簡易檢索 / 詳目顯示

研究生: 高誠澤
Gao, Cheng-Ze
論文名稱: 三孔模型應用於血液中含有艾考糊精殘留濃度之腹膜透析超濾行為的模擬
Three-pore Model Simulations of Osmotic Ultrafiltration Profiles with Residual Icodextrin Concentration of the Plasma in Peritoneal Dialysis
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 48
中文關鍵詞: 三孔模型腹膜透析艾考糊精超濾
外文關鍵詞: Three-pore model, peritoneal dialysis, icodextrin, ultrafiltration
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用Three-pore model模擬在使用Icodextrin溶液的腹膜透析(peritoneal dialysis)療程中因血液中殘留一定量的Icodextrin濃度造成超濾(ultrafiltration)行為的改變。Icodextrin與傳統葡萄糖透析液相比,由於高莫耳重量的特性,Icodextrin不論在短期或長期的腹膜透析療程中都擁有良好且穩定的超濾行為。一般使用Icodextrin透析液的病人血液中Icodextrin濃度會上升。Icodextrin要從人體中排出約略需要7天左右,所以使用Icodextrin透析液的病人血液中會殘留Icodextrin濃度。在模擬結果中,殘留於血液中的Icodextrin濃度會造成腹膜透析中超濾行為降低。在使Icodextrin與葡萄糖的混合透析液的案例中可以明顯看出殘留的Icodextrin濃度會造成類似的影響。
    人體系統的變化是造成腹膜透析超濾行為產生變化的眾多因素之一。本研究中討論直接淋巴吸收(direct lymphatic absorption)和微血管面積兩個因素改變所造成的影響。模擬結果發現直接淋巴吸收增加會造成超濾行為下降。血液中Icodextrin的殘留會使小幅度變化的直接淋巴吸收就可能造成腹膜透析無法發揮正常作用。微血管面積的改變在短期療程中使用Icodextrin透析液無法造成腹膜透析的作用下降。但從模擬的結果發現,在長期療程中會發現Icodextrin溶液也可能會有不良的超濾行為的產生,血液中殘留的Icodextrin濃度會造成超濾作用更大幅度的下降。

    This study used a three-pore model in peritoneal dialysis (PD) ultrafiltration simulations using an icodextrin-based dialysate solution. This paper discusses the ultrafiltration profiles with residual icodextrin concentrations in blood. Due to icodextrin has a higher molecular weight than that of glucose, the peritoneal dialysis using the icodextrin solution exhibits favorable and stable ultrafiltration profiles both in short term and long-term treatment. In general, patients using icodextrin may have residual icodextrin concentrations in the blood. The icodextrin was absorbed continuously during PD. The increasing icodextrin concentration in blood caused overestimations of icodextrin permeability surface area (PS) values. Therefore, the PS values of icodextrin have to be modified in the simulations.
    Body system variations are one of the factors causing the changes of ultrafiltration profiles in peritoneal dialysis. In this study, variations of direct lymphatic absorption and the vascular surface area cause the impact in both the simulations and clinical experiments. The results of the simulations showed that the increased direct lymphatic absorption diminish the effect of ultrafiltration. Due to the minor changes in direct lymphatic absorption, caused by the residual icodextrin concentration, the peritoneal dialysis may not work properly. The variations of the vascular surface area do not diminish the ultrafiltration profiles in the short-term treatment using icodextrin dialysate solution. However, simulation results show that the ultrafiltration behavior may produce less favorable effects using the icodextrin solution in the long-term dialysate treatment. The residual icodextrin concentrations cause the most significant decline among the ultrafiltrate profiles.
    The result shows that the residual icodextrin concentrations of the blood cause the least favorable ultrafiltration behavior. In the case using a simple glucose dialysis solution or combined solution with glucose and icodextrin, the residual icodextrin concentrations cause similar effects.

    CONTENTS ABSTRACT I 中文摘要 III 致謝 IV CONTENTS V LIST OF TABLES VII LIST OF FIGURES VIII NOMENCLATURE XI ABBREVIATION XIV Chapter 1 INTRODUCTION 1 1.1 Introduction to Peritoneal Dialysis 1 1.2 Continuous Ambulatory Peritoneal Dialysis 1 1.3 Mathematical Models for Peritoneal Dialysis 2 1.4 Peritoneal Dialysis Solutions 5 Chapter 2 THEORY OF THE MATHEMATICAL MODEL 10 2.1 Fluid and solute transport through semipermeable membranes for peritoneal dialysis 10 2.1.1 Thermodynamic model 10 2.1.2 Pore model 12 2.2 Membrane model 13 2.3 Three-pore model 15 2.3.1 Mathematical Models 15 2.3.2 The Simplicity of the Three-Pore Model 18 Chapter 3 PARAMETER SELECTION 22 3.1 Mass and osmolality spectrum of icodextrin 22 3.2 The transport parameter of the three-pore model 23 3.3 Program validation 24 Chapter 4 RESULTS AND DISCUSSION 30 4.1 Non-constant icodextrin concentration in blood 30 4.2 Effect of residual icodextrin concentrations in the plasma 30 4.3 Effects of increased direct lymphatic absorption 32 4.4 Effects of vascular surface area alterations 32 4.5 Discussion 33 Chapter 5 CONCLUSION 42 REFERENCES 44 BIOGRAPHY 48

    1. Peritoneal Dialysis / Home Therapies Service. 2005; Available from: http://www.wirralchesterkidney.nhs.uk/therapy/peri1.aspx.
    2. Nolph and gokal's textbook of peritoneal dialysis. 3rd. ed. 2008, New York: Springer.
    3. Gokal R and Nolph KD, The textbook of peritoneal dialysis. 1st ed. 1994, Dordrecht ; Boston: Kluwer Academic Publishers.
    4. Nissenson AR and Fine RN, Handbook of dialysis therapy. 4th ed. 2008, Philadelphia: Saunders/Elsevier.
    5. Lysaght MJ and O'Loughlin JA, Demographic scope and economic magnitude of contemporary organ replacement therapies. Asaio Journal, 2000. 46(5): p. 515-521.
    6. Schena FP, Epidemiology of end-stage renal disease: International comparisons of renal replacement therapy. Kidney International, 2000. 57: p. S39-S45.
    7. Waniewski J, Mathematical modeling of fluid and solute transport in hemodialysis and peritoneal dialysis. Journal of Membrane Science, 2006. 274(1-2): p. 24-37.
    8. Popovich RP, Moncrief JW, and Nolph KD, Continuous Ambulatory Peritoneal-Dialysis (Capd). Kidney International, 1977. 12(6): p. 487-487.
    9. Smye SW and Clayton RH, Mathematical modelling for the new millenium: medicine by numbers. Medical Engineering & Physics, 2002. 24(9): p. 565-574.
    10. Rippe B, Rosengren BI, and Venturoli D, The peritoneal microcirculation in peritoneal dialysis. Microcirculation, 2001. 8(5): p. 303-320.
    11. Curry FRE, Microvascular solute and water transport. Microcirculation, 2005. 12(1): p. 17-31.
    12. Flessner MF, The transport barrier in intraperitoneal therapy. American Journal of Physiology-Renal Physiology, 2005. 288(3): p. F433-F442.
    13. Flessner MF, Distributed model of peritoneal transport: implications of the endothelial glycocalyx. Nephrology Dialysis Transplantation, 2008. 23(7): p. 2142-2146.
    14. Fournier RL, Basic transport phenomena in biomedical engineering. 2nd ed. 2007, New York: Taylor & Francis.
    15. Rippe B, Stelin G, and Haraldsson B, Computer-Simulations of Peritoneal-Fluid Transport in Capd. Kidney International, 1991. 40(2): p. 315-325.
    16. Li PKT and Chow KM, Maximizing the success of peritoneal dialysis in high transporters. Peritoneal Dialysis International, 2007. 27: p. S148-S152.
    17. De Vriese AS, Mortier S, and Lameire NH, Glucotoxicity of the peritoneal membrane: the case for VEGF. Nephrology Dialysis Transplantation, 2001. 16(12): p. 2299-2302.
    18. Davies SJ, Phillips L, Naish PF, and Russell GI, Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. Journal of the American Society of Nephrology, 2001. 12(5): p. 1046-1051.
    19. Burkart J, Metabolic consequences of peritoneal dialysis. Seminars in Dialysis, 2004. 17(6): p. 498-504.
    20. Moberly JB, Mujais S, Gehr T, Hamburger R, Sprague S, Kucharski A, Reynolds R, Ogrinc F, Martis L, and Wolfson M, Pharmacokinetics of icodextrin in peritoneal dialysis patients. Kidney International, 2002. 62: p. S23-S33.
    21. Krediet RT, HodacPannekeet MM, Imholz ALT, and Struijk DG, Icodextrin's effects on peritoneal transport. Peritoneal Dialysis International, 1997. 17(1): p. 35-41.
    22. Rippe B and Levin L, Computer simulations of ultrafiltration profiles for an icodextrin-based peritoneal fluid in CAPD. Kidney International, 2000. 57(6): p. 2546-2556.
    23. Venturoli D and Rippe B, Is there a price to pay for the simplicity of the three-pore model? Peritoneal Dialysis International, 2008. 28(1): p. 25-27.
    24. Mason EA, Wendt RP, and Bresler EH, Similarity Relations (Dimensional Analysis) for Membrane-Transport. Journal of Membrane Science, 1980. 6(3): p. 283-298.
    25. Deen WM, Hindered Transport of Large Molecules in Liquid-Filled Pores. Aiche Journal, 1987. 33(9): p. 1409-1425.
    26. Waniewski J, Heimburger O, Werynski A, and Lindholm B, Simple models for fluid transport during peritoneal dialysis. International Journal of Artificial Organs, 1996. 19(8): p. 455-466.
    27. Vonesh EF and Rippe B, Net Fluid Absorption under Membrane-Transport Models of Peritoneal-Dialysis. Blood Purification, 1992. 10(3-4): p. 209-226.
    28. Twardowski ZJ, Prowant BF, Nolph KD, Martinez AJ, and Lampton LM, High Volume, Low-Frequency Continuous Ambulatory Peritoneal-Dialysis. Kidney International, 1983. 23(1): p. 64-70.
    29. Paniagua R, Ventura M, Avila-Diaz M, Cisneros A, Vicente-Martinez M, Furlong M, Garcia-Gonzalez Z, Villanueva D, Orihuela O, Prado-Uribe M, Alcantara G, and Amato D, Icodextrin Improves Metabolic and Fluid Management in High and High-Average Transport Diabetic Patients. Peritoneal Dialysis International, 2009. 29(4): p. 422-432.
    30. Heimburger O, Waniewski J, Werynski A, and Lindholm B, A Quantitative Description of Solute and Fluid Transport during Peritoneal-Dialysis. Kidney International, 1992. 41(5): p. 1320-1332.
    31. HoDacPannekeet MM, Schouten N, Langendijk MJ, Hiralall JK, deWaart DR, Struijk DG, and Krediet RT, Peritoneal transport characteristics with glucose polymer based dialysate. Kidney International, 1996. 50(3): p. 979-986.
    32. Keshaviah P, Emerson PF, Vonesh EF, and Brandes JC, Relationship between Body-Size, Fill Volume, and Mass-Transfer Area Coefficient in Peritoneal-Dialysis. Journal of the American Society of Nephrology, 1994. 4(10): p. 1820-1826.
    33. Lindholm B, Garcia-Lopez E, Pawlaczyk K, Anderstam B, Qureshi AR, Kuzlan-Pawlaczyk M, Heimburger O, and Werynski A, Icodextrin metabolism and alpha-amylase activity in nonuremic rats undergoing chronic peritoneal dialysis. Peritoneal Dialysis International, 2007. 27(4): p. 415-423.
    34. Peers E and Gokal R, Icodextrin provides long dwell peritoneal dialysis and maintenance of intraperitoneal volume. Artificial Organs, 1998. 22(1): p. 8-12.
    35. Posthuma N, ter Wee PM, Donker AJM, Oe PL, Peers EM, Verbrugh HA, and Grp DAA, Assessment of the effectiveness, safety, and biocompatibility of icodextrin in automated peritoneal dialysis. Peritoneal Dialysis International, 2000. 20: p. S106-S113.
    36. Davies SJ, Lopez EG, Woodrow G, Donovan K, Plum J, Williams P, Johansson AC, Bosselmann HP, Heimburger O, Simonsen O, Davenport A, Lindholm B, Tranaeus A, and Filho JCD, Longitudinal relationships between fluid status, inflammation, urine volume and plasma metabolites of icodextrin in patients randomized to glucose or icodextrin for the long exchange. Nephrology Dialysis Transplantation, 2008. 23(9): p. 2982-2988.
    37. Posthuma N, terWee PM, Verbrugh HA, Oe PL, Peers E, Sayers J, and Donker AJM, Icodextrin instead of glucose during the daytime dwell in CCPD increases ultrafiltration and 24-h dialysate creatinine clearance. Nephrology Dialysis Transplantation, 1997. 12(3): p. 550-553.
    38. Gotloib L, V W, and Shostak A, Mesothelial dysplastic changes and lipid peroxidation induced by 7.5% icodextrin. Nephron, 2002. 92(1): p. 142-155.
    39. Nakao A, Nakao K, Takatori Y, Kojo S, Inoue J, Akagi S, Sugiyama H, Wada J, and Makino H, Effects of icodextrin peritoneal dialysis solution on the peritoneal membrane in the STZ-induced diabetic rat model with partial nephrectomy. Nephrology Dialysis Transplantation, 2010. 25(5): p. 1479-1488.
    40. Finkelstein FO, Gobin J, Fernando S, and Santacroce S, The utility of two daytime icodextrin exchanges to reduce dextrose exposure in automated peritoneal dialysis patients: A pilot study of nine patients. Blood Purification, 2008. 26(3): p. 279-283.
    41. Bargman JM, Dousdampanis P, Trigka K, Chu M, Khan S, Venturoli D, and Oreopoulos DG, Two icodextrin exchanges per day in peritoneal dialysis patients with ultrafiltration failure: one center's experience and review of the literature. International Urology and Nephrology, 2011. 43(1): p. 203-209.

    下載圖示 校內:立即公開
    校外:2014-08-25公開
    QR CODE