| 研究生: |
張瓊文 Chang, Chiung-Wen |
|---|---|
| 論文名稱: |
智能化新產品開發專案管理之資料分析架構研究 On Data Analytics Framework of Smart-Project Management for Product Development |
| 指導教授: |
陳裕民
Chen, Yuh-Min |
| 共同指導教授: |
陳宗義
Chen, Tsung-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程管理碩士在職專班 Engineering Management Graduate Program(on-the-job class) |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 新產品開發 、專案管理 、資料科學 、智慧/智能 、資料分析架構 、導入方法論 、資料探勘 |
| 外文關鍵詞: | New Product Development, Project Management, Data Science, Smart, Data Analytics Framework, Implementation Methodology, Data Mining |
| 相關次數: | 點閱:217 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
科技進步讓商品多樣化與複雜化,消費者也因選擇眾多,對產品的喜好善變,要求也日新月異。為了掌握市場,企業必須不斷地開發新產品,以滿足消費者不斷變化與提高的需求。因此「新產品開發」成為企業的關鍵活動,也是創造企業價值與提升競爭優勢的重要策略。新產品開發是一種多工且複雜的技術應用程序,其過程繁瑣、影響因素眾多,因此成功的比例不高。有效的新產品開發需要一套系統化的程序、適當的方法與技術,以及有效的管理。
自從電腦、網路、社群媒體、雲端、物聯等技術的蓬勃發展,數據的大量增加,人工智慧日趨成熟,也讓資料科學受到極大重視,並被廣泛應用在許多領域。隨著資料科學與人工智慧的興起,使得系統「智能化」之理想已能逐漸實現。新產品開發屬於動態的過程,是一種系統工程的程序,倘若能將資料科學的方法與技術整合於專案管理中,將使新產品開發專案管理智能化。
本研究主要目的在運用資料科學與人工智慧之概念、方法與技術,設計「智能化新產品開發專案管理模型」,依此規劃設計「智能化新產品開發專案管理之資料分析架構」以及相關之「分析方法」,並以一企業實例驗證本研究所提之模型與分析架構之有效性。本研究所提之方法將提高企業新產品開發之績效,進而提昇公司之競爭力。
Due to the advancement of technology, consumers' interests and needs for products are constantly changing. In order to obtain the market, enterprise must constantly develop new products to meet the changing and increasing needs of consumers. Therefore, New Product Development (NPD) is an important key activity of the enterprise and one of the strategies to create enterprise value and enhance competitive advantage. New product development is a multiplexed and complex technical application. The proportion of successful products is not high. Effective new product development requires a systematic process, appropriate methods and techniques, and effective management.
As technologies such as computers, networks, socializing platform, and the IoT flourish, data-centric activities combine data science to maximize data value and create new knowledge value. With the big data, the artificial intelligent has become more and more mature, which has The rise of data science and AI has made the ideal of "smart" system gradually realized. New product development is a dynamic process and a system engineering producure. If we Can integrate data science methods and technologies into project management, we will make project management smart.
The research uses data science concepts, methods, and techniques to design of "Smart-Project Management for Product Development Model", according to this model design and planning "Data Analytics Framework for Project Management" and "Analytics Method", using case to verify the analysis of the architecture and model is effective.
This research will improve the performance of new product development, and thus enhance the company's competitiveness.
[1] Andrew Robertson, (1974). Innovation Management: Theory and Comparative Practice Illustrated by two Case Studies. Management Decision, 12(6), 330–368.
[2] Archibald R. B., (1981). The Implementation of Project Management: The Professional’s Handbook. Massachusette: Addison-Wesley Publishing, 178.
[3] Allen, T. J. (1984). Managing the flow of technology: Technology transfer and the dissemination of technological information within the R&D organization. MIT Press Books.
[4] Agrawal, R., Imielinksi, T., & Swami, A. (1993). Mining Association Rules between Sets of Items in Large Databases, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. Washington DC, USA.
[5] Booz, Allen & Hamilton. (1968). Management of New Products. Allen & Hamilton Inc., New York.
[6] Baker, M. J., & McTavish, R. (1976). The New-Product Development Process. In Product Policy and Management. London: Macmillan Education UK. 78–94.
[7] Berry & Linoff. (2004). Data Mining Techniques: for marketing, sales, and customer relationship managemen. In 2nd ed. Wiley Publishing, Inc., Indianapolis, Indiana, 454.
[8] Blanchard, B. S., & Blyler, J. E. (2007). System Engineering Management. John Wiley & Sons, 5, 1–556
[9] Barton, D.; and Court, D.Making Advanced Analytics Work for You. Harvard business review, 90, (2012), 78–83,128.
[10] Cooper, R. G. (1984). The Strategy‐Performance Link in Product Innovation. R&D Management, 14(4), 247–259.
[11] Cooper, R. G. & Kleinschmidt, E. J. (1988). Resource Allocation in the New Product Process. Industrial Marketing Management, 17, 249–262.
[12] Cooper, R. G. & Kleinschmidt, E. J. (1991). New Product Processes at Leading Industrial Firms. Journal of Industrial Marketing Management, 10(2), 215–223.
[13] Cooper, R. G. & Kleinschmidt, E. J. (1994). Determinants of timeliness in product development. Journal of Product Innovation Management, 11, 381–396.
[14] Cooper, R. G. & Kleinschmidt, E. J. (1995a). Performance Typologies of New Product Projects. Journal of Industrial Marketing Management, 24, 439–456.
[15] Cooper, R. G. (2000). Doing it right. Ivey Business Journal, 64(6), 54–60.
[16] Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: from big data to big impact. MIS quarterly, 1165-1188.
[17] Drucker, P. F. (1954). The Practice of Management. Movement disorders official journal of the Movement Disorder Society Butterworth-Heinemann. 19, 370
[18] David I. Cleland, William R. King (1983). Systems Analysis and Project Management. McGraw-Hill College, Subsequent edition
[19] Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: explorations in the microstructure of cognition. Volume 1. Foundations.
[20] Eric Siegel, (2016). Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die. Wiley, 1 edition
[21] Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542, 115.
[22] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27–34.
[23] Gaddis, P. O. (1959). The project manager. Boston: Harvard University.
[24] Granstrand, O., & Fernlund, L. (1978). Coordination of multinational R & D: A Swedish case study, R&D Management. 9(1), 1–8.
[25] Gardner, H. (1983). Frames of Mind. New York: Basic Books Inc.
[26] George A Miller (1995). WordNet: A Lexical Database for English. Communications of the ACM Vol. 38, No. 11: 39-41
[27] Gordon S. Linoff; Michael J. Berry. (1997). Data Mining Techniques: For Marketing, Sales, and Customer Support. New York: Wiley Computer Publishing.
[28] Gardner, H. (2011). Frames of Mind: The Theory of Multiple Intelligences (3rd Edition). NY: Basics, 467.
[29] Jaafari, A., & Manivong, K. (1998). Towards a smart project management information system. International journal of project management, 16(4), 249-265.
[30] James P. Lewis (1998). Mastering Project Management, McGraw-Hill, New York
[31] Jiawei Han & Micheline Kamber, (2011). DataMining: Concepts and Techniques. Elsevier.
[32] John B. Rollins, Ph.D., (2015). Foundational Methodology for Data Science, IBM Big Data and Analytics Hub
[33] Kotler, P. (1988). Marketing management: Analysis, planning, implementation, and control. Prentice-Hall Englewood Cliffs.
[34] Kaplan, R. S., & Norton, D. P. (1992). The balanced scorecard--measures that drive performance. Harvard Business Review, 70(1), 71–79.
[35] Kerzner H., (1994). Project Management: A systems Approach to Planning, Scheduling, and Controlling, Van Nostra and Reinhold, 4th Edition.
[36] Khan, J., Wei, J. S., Ringnér, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F.; Schwab, M., Antonescu, C.R., Peterson, C., & Meltzer, (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7, 673.
[37] Liberatore, M. J., & Stylianou, A. C. (1995). Expert support systems for new product development decision-making: A modeling framework and applications. Management science, 41(8), 1296-1316.
[38] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
[39] Menon, R., Tong, L. H., Sathiyakeerthi, S., Brombacher, A., &Leong, C. (2004). The needs and benefits of applying textual data mining within the product development process. Quality and Reliability Engineering International, 20(1), 1–15.
[40] Melissa A. Schilling (2008). Strategic Management of Technological Innovation. McGraw-Hill Higher Education, International Edition
[41] McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: the management revolution. Harvard business review, 90(10), 60-68.
[42] Owens, J. D., & Davies, J. (2000). The Importance of a New Product Development (NPD) process: Getting Started. 1st European Conference on KM, (1995). 1–12.
[43] Parkinson, S. T. (1984). New product development in engineering : a comparison of the British and West German machine tool industries. Management and industrial relations series, Cambridge: Cambridge University Press, 6(x), 132.
[44] Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann Publishers, San Francisco: Morgan Kaufmann Publishers, 466.
[45] Peiperl, M. A. (2001). Getting 360 degrees feedback right. Harvard Business Review, 79(1), 142–147, 177.
[46] Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision-making. Big data, 1(1), 51-59.
[47] Rothwell, R., & Robertson, A. B. (1973). The role of communications in technological innovation. Research Policy, 2(3), 204–225.
[48] Schumpeter, J. A. (1934). The Theory of Economic Development. Harvard University Press, Cambridge, MA.
[49] Schon, D. A. (1967). Technology and Change, Pergamon Press. Schumpeter, J. (1939). Business Cycles, McGraw-Hill.
[50] Saren, M. A. (1984). A classification and review of models of the intra‐firm innovation process. R&D Management, 14(1), 11–24.
[51] Thomas, R. J. (1993). New Product Development – Managing and Forecasting for Strategic Success. John Wiley & Sons.
[52] Thomas, R. J. (1995). New product success stories: Lessons from leading innovators. John Wiley & Sons.
[53] Trott, P. (2008). Innovation management and new product development. World Wide Web Internet and Web Information Systems, 39(xxvii), 581.
[54] Wirth, R. (2000). CRISP-DM : Towards a Standard Process Model for Data Mining. Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining, 29–39.
[55] 夏侯欣鵬。績效管理的過去與現在。輔仁大學企業管理學系。新北市。2010
[56] 湯瑪斯.雷曼。資料差,機器學習工具就無效,Thomas C. Redmane著,陳佳穎譯。哈佛商業評論。數據資料。2018
[57] 簡禎富、許嘉裕。資料挖況與大數據分析。前程文化。新北市。2016
[58] 熊培霖審訂。專案管理知識體系導讀指南。台北。博頡策略顧問股份有限公司。2004