Material Studio) 24 第四章 結果與討論 25 4.1 鉍基氧化物結構相似性25 4.1.1 化學沉澱法氫氧化鈉濃度調控之結晶結構 25 4.1.2 鉍基氧化物之結構及晶格相似性 29 4.2 鉍氯氧鉍基氧化物碳酸化反應 34 4.2.1 BiOCl 碳酸化轉變行為 34 4.2.2 Bi12O17Cl2 碳酸化反應 39 4.3 α-Bi2O3 碳酸化反應 43 4.3.1 不同形貌之 α-Bi2O3 合成 43 4.3.2 α-Bi2O3 碳酸化反應 46 4.4 鉍基氧化物之常溫CO2 捕捉 54 4.4.1 BiOCl之常溫CO2 捕捉條件 55 4.4.2 α-Bi2O3之常溫CO2 捕捉條件 57 4.4.3 鉍氯氧化物之碳酸化反應機制 58 4.4.4 α-Bi2O3之碳酸化機制討論 61 4.4.5 α-Bi2O3之回復性評估 63 第五章 結論 71 參考文獻 72

    [1] M. Bexell and K. Jönsson. Responsibility and the United Nations’ sustainable development goals. in Forum for development studies. 2017. Taylor & Francis.
    [2] N.K. Arora and I. Mishra, United Nations Sustainable Development Goals 2030 and environmental sustainability: race against time, Environ. Sustainability, 2, 339-342, 2019
    [3] L. Carlsen and R. Bruggemann, The 17 United Nations’ sustainable development goals: A status by 2020, International Journal of Sustainable Development & World Ecology, 29, 219-229, 2022
    [4] K. Cho and C. Kim, Enhanced mineral carbonation at room temperature through MgO nanocubes synthesized by self-combustion, J. Environ. Chem. Eng., 9, 105592, 2021
    [5] A.H. Assen, Y. Belmabkhout, K. Adil, A. Lachehab, H. Hassoune, and H. Aggarwal, Advances on CO2 storage. Synthetic porous solids, mineralization and alternative solutions, Chem. Eng. J., 419, 129569, 2021
    [6] X. Sun, H. Huang, Q. Zhao, T. Ma, and L. Wang, Thin‐layered photocatalysts, Advanced Functional Materials, 30, 1910005, 2020
    [7] Y. Zhou, Z. Xu, L. Tang, J. Qin, G. Lu, H. Dong, Z. Bian, and M. Zhu, Internal electric field facilitates facet-dependent photocatalytic Cl–utilization on BiOCl in high-salinity wastewater for ammonium removal, Environmental Science & Technology, 58, 6049-6057, 2024
    [8] S. Wang, H. Yin, P. Li, J. Ding, L. Wang, Y. Zhou, and J. Wang, Controlled preparation of Bi/BiOCl with enhanced catalytic activity for organic pollutant under visible light using one-pot hydrothermal technology, Chemosphere, 307, 136188, 2022
    [9] N. Tahmasebi, Z. Maleki, and P. Farahnak, Enhanced photocatalytic activities of Bi2WO6/BiOCl composite synthesized by one-step hydrothermal method with the assistance of HCl, Materials Science in Semiconductor Processing, 89, 32-40, 2019
    [10] X. Xiao, R. Hao, M. Liang, X. Zuo, J. Nan, L. Li, and W. Zhang, One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A, Journal of hazardous materials, 233, 122-130, 2012
    [11] J. Di, J. Xia, S. Yin, H. Xu, L. Xu, Y. Xu, M. He, and H. Li, One-pot solvothermal synthesis of Cu-modified BiOCl via a Cu-containing ionic liquid and its visible-light photocatalytic properties, RSc Advances, 4, 14281-14290, 2014
    [12] D. Kato, O. Tomita, R. Nelson, M.A. Kirsanova, R. Dronskowski, H. Suzuki, C.Zhong, C. Tassel, K. Ishida, and Y. Matsuzaki, Bi12O17Cl2 with a Sextuple Bi-O Layer Composed of Rock‐Salt and Fluorite Units and its Structural Conversion through Fluorination to Enhance Photocatalytic Activity, Advanced Functional Materials, 32, 2204112, 2022
    [13] M. Passi and B. Pal, Recent advances on visible light active non-typical stoichiometric oxygen-rich Bi12O17Cl2 photocatalyst for environment pollution remediation, Journal of Environmental Chemical Engineering, 10, 107688, 2022
    [14] Z. Long, G. Xian, G. Zhang, T. Zhang, and X. Li, BiOCl-Bi12O17Cl2 nanocomposite with high visible-light photocatalytic activity prepared by an ultrasonic hydrothermal method for removing dye and pharmaceutical, Chinese Journal of Catalysis, 41, 464-473, 2020
    [15] M. Guan, N. Lu, X. Zhang, Q. Wang, J. Bao, G. Chen, H. Yu, H. Li, J. Xia, and X. Gong, Engineering of oxygen vacancy and bismuth cluster assisted ultrathin Bi12O17Cl2 nanosheets with efficient and selective photoreduction of CO2 to CO, Carbon Energy, 6, e420, 2024
    [16] J. Di, C. Zhu, M. Ji, M. Duan, R. Long, C. Yan, K. Gu, J. Xiong, Y. She, and J. Xia, Defect‐rich Bi12O17Cl2 nanotubes self‐accelerating charge separation for boosting photocatalytic CO2 reduction, Angewandte Chemie International Edition, 57, 14847-14851, 2018
    [17] Y. Cui, D. Hu, S. Wang, J. Liu, R. Shi, and H. Wang, Preparation of carbon quantum dots/Bi12O17Cl2 semiconductor composite and its enhanced photocatalytic oxygen evolution performance, International Journal of Electrochemical Science, 18, 100047, 2023
    [18] J. Zheng, F. Chang, M. Jiao, Q. Xu, B. Deng, and X. Hu, A visible-light-driven heterojuncted composite WO3/Bi12O17Cl2: Synthesis, characterization, and improved photocatalytic performance, Journal of Colloid and Interface Science, 510, 20-31, 2018
    [19] F. Chang, F. Wu, W. Yan, M. Jiao, J. Zheng, B. Deng, and X. Hu, Oxygen-rich bismuth oxychloride Bi12O17Cl2 materials: construction, characterization, and sonocatalytic degradation performance, Ultrasonics sonochemistry, 50, 105-113, 2019
    [20] X. Sun, Y. Qi, L. Liao, B. Wang, H. Liu, Z. Li, and W. Zhou, In-Situ Self-Assembly of Bi/Bi12O17Cl2 three-dimensional architecture with intimate interface towards Optimized photocatalytic performance, Applied Surface Science, 698, 163099, 2025
    [21] G.D. Fao, K.W. Yizengaw, and J.-C. Jiang, Mechanistic insights for electroreduction of CO2 on pristine monoclinic α-Bi2O3 (120) surface, Molecular Catalysis, 539, 113012, 2023
    [22] G. Guenther and O. Guillon, Solid state transitions of Bi2O3 nanoparticles, Journal of materials research, 29, 1383-1392, 2014
    [23] H.-Y. Jiang, G. Liu, P. Li, D. Hao, X. Meng, T. Wang, J. Lin, and J. Ye, Nanorod-like a-Bi2O3: a highly active photocatalyst synthesized using gC3N4 as a template,
    [24] F. Haider, Z. Gul, and K.A. Khan, Synthesis and Photodegradation of Bi2O3 and Pb-Bi2O3 Nanoparticles and Their Kinetic Study, Journal of the Turkish Chemical Society Section A: Chemistry, 10, 985-1000, 2023
    [25] J. Eberl and H. Kisch, Visible light photo-oxidations in the presence of α-Bi2O3, Photochemical & Photobiological Sciences, 7, 1400-1406, 2008
    [26] S. Hsieh, G. Lee, C. Chen, J. Chen, S. Ma, T. Horng, K. Chen, and J. Wu, Synthesis of Pt doped Bi2O3/RuO2 photocatalysts for hydrogen production from water splitting using visible light, Journal of Nanoscience and Nanotechnology, 12, 5930-5936, 2012
    [27] X. Wang and C. Cheng, Nanosheets Bi2O2CO3 as an Anode Material for Advanced Lithium-Ion Batteries, ACS Applied Nano Materials, 7, 19649-19656, 2024
    [28] Z. Zhao, Y. Hao, X. Song, and Z. Deng, High visible-light rhodamine B degradation activity over two-dimensional Bi2O2CO3/BiOCl heterojunction through the cohesive and efficient electronic transmission channel, J. Mater. Sci.: Mater. Electron., 31, 6726-6734, 2020
    [29] T. Li, X. Hu, C. Liu, C. Tang, X. Wang, and S. Luo, Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation, Journal of Molecular Catalysis A: Chemical, 425, 124-135, 2016
    [30] Y. Huang, W. Fan, B. Long, H. Li, F. Zhao, Z. Liu, Y. Tong, and H. Ji, Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions, Applied Catalysis B: Environmental, 185, 68-76, 2016
    [31] Y. Duan, S. Li, S. Lei, Y. Xu, L. Zou, and B. Ye, A new voltammetric sensor based on reduced graphene oxide loaded flower-like Bi2O2CO3 film for sensitive determination of urapidil, Journal of Electroanalytical Chemistry, 820, 132-139, 2018
    [32] Y. Zhou, H. Wang, M. Sheng, Q. Zhang, Z. Zhao, Y. Lin, H. Liu, and G.R. Patzke, Environmentally friendly room temperature synthesis and humidity sensing applications of nanostructured Bi2O2CO3, Sens. Actuators, B, 188, 1312-1318, 2013
    [33] Y. Lu, Y. Huang, Y. Zhang, J.-j. Cao, H. Li, C. Bian, and S.C. Lee, Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 heterojunctions: Implications of the interfacial charge transfer, NO adsorption and removal, Applied Catalysis B: Environmental, 231, 357-367, 2018
    [34] Q. Zhang, S. Yuan, B. Xu, Y. Xu, K. Cao, Z. Jin, C. Qiu, M. Zhang, C. Su, and T. Ohno, A facile approach to build Bi2O2CO3/PCN nanohybrid photocatalysts for gaseous acetaldehyde efficient removal, Catalysis today, 315, 184-193, 2018
    [35] J. Ma, J. Yan, J. Xu, J. Ni, H. Zhang, and L. Lu, Dynamic ion exchange engineering BiOI-derived Bi2O2CO3 to promote CO2 electroreduction for efficient formate production, Chemical Engineering Journal, 455, 140926, 2023
    [36] S. Xue, W. Huang, W. Lin, W. Xing, M. Shen, X. Ye, X. Liang, C. Yang, Y. Hou, and Z. Yu, Interfacial engineering of lattice coherency at ZnO-ZnS photocatalytic heterojunctions, Chem Catalysis, 2, 125-139, 2022
    [37] Y. Fang and B. Shan, Enhancing charge separation by lattice coherency engineering in heterojunction photocatalysis, Chem Catalysis, 2, 10-12, 2022
    [38] J. Zhao, Q. Wang, C.-M. Fan, X. Yang, P. Tang, and B. Li, ZnIn2S4-based heterostructure photocatalysts for solar energy conversion: A comprehensive review, Journal of Materials Chemistry A, 2025
    [39] X. Shi, K. Xu, Y. He, Z. Peng, X. Meng, F. Wan, Y. Zhang, Q. Guo, and Y. Chen, Strategies for Enhancing Energy-Level Matching in Perovskite Solar Cells: An Energy Flow Perspective, Nano-Micro Letters, 17, 1-33, 2025
    [40] J. Chen, Z. Li, Z. Li, Y. Zhou, and Y. Lai, Lattice-matched spinel/layered double hydroxide 2D/2D heterojunction towards large-current-density overall water splitting, Applied Catalysis B: Environment and Energy, 355, 124204, 2024
    [41] B. Panneerselvam, K. Muniraj, K. Duraisamy, C. Pande, S. Karuppannan, and M. Thomas, An integrated approach to explore the suitability of nitrate-contaminated groundwater for drinking purposes in a semiarid region of India, Environmental Geochemistry and Health, 45, 647-663, 2023
    [42] W.D. Heizer, R.S. Sandler, E. Seal, S.C. Murray, M.G. Busby, B.G. Schliebe, and S.N. Pusek, Intestinal effects of sulfate in drinking water on normal human subjects, Digestive diseases and sciences, 42, 1055-1061, 1997
    [43] Y. Li, H.S. Pillai, T. Wang, S. Hwang, Y. Zhao, Z. Qiao, Q. Mu, S. Karakalos, M. Chen, and J. Yang, High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells, Energy & Environmental Science, 14, 1449-1460, 2021
    [44] J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, and T. Xu, Ion exchange membranes: New developments and applications, Journal of Membrane Science, 522, 267-291, 2017
    [45] J.X. Leong, W.R.W. Daud, M. Ghasemi, K.B. Liew, and M. Ismail, Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review, Renewable and Sustainable Energy Reviews, 28, 575-587,2013
    [46] E. Hidayat, T. Yoshino, S. Yonemura, Y. Mitoma, and H. Harada, Synthesis, adsorption isotherm and kinetic study of alkaline-treated zeolite/chitosan/Fe3+ composites for nitrate removal from aqueous solution—Anion and dye effects, Gels, 8, 782, 2022
    [47] T. Shahryari, P. Singh, P. Raizada, A. Davidyants, L. Thangavelu, S. Sivamani, A. Naseri, F. Vahidipour, A. Ivanets, and A. Hosseini-Bandegharaei, Adsorption properties of Danthron-impregnated carbon nanotubes and their usage for solid phase extraction of heavy metal ions, Colloids and surfaces A: physicochemical and engineering aspects, 641, 128528, 2022
    [48] D. Loachamin, J. Casierra, V. Calva, A. Palma-Cando, E.E. Ávila, and M. Ricaurte, Amine-Based Solvents and Additives to Improve the CO2 Capture Processes: A Review, ChemEngineering, 8, 129, 2024
    [49] M.S.B. Reddy, D. Ponnamma, K.K. Sadasivuni, B. Kumar, and A.M. Abdullah, Carbon dioxide adsorption based on porous materials, RSC advances, 11, 12658-12681, 2021
    [50] G. Gadikota, Carbon mineralization pathways for carbon capture, storage and utilization, Communications Chemistry, 4, 23, 2021
    [51] P. Luis, Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives, Desalination, 380, 93-99, 2016
    [52] W. Fan, Y. Liu, and K. Wang, Detailed experimental study on the performance of Monoethanolamine,Diethanolamine,andDiethylenetriamineat absorption/regeneration conditions, J. Cleaner Prod., 125, 296-308, 2016
    [53] S.Y. Choi, S.C. Nam, Y.I. Yoon, K.T. Park, and S.-J. Park, Carbon dioxide absorption into aqueous blends of methyldiethanolamine (MDEA) and alkyl amines containing multiple amino groups, Industrial & Engineering Chemistry Research, 53, 14451-14461, 2014
    [54] R. Aniruddha, I. Sreedhar, and B.M. Reddy, MOFs in carbon capture-past, present and future, J. CO2 Util., 42, 101297, 2020
    [55] M. Ding, R.W. Flaig, H.-L. Jiang, and O.M. Yaghi, Carbon capture and conversion using metal–organic frameworks and MOF-based materials, Chem. Soc. Rev., 48, 2783-2828, 2019
    [56] J.L. Ortiz-Quiñonez, C.Vega-Verduga, D. Díaz, and I. Zumeta-Dubé, Transformation of bismuth and β-Bi2O3 nanoparticles into (BiO)2CO3 and (BiO)4(OH)2CO3 by capturing CO2: the role of halloysite nanotubes and “sunlight” on the crystal shape and size, Crystal Growth & Design, 18, 4334-4346, 2018
    [57] L. Huang, G. Li, T. Yan, J. Zheng, and L. Li, Uncovering the structural stabilities of the functional bismuth containing oxides: a case study of α-Bi2O3 nanoparticles in aqueous solutions, New J. Chem., 35, 197-203, 2011
    [58] J. Sun, S. Qin, Z. Zhang, C. Li, X. Xu, Z. Li, and X. Meng, Joule heating synthesis of well lattice-matched Co2Mo3O8/MoO2 heterointerfaces with greatly improved hydrogen evolution reaction in alkaline seawater electrolysis with 12.4% STH efficiency, Appl. Catal., B, 338, 123015, 2023
    [59] A. Davies, J.D. Albar, A. Summerfield, J.C. Thomas, T.S. Cheng, V.V. Korolkov, E. Stapleton, J. Wrigley, N.L. Goodey, and C.J. Mellor, Lattice-matched epitaxial graphene grown on boron nitride, Nano Lett., 18, 498-504, 2018
    [60] P. Intaphong, A. Phuruangrat, T. Thongtem, and S. Thongtem, Effect of pH on phase, morphologies, and photocatalytic properties of BiOCl synthesized by hydrothermal method, J. Aust. Ceram. Soc., 56, 41-48, 2020
    [61] M. Malligavathy and D. Pathinettam Padiyan, Role of pH in the hydrothermal synthesis of phase pure alpha Bi2O3 nanoparticles and its structural characterization, Adv. Mater. Processes, 2, 51-55, 2021
    [62] K. Van Balen, Carbonation reaction of lime, kinetics at ambient temperature, Cem. Concr. Res., 35, 647-657, 2005
    [63] H. Zhu, L. Peng, F. Kang, C. Zhi, and C. Yang, Bismuth: An Epitaxy-like Conversion Mechanism Enabled by Intercalation-Conversion Chemistry for Stable Aqueous Chloride-Ion Storage, Journal of the American Chemical Society, 146, 23786-23796, 2024
    [64] Z.-s. Li, F. Fang, X.-y. Tang, and N.-s. Cai, Effect of temperature on the carbonation reaction of CaO with CO2, Energy & Fuels, 26, 2473-2482, 2012
    [65] Z. Li, H. Sun, and N. Cai, Rate equation theory for the carbonation reaction of CaO with CO2, Energy & fuels, 26, 4607-4616, 2012
    [66] E.H. Oelkers, S.R. Gislason, and J. Matter, Mineral carbonation of CO2, Elements, 4, 333-337, 2008
    [67] 陳宗翰, α/δ-Bi2O3同質接面合成與 催化應用, in 資源工程學系. 2021, 國立成功大學: 台南市. p. 92.
    [68] A. Al-Ghamdi, Y. Al-Turki, N.A. Aal, F. Yakuphanoglu, and F. El-Tantawy, Microwave—assisted hydrothermal synthesis of monoclinic bismuth trioxide nanorods: optical and photocatalytic properties, J. Mater. Sci.: Mater. Electron., 28, 8684-8693, 2017
    [69] G.K. Dinesh and R. Saranya, Sonochemical Facile Synthesis of Bismuth Oxide Nanoparticles Using Citrus Lemon Extract and Its Catalytic Activity on Azo Dye Degradation, Water Air Soil Pollut., 235, 621, 2024
    [70] R.L. Frost and J.M. Bouzaid, Raman spectroscopy of dawsonite NaAl (CO3)(OH) 2,Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 38, 873-879, 2007
    [71] W. Mu, L. Wang, J. Xu, and C. Chang, Bi2O2CO3/Bi2O2+ xS1-x S-scheme nn heterojunction with boosted photocatalytic degradation for bisphenol A, J. Environ. Manage., 373, 123597, 2025
    [72] Y. Liu, H. Wang, L. Qian, X. Zhao, L. Yao, J. Wang, X. Xing, G. Mo, Z. Chen, and Z. Wu, Bismuth–iron-based precursor: preparation, phase composition, and two methods of thermal treatment, RSC Adv., 10, 20713-20723, 2020
    [73] Y. Qin, Y. Wang, P. Zhao, X. Liu, Z. Liu, D. Ni, B. Xiao, and Z. Ma, Novel p–n junction photocatalyst of BiOCl/(BiO)2CO3 anchored on RGO with enhanced visible light photocatalytic activity, Appl. Phys. A, 126, 1-9, 2020
    [74] J.T. Kloprogge, D. Wharton, L. Hickey, and R.L. Frost, Infrared and Raman study of interlayer anions CO32–, NO3–, SO42–and ClO4–in Mg/Al-hydrotalcite, Am. Mineral., 87, 623-629, 2002
    [75] P. Madhusudan, J. Ran, J. Zhang, J. Yu, and G. Liu, Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity, Appl. Catal., B, 110, 286-295, 2011
    [76] Z. Ai, Y. Huang, S. Lee, and L. Zhang, Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation, J. Alloys Compd., 509, 2044-2049, 2011
    [77] L. Escobar-Alarcón, T. Klimova, J. Escobar-Aguilar, S. Romero, C. Morales-Ramírez, and D. Solís-Casados, Preparation and characterization of Al2O3–MgO catalytic supports modified with lithium, Fuel, 110, 278-285, 2013
    [78] H. Li, X. Luo, Z. Long, G. Huang, and L. Zhu, Plasmonic Ag nanoparticle-loaded np Bi2O2CO3/α-Bi2O3 heterojunction microtubes with enhanced visible-light-driven photocatalytic activity, Nanomaterials, 12, 1608, 2022
    [79] C. Qin, W. Liu, H. An, J. Yin, and B. Feng, Fabrication of CaO-based sorbents for CO2 capture by a mixing method, Environ. Sci. Technol., 46, 1932-1939, 2012
    [80] T. Harada, F. Simeon, E.Z. Hamad, and T.A. Hatton, Alkali metal nitrate-promoted high-capacity MgO adsorbents for regenerable CO2 capture at moderate temperatures, Chem. Mater., 27, 1943-1949, 2015
    [81] R. Sharifian, R. Wagterveld, I. Digdaya, C.-x. Xiang, and D. Vermaas, Electrochemical carbon dioxide capture to close the carbon cycle, Energy Environ. Sci., 14, 781-814, 2021
    [82] M. Hayward, Topochemical reactions of layered transition-metal oxides, Semicond. Sci. Technol., 29, 064010, 2014
    [83] G. Minart, M. Duttine, A. Iadecola, J.-P. Salvetat, F. Weill, S. Buffiere, R. Wernert, J. Olchowka, and L. Croguennec, New Mn and V-rich phosphate fluoride obtained by topochemical reaction for Na-ion batteries positive electrode, Chem. Mater., 36, 10186-10197, 2024
    [84] J. Ramler and C. Lichtenberg, Molecular Bismuth Cations: Assessment of Soft Lewis Acidity, Chemistry–A European Journal, 26, 10250-10258, 2020

    無法下載圖示 校內:2030-08-12公開
    校外:2030-08-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE