簡易檢索 / 詳目顯示

研究生: 謝函學
Hsieh, Han-Hsueh
論文名稱: 高脂肪飼料改變小鼠下視丘髓鞘和粒線體結構及社交行為
High fat diet alters hypothalamic myelin and mitochondria integrity and affects social interaction behavior in mice
指導教授: 曾淑芬
Tzeng, Shun-Fen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 54
中文關鍵詞: 高脂肪飼料下視丘髓鞘粒線體社交行為
外文關鍵詞: high fat diet, obesity, myelin, hypothalamus, mitochondria, mood disorder, anxiety, social interaction
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高脂肪飲食會造成肥胖,常伴隨周邊組織發炎與引發中樞神經系統下視丘調控食慾與能量代謝的重要區域之一,位於後腹(posterior)弓形核區微膠細胞與星狀膠細胞的活化和發炎反應。下視丘屬於專司情緒和學習記憶功能的邊緣系統(limbic system)。下視丘在神經內分泌參與Hypothalamic–pituitary–adrenal axis (HPA)調節情緒與壓力。因為膠細胞扮演大腦神經元細胞存活與維持環境穩定的重要角色,然而高脂飲食誘發的肥胖是否因為下視丘膠細胞活化,而產生情緒障礙並不清楚。因此,本研究首先建立高脂飼料餵食小鼠動物模式。餵食高脂飼料二個月小鼠體重顯著上升並伴隨肥胖體型產生,然而其每日平均攝食量與飲水量明顯減少。高脂飼料餵食也引發肥胖鼠下視丘後腹弓形核區和下方正中隆起組織的微膠細胞活化。然而,在飲食回復實驗發現將高脂飼料餵食一段時間後再改回一般飼料的給予,小鼠體重顯著下降,且其平均攝食量與飲水量回升,說明高脂飲食引起的體重增加是可逆性的。更進一步以穿透式電子顯微影像分析,發現餵食高脂飼料的小鼠下視丘後段組織髓鞘結構鬆散且髓鞘鹼性蛋白質表現量有下降趨勢,神經軸突直徑增加,粒線體結構膨脹且內部皺褶結構損壞。但是,將高脂飼料餵食改回攝取一般飼料後,與控制組下視丘後腹組織髓鞘結構並無明顯地差異,大都呈現緊緻的結構。另外一方面在長期餵食高脂飼料8個月期間給予3次細菌內毒素脂多醣腹腔注射引發周邊炎壓力實驗中和只給予高脂飼料組別相比體重無顯著差異。但是,動物行為測試分析發現同時給予高脂飼料與脂多醣腹腔注射的組別和給予一般飼料和脂多醣腹腔注射組別相比會產生焦慮和社交障礙行為的發展。綜合上述結果,高脂飼料可以誘發小鼠肥胖與下視丘微膠細胞活化伴隨下視丘後腹區髓鞘結構與粒線體結構的損壞。動物模式結果顯示,在長期高脂飲食過程伴隨多次周邊發炎壓力易引發焦慮和社交行為障礙。

    To study the role of hypothalamic inflammation in mood disorder associated with high fat diet-induced obesity, we first established an animal model of obesity by feeding male C57BL/6 mice at 8 week old with high fat diet (HFD; 61.6% fat). The body weights of mice fed by HFD increased rapidly, but their food intake and water intake reduced significantly. When their diet was changed from HFD to the regular diet (Chow; 13.4% fat), the body weight, food intake and water intake of the animals were back to the level similar to that of the control group. Through immunofluroescence, activated Iba1+ microglia with an amoeboid form were observed in median eminence (ME) of the hypothalamus after HFD feeding. Using transmission electron microscope (TEM) analysis, the integrity of myelin in the posterior hypothalamus was impaired after HFD feeding for 4 months. However, diet reverse can prohibit impairment of hypothalamic myelin from HFD feeding. In addition, the hyperfused and the damaged cristae of mitochondria was observed in the posterior hypothalamus of HFD-fed mice. Furthermore, the intraperitoneal injection (i.p.) with lipopolysaccharide (LPS; dose 1 mg/kg per injection) at 1, 2 and 4 week during the period of 8-month HFD feeding was conducted. The body weights of HFD-fed mice receiving LPS injections was not different from that measured in HFD-fed mice receiving saline injections. At 8 month, the animals were subjected to a series of behavior analysis. The results indicated that HFD-fed mice receiving LPS injections developed anxiety-like and social impairing behaviors when compared to Chow-fed mice receiving LPS injections. In conclusion, we demonstrate that HFD feeding caused a damage in the integrity of mitochondria and myelin in the hypothalamic region nearby arcuate nucleus (ARC), a place with the accumulation of activated microglia. In addition, chronic HFD feeding combined with repeated peripheral LPS injection developed in anxiety and impaired social interaction in mice.

    摘要 I 英文摘要 III 誌謝 VI 目錄 VII 圖目錄 IX 縮寫表 X 壹、前言 1 一、中樞神經系統膠細胞 1 二、下視丘與食慾和能量代謝 2 三、肥胖與發炎 3 四、高脂誘發肥胖與膠細胞活化 4 五、膠細胞活化與情緒障礙 5 貳、實驗目的 7 參、材料與方法 8 一、 實驗材料 8 1.1化學藥品與動物飼料 8 1.2抗體 18 1.3試劑 19 1.4動物行為材料 9 二、 實驗方法 9 2.1動物實驗 9 2.2動物組織處理 10 2.3穿透式電子顯微分析(Transmission Electron Microscopy:TEM) 11 2.4西方點墨法(Western blotting) 11 2.5組織免疫螢光染色 12 2.6動物行為測試 12 2.7統計分析 14 肆、結果 15 一、高脂飼料對動物體重、攝食量、飲水量的改變 15 二、高脂飼料誘發下視丘微膠細胞活化 15 三、高脂飼料導致肥胖是可逆的 16 四、高脂飼料影響下視丘髓鞘結構 16 五、高脂飼料影響下視丘粒線體結構 18 六、間歇給予LPS對體重及攝食量的評估 18 七、餵食高脂飼料期間間歇給予LPS對動物情緒行為的評估 19 伍、討論 23 一、高脂飼料與代謝 23 二、高脂飲食肥胖與下視丘微膠細胞活化 23 三、高脂飲食肥胖與下視丘去髓鞘化 24 四、周邊發炎與高脂飲食與情緒行為失調 25 陸、結論 27 參考文獻 28

    Akyol O, Zoroglu SS, Armutcu F, Sahin S, Gurel A. 2004. Nitric oxide as a physiopathological factor in neuropsychiatric disorders. In Vivo 18:377-90.
    Artemiadis AK, Anagnostouli MC. 2010. Apoptosis of oligodendrocytes and post-translational modifications of myelin basic protein in multiple sclerosis: possible role for the early stages of multiple sclerosis. Eur Neurol 63:65-72.
    Blazquez C, Sanchez C, Velasco G, Guzman M. 1998. Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes. J Neurochem 71:1597-606.
    Bray GA, Popkin BM. 1998. Dietary fat intake does affect obesity! Am J Clin Nutr 68:1157-73.
    Cai D, Liu T. 2012. Inflammatory cause of metabolic syndrome via brain stress and NF-kappaB. Aging (Albany NY) 4:98-115.
    Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. 2005. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11:183-90.
    Chen H, Chan DC. 2009. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet 18:R169-76.
    Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. 2008. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46-56.
    de Git KC, Adan RA. 2015. Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes Rev 16:207-24.
    De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, Saad MJ, Velloso LA. 2005. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146:4192-9.
    de Wit LM, Fokkema M, van Straten A, Lamers F, Cuijpers P, Penninx BW. 2010. Depressive and anxiety disorders and the association with obesity, physical, and social activities. Depress Anxiety 27:1057-65.
    Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G. 2011. Axon physiology. Physiol Rev 91:555-602.
    Delgado R, Carlin A, Airaghi L, Demitri MT, Meda L, Galimberti D, Baron P, Lipton JM, Catania A. 1998. Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia. J Leukoc Biol 63:740-5.
    Deng Y, Lu J, Sivakumar V, Ling EA, Kaur C. 2008. Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats. Brain Pathol 18:387-400.
    Dinel AL, Andre C, Aubert A, Ferreira G, Laye S, Castanon N. 2014. Lipopolysaccharide-induced brain activation of the indoleamine 2,3-dioxygenase and depressive-like behavior are impaired in a mouse model of metabolic syndrome. Psychoneuroendocrinology 40:48-59.
    Fassbender K, Schmidt R, Mossner R, Kischka U, Kuhnen J, Schwartz A, Hennerici M. 1998. Mood disorders and dysfunction of the hypothalamic-pituitary-adrenal axis in multiple sclerosis: association with cerebral inflammation. Arch Neurol 55:66-72.
    Fuente-Martin E, Garcia-Caceres C, Granado M, de Ceballos ML, Sanchez-Garrido MA, Sarman B, Liu ZW, Dietrich MO, Tena-Sempere M, Argente-Arizon P and others. 2012. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J Clin Invest 122:3900-13.
    Gadalla TM. 2009. Association of obesity with mood and anxiety disorders in the adult general population. Chronic Dis Can 30:29-36.
    Gentile A, De Vito F, Fresegna D, Musella A, Buttari F, Bullitta S, Mandolesi G, Centonze D. 2015. Exploring the role of microglia in mood disorders associated with experimental multiple sclerosis. Front Cell Neurosci 9:243.
    Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. 2013. Origin and differentiation of microglia. Front Cell Neurosci 7:45.
    Gray J, Yeo GS, Cox JJ, Morton J, Adlam AL, Keogh JM, Yanovski JA, El Gharbawy A, Han JC, Tung YC and others. 2006. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes 55:3366-71.
    Haba R, Shintani N, Onaka Y, Wang H, Takenaga R, Hayata A, Baba A, Hashimoto H. 2012. Lipopolysaccharide affects exploratory behaviors toward novel objects by impairing cognition and/or motivation in mice: Possible role of activation of the central amygdala. Behav Brain Res 228:423-31.
    Hao S, Dey A, Yu X, Stranahan AM. 2015. Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav Immun.
    Harauz G, Boggs JM. 2013. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 125:334-61.
    Hashimoto R, Matsumoto A, Udagawa J, Hioki K, Otani H. 2013. Effect of leptin administration on myelination in ob/ob mouse cerebrum after birth. Neuroreport 24:22-9.
    Hashimoto R, Udagawa J, Kagohashi Y, Matsumoto A, Hatta T, Otani H. 2011. Direct and indirect effects of neuropeptide Y and neurotrophin 3 on myelination in the neonatal brains. Brain Res 1373:55-66.
    Hines JH, Ravanelli AM, Schwindt R, Scott EK, Appel B. 2015. Neuronal activity biases axon selection for myelination in vivo. Nat Neurosci 18:683-9.
    Johnson AK, Gross PM. 1993. Sensory circumventricular organs and brain homeostatic pathways. FASEB J 7:678-86.
    Kriegstein A, Alvarez-Buylla A. 2009. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149-84.
    Li J, Ramenaden ER, Peng J, Koito H, Volpe JJ, Rosenberg PA. 2008. Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present. J Neurosci 28:5321-30.
    Li J, Tang Y, Cai D. 2012. IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol 14:999-1012.
    Lopez-Soldado I, Zafra D, Duran J, Adrover A, Calbo J, Guinovart JJ. 2015. Liver glycogen reduces food intake and attenuates obesity in a high-fat diet-fed mouse model. Diabetes 64:796-807.
    Love S. 2006. Demyelinating diseases. J Clin Pathol 59:1151-9.
    Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, Tsukumo DM, Anhe G, Amaral ME, Takahashi HK and others. 2009. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 29:359-70.
    Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. 2006. Central nervous system control of food intake and body weight. Nature 443:289-95.
    Munzberg H, Flier JS, Bjorbaek C. 2004. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 145:4880-9.
    Nishikawa H, Hata T, Itoh E, Funakami Y. 2004. A role for corticotropin-releasing factor in repeated cold stress-induced anxiety-like behavior during forced swimming and elevated plus-maze tests in mice. Biol Pharm Bull 27:352-6.
    Ogden CL, Carroll MD, Kit BK, Flegal KM. 2012. Prevalence of obesity in the United States, 2009-2010. NCHS Data Brief:1-8.
    Olefsky JM, Glass CK. 2010. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219-46.
    Osborn O, Olefsky JM. 2012. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18:363-74.
    Ozay R, Uzar E, Aktas A, Uyar ME, Gurer B, Evliyaoglu O, Cetinalp NE, Turkay C. 2014. The role of oxidative stress and inflammatory response in high-fat diet induced peripheral neuropathy. J Chem Neuroanat 55:51-7.
    Pang Y, Cai Z, Rhodes PG. 2003. Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide. Brain Res Dev Brain Res 140:205-14.
    Pohl J, Sheppard M, Luheshi GN, Woodside B. 2014a. Diet-induced weight gain produces a graded increase in behavioral responses to an acute immune challenge. Brain Behav Immun 35:43-50.
    Pohl J, Woodside B, Luheshi GN. 2014b. Leptin modulates the late fever response to LPS in diet-induced obese animals. Brain Behav Immun 42:41-7.
    Rajmohan V, Mohandas E. 2007. The limbic system. Indian J Psychiatry 49:132-9.
    Rinholm JE, Vervaeke K, Tadross MR, Tkachuk AN, Kopek BG, Brown TA, Bergersen LH, Clayton DA. 2016. Movement and structure of mitochondria in oligodendrocytes and their myelin sheaths. Glia 64:810-25.
    Roy NS, Wang S, Harrison-Restelli C, Benraiss A, Fraser RA, Gravel M, Braun PE, Goldman SA. 1999. Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J Neurosci 19:9986-95.
    Sanacora G, Banasr M. 2013. From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry 73:1172-9.
    Sandoval DA, Obici S, Seeley RJ. 2009. Targeting the CNS to treat type 2 diabetes. Nat Rev Drug Discov 8:386-98.
    Severi I, Senzacqua M, Mondini E, Fazioli F, Cinti S, Giordano A. 2015. Activation of transcription factors STAT1 and STAT5 in the mouse median eminence after systemic ciliary neurotrophic factor administration. Brain Res 1622:217-29.
    Shen L, Tso P, Woods SC, Clegg DJ, Barber KL, Carey K, Liu M. 2008. Brain apolipoprotein E: an important regulator of food intake in rats. Diabetes 57:2092-8.
    Smith SM, Vale WW. 2006. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci 8:383-95.
    Stolarczyk E, Guissard C, Michau A, Even PC, Grosfeld A, Serradas P, Lorsignol A, Penicaud L, Brot-Laroche E, Leturque A and others. 2010. Detection of extracellular glucose by GLUT2 contributes to hypothalamic control of food intake. Am J Physiol Endocrinol Metab 298:E1078-87.
    Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR and others. 2012. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153-62.
    Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK. 2014. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 9:2124-38.
    Valdearcos M, Xu AW, Koliwad SK. 2015. Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol 77:131-60.
    Wang XF, Liu JJ, Xia J, Liu J, Mirabella V, Pang ZP. 2015. Endogenous Glucagon-like Peptide-1 Suppresses High-Fat Food Intake by Reducing Synaptic Drive onto Mesolimbic Dopamine Neurons. Cell Rep 12:726-33.
    Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. 2008. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135:61-73.
    Zorrilla EP, Luborsky L, McKay JR, Rosenthal R, Houldin A, Tax A, McCorkle R, Seligman DA, Schmidt K. 2001. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun 15:199-226.

    無法下載圖示 校內:2026-08-01公開
    校外:2026-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE