簡易檢索 / 詳目顯示

研究生: 張正昌
Chang, Cha-Cheng
論文名稱: 輪型移動式機器人之軌跡追蹤控制法之研究
Study of Trajectory Tracking Control Design for Wheeled Mobile Robot
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 85
中文關鍵詞: 適應控制滑動模式控制輪型移動式機器人路徑追蹤
外文關鍵詞: adaptive control, sliding-mode control, trajectory tracking, wheeled mobile robot
相關次數: 點閱:98下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    本論文主要係探討輪式移動機器人之軌跡追蹤控制法之研究。本論文採雙步驟控制法設計輪式移動機器人之軌跡追蹤控制器。首先在輪式移動式機器人之運動模式下,利用李阿普諾夫方法設計速度控制器;接著,在車子的動態模型下,利用滑動模式控制方法設計力矩輸入控制器,使得車子的實際速度能追蹤到速度控制器所得出之速度命令,進而能達成想要之軌跡追蹤能力。另外我們利用直接式適應性策略加入至滑動模式動態控制器,此適應性策略可補償輪式移動機器人未知參數變動與外加擾動。最後以Matlab程式軟體之模擬結果,驗證所設計之軌跡追蹤控制器的效益與適用性。

    Abstract

    This thesis is mainly to study of trajectory tracking controller design for wheel mobile robot (WMR). In this thesis, we will design a two-stage tracking controller for the mobile robot. Firstly, a velocity controller for the kinematic (steering) system will be designed by Lyapunov method. Secondly, a sliding-mode control torque controller of dynamic model is designed to make the real mobile robot velocity reach to the desired velocity command, which is determined by the kinematic controller. The two-stage tracking controller makes the WMR achieve complete tracking of the desired trajectory. Moreover, we employ the direct adaptive algorithm to design sliding-mode dynamic controller for the WMR. The adaptive algorithm is designed to compensate the lumped bound of system uncertainties and external disturbances in the controlled WMR. Finally, the Matlab simulation results are performed to verify the benefit and the feasibility of the developed schemes.

    Contents Abstract (Chinese ) Ⅰ Abstract (English ) II Acknowledgment (Chinese ) Ⅲ Contents IV List of Figures VI List of Tables XI Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 1.2.1 Tracking Methods of the Mobile Robot 3 1.2.2 Sliding-Mode Control of the Mobile Robot 5 1.3 Thesis Organization 6 Chapter 2. Sliding-Mode Controller Design 7 2.1 Introduction 7 2.2 Basic Conception of SMC 8 2.2.1 Sliding Surface 8 2.2.2 SMC Design 12 2.3 Robust Sliding-Mode Control Design 14 2.3.1 Design of the Equivalent Control Law 15 2.3.2 Design of the Reaching Control Law 15 Chapter 3. Kinematic Path Tracking Control for WMR 19 3.1 Introduction 19 3.2 Kinematic Model of WMR and Tracking Problem 20 3.3 The Path Tracking Controller 23 3.4 Computer Simulations 28 3.4.1 Simulation Results for Line Path Tracking 29 3.4.2 Simulation Results for Circular Path Tracking 33 3.5 Summary 37 Chapter 4. Adaptive Dynamic Controller Design for WMR 38 4.1 Introduction 38 4.2 Dynamic Model of WMR 39 4.3 Sliding-Mode Dynamic Controller Design for WMR 42 4.4 Adaptive Sliding-Mode Dynamic Controller Design 47 4.5 Comparative Simulations 51 4.5.1 Simulation Results for Line Path Tracking 52 4.5.2 Simulation Results for Circular Path Tracking 66 4.6 Summary 79 Chapter 5. Conclusion and Future Works 80 5.1 Conclusion 80 5.2 Future Works 81 References 82 Biography 85

    References

    [1] I. Kolmanovsky and N. H. McClamroch, “Developments in nonholonomic control problems,” IEEE Control Syst. Mag., vol. 15, pp. 20-36, Dec. 1995.
    [2] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
    [3] Vadim I. Utkin, Sliding Modes in control and optimization. Berlin, Heidelberg: Springer, 1992.
    [4] R. W. Brockett, “Asymptotic stability and feedback stabilition,” Differential Geometric Control Theory, Birkhauser, Boston, pp. 181-191, 1983.
    [5] A. M. Bloch and N. H. McClamroch, “Control of mechanical systems with classical nonlinear nonholonomic constraints,” in Proc. IEEE Conf. Decision Contr., Tampa, FL, pp. 201-205, 1989.
    [6] Canudas de Wit and Sordalen, “Exponential stabilization of mobile robots with nonholonomic constraints,” IEEE Transactions on Automatic Control, vol 13, no.11, pp. 1791-1797, 1992.
    [7] Jurgen Guldner and Vadim I.Utkin, “Stabilization of nonholonomic mobile robots using Lyapunov function for navigation and sliding mode control,” Proceeding of the 33rd IEEE Conference on Decision and Control., pp. 1115-1120, 1994.
    [8] C. Samson and K. Ait-Abderrahim, “Feedback control of a nonholonomic wheels cart in Cartesian space,” in Proc. IEEE Int. Conf. Robot. Automat., Sacramento, CA, pp. 1136-1141, 1991.
    [9] A. De Luca, G. Oriolo, and C. Samson, “Feedback control of a nonholonomic car-like robot,” In Jean-Paul Laumond, Editor, Robot Motion Planning and Control, pp. 187-188, Springer, 1998.
    [10] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A Stable Tracking Control Method for an Autonomous Mobile Robot,” Proceeding of the IEEE International Conference on Robots and Automation, pp. 384-389, 1990.
    [11] D.-H. Kim and T.-H. Oh, “Tracking control of a two-wheeled mobile robot using input-output linearization,” Control Engineer Practice, vol.7, pp. 369-373, 1999.
    [12] Z.P. Jiang and H. Nijmeijev, “A recursive technique for tracking control of nonholonomic system in chained form,” IEEE Trans. on Automatic Control, vol.44, no.2, pp. 265-279, 1999.
    [13] R. M. Murray and S. Sastry, “ Nonholonomic motion planning: Steering using sinusoids,” IEEE Trans. Automatic control, vol.38, no.5, pp. 700-716, 1993.
    [14] Z.P. Jiang and H. Nijmeijev, “Tracking control of mobile robots: A case study in backstepping,” Automatica, vol.33, no.7, pp. 1393-1399, 1997.
    [15] R. Fierro and F.l. Lewis, “ Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics,” Journal of Robotic System, vol.14, no.3, pp. 149-163, 1997.
    [16] T. C. Lee, K. T. Song, C. H. Lee, and C. C. Teng, “Tracking control of mobile robots using the backstepping technique,” in Proc. 5th Int. Conf. Contr., Automat., Robot. Vision, Singapore, Dec.8-11, pp. 1715-1719, 1998.
    [17] A. M. B Loach and S. Drakunov, “Stabilization and Tracking in the nonholonomic integrator via sliding modes,” System & Control Letters, vol.29, no.2, pp. 91-99, 1996.
    [18] A. Bloch and S. Drakunov, “Tracking in nonholonomic dynamic system via sliding modes,” in Proc. IEEE Int. Conf. Decision Contr., pp. 2103-2106, Dec. 1995.
    [19] K. Watanable, K. Hara, S. Koga, and S. G. Tzafestas, “Fuzzy-neural network controllers using mean-value-based functional reasoning,” Neurocomputing, vol.9, pp. 39-61, 1995.
    [20] H. M.-Alfaro, and S. G.-Garcia , “Mobile robot path planning and tracking using simulated annealing and fuzzy logic control,” Expert Systems with Applications, vol.15, pp. 421-429, 1998.
    [21] T. Kukao, H. Nakagawa, and N.Adachi, “Adapive tracking control of nonholonomic mobile robot,” IEEE Trans. Robot. Automat., vol.16, pp. 609-615, Oct. 2000.
    [22] F. Pourboghrat and M.P.karlsson, “Adaptive control of dynamic mobile robots with nonholomic constraints,” Computers and Electrical Engineering 28, pp. 241-253, 2002.
    [23] R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot using neural networks,” IEEE Trans. Neural Networks, vol.9, pp. 589-600, July 1998.
    [24] K. D. Do, Z. P. Jiang, and J. Pan “Simultaneous Tracking and Stabilization of Mobile Robots:An Adaptive Approach,” IEEE Transactions on Automatic Control, vol. 49, no.7, pp. 1147-1152 , July 2004.
    [25] A. V. Topalov , J.-H. Kim and T. P. Proychev “Fuzzy-net control of non-holonomic mobile robot using evolutionary feedback-error-learning,” Robotics and Autonomous Systems 23, pp. 187-200, 1998
    [26] J. H., kim and J. M. Yang, “Sliding mode control for trajectory of nonholonomic wheeled mobile robots,” IEEE Trans. on Robotic and Automation, vol.15, no.3, pp. 578-587, Jun. 1999.
    [27] M.L. Corradini and G.. Orlando “Control of mobile robots with uncertainties in the dynamic model: A discrete time sliding mode approach with experimental results,” Control Engineering Practice, vol.10, pp. 23-34, 2002.
    [28] Z. Hu, Z. Li, R. Bicker, and C. Marshall “ Robust output tracking control of nonholonomic mobile robots via higher order sliding mode,” Nonlinear Studies, vol.11, no.1, pp. 23-35, 2004.
    [29] S. V. Emelyanov, Variable Structure Control Systems. Moscow, Russian, U.S.S.R. Nauka, 1967.
    [30] V. I. Utkin, Sliding Modes and Their Application in Variable Structure Systems. Moscow, U.S.S.R. Nauka, 1978.
    [31] J. Y. Hung, W. B. Guo, and J. C. Hung, “Variable stracture control:A survey,” IEEE Trans Ind. Electron., vol. 40, pp. 2-22, Feb. 1993.
    [32] Yurl, B. S., and James, M. B. “Continuous sliding mode control.” Proceedings of American Control Conference, pp. 562-563, 1988.
    [33] J. J. E. Slotine and S. S. Sastry, “Tarcking control of nonlinear systems using sliding surfaces with application to robot manipulators,” Int. J. Control, vol. 38, pp. 465-492. 1983.
    [34] F.L. Lewis, C. T. Abdallah, and D. M. Dawson, Control of Robot Manipulators. New York: Macmillan, 1993.
    [35] A. F. Filippov, Differential Equation with Discontinuous Rightsides, Kluwer Academic Publishers, Dordrecht, Boston, London, 1988.

    下載圖示 校內:2006-08-01公開
    校外:2007-08-01公開
    QR CODE