| 研究生: |
陳泊諺 Chen, Po-Yen |
|---|---|
| 論文名稱: |
於大腦多孔彈性動力學中透過感知器學習法尋找水傳輸係數 Finding water transfer coefficients in cerebroporoelastodynamics via a perceptron-based learning method |
| 指導教授: |
周鼎贏
Chou, Dean |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 多孔彈性動力學 、膠狀淋巴系統 、水傳輸係數 、類神經網絡 、機器學習 |
| 外文關鍵詞: | Poroelastodynamics, Glymphatic system, Water transfer coefficient, Neural network, Machine learning |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電腦模擬或電腦模型目前是了解複雜生物過程的最前沿工具。然而,生物組織的錯綜複雜性,以及其對不同物理和化學刺激的多種細胞機制的反應,使得相應的數學模型具有高度非線性特性,涉及眾多參數。這些參數對模型至關重要,但通常僅針對特定條件進行調整,使得總結的普遍性受到挑戰;而且亦時常面臨無法通過臨床測量或實驗獲取部分參數的窘境。
於2015年的兩篇研究突破性發現顯示,從中樞神經系統中清除廢物的主要方式並非通過擴散,即廢物從腦組織逐漸遷移到血管。相反,人們發現了一種名為膠質淋巴系統的專門的宏觀清除系統。該系統通過由星形細胞形成的獨特的周血管通道網絡高效清除廢物,星形細胞是一種特定類型的膠質細胞。為了更深入地了解膠淋巴系統內流體運動的機制,在這項研究中,我們引入了一種基於感知器的方法,並應用大腦四重網絡多孔彈性力學模型,找尋大腦的水傳輸係數的範圍;通過使用這個模型,並借助機器學習分類方法,我們進行了一個系統而高效的參數研究。
考慮到可用數據的性質和特點,本研究所發展的演算法為一個簡單而功能強大的模型,用來求解穩態方程組之反問題,具體而言是一種生理學啟發的感知器方法,目標是探索水傳輸係數的功能影響。為了進一步限制模型的學習過程,我們加入了一個解析解方法,用於研究和闡明大腦多重網絡多孔彈性力學模型中的未知參數。此外,文中亦詳細介紹演算法,認識到它在需要估計PDE中的未知參數的各個領域中的潛力應用。此外,研究尾聲亦檢驗了所提出方法的效率和有效性,有效地展示了我們的框架如何促進快速參數估計。最後,我們討論了未滿足的需求並勾勒了該框架的未來任務。
我們的研究結果表明,該模型成功地捕捉到了人腦內的運輸現象。此外,在特定的水轉移係數範圍內,該模型間接預測了膠淋巴系統的存在,從而為膠淋巴系統提供了理論支持。我們的研究不僅證明了通過計算機輔助建模揭示複雜生物系統的生理特性的可行性,還突出了所提出的新方法在進行參數研究方面的潛力。
Simulations using computer systems and in silico models are at the forefront of advancing our comprehension of intricate biological processes. Yet, the intricate composition of biological tissues, where multiple cellular mechanisms interact with diverse physical and chemical stimuli, imparts a highly nonlinear nature to the corresponding mathematical models, which encompass a multitude of parameters. While these parameters hold significance in the models, they often undergo customization to suit specific conditions, thus posing challenges in establishing universally applicable findings. Additionally, obtaining certain parameters through clinical measurements or experiments can pose formidable difficulties.
In a recent breakthrough, scientists have challenged the previous notion that waste clearance from the central nervous system occurs primarily through diffusion, with waste gradually migrating from brain tissue to blood vessels. Instead, the discovery of a specialized macroscopic waste clearance system, known as the glymphatic system, has occurred. This system efficiently eliminates waste through a unique network of perivascular channels formed by astrocytes, a specific type of glial cell. To delve deeper into the intricate dynamics of fluid movement within the glymphatic system, we have introduced a perceptron-based method and targeted the water transfer coefficients in a four-compartmental poroelasticity model of the brain. Employing this model, we have conducted a systematic and efficient parametric study aided by classification methods of machine learning.
Considering the nature and characteristics of the available data, the algorithm developed in this study presents a simple yet functional model that addresses a steady-state inverse problem, specifically utilizing a physiologically inspired perceptron method to explore the functional impact of water transfer coefficients. In order to enhance the model's learning process, we have integrated an analytical solution method to explore and elucidate the unidentified parameters within the multi-compartmental poroelasticity model of the brain. Additionally, we provide a comprehensive exposition of the algorithm, acknowledging its potential applicability in various domains that necessitate the estimation of unknown parameters in partial differential equations. Furthermore, we assess the efficiency and effectiveness of the suggested approach, effectively demonstrating how our framework facilitates prompt parameter estimation. Finally, we acknowledge outstanding requirements and delineate future goals to advance this framework.
The results of our study demonstrate that the model successfully captures the transport phenomena within the human brain. Furthermore, within a specific range of water transfer coefficients, the model indirectly predicts the existence of the glymphatic system, thereby providing theoretical support for the glymphatic theory. This study not only demonstrates the feasibility of uncovering the physiological properties of complex biological systems through computer-aided modelling but also underscores the potential of the presented novel method for conducting parametric studies.
1. Nations, U. Ageing. Available from: https://www.un.org/en/global-issues/ageing.
2. Bloom, D.E., D. Canning, and G. Fink, Implications of population ageing for economic growth. Oxford Review of Economic Policy, 2010. 26(4): p. 583-612.
3. European, C., E. Directorate-General for, and A. Financial, The 2021 ageing report : economic & budgetary projections for the EU Member States (2019-2070). 2021: Publications Office.
4. Lee, R. and A. Mason, Population Aging and the Generational Economy: A Global Perspective. 2011, Cheltenham, UK: Edward Elgar Publishing.
5. OECD, Working Better with Age: Japan. 2018.
6. World population ageing 2013. 2014: United Nations.
7. Economic, U.N.D.o. and S. Affairs, World Population Ageing 2019. 2020: United Nations.
8. Nations, U., World Population Prospects 2019: Highlights. 2019: United Nations.
9. Gauthier S, R.-N.P., Morais JA, & Webster C., World Alzheimer Report 2021: Journey through the diagnosis of dementia. 2021: Lodon, England.
10. Bank, T.W. Fertility rate, total (births per woman). Available from: https://data.worldbank.org/indicator/SP.DYN.TFRT.IN.
11. Chand, M. and R.L. Tung, The aging of the world’s population and its effects on global business. Academy of Management Perspectives, 2014. 28(4): p. 409-429.
12. Wang, Q., et al., COVID-19 and dementia: Analyses of risk, disparity, and outcomes from electronic health records in the US. Alzheimer's & Dementia, 2021. 17(8): p. 1297-1306.
13. Numbers, K. and H. Brodaty, The effects of the COVID-19 pandemic on people with dementia. Nature Reviews Neurology, 2021. 17(2): p. 69-70.
14. Chen, F., et al., The COVID-19 pandemic and Alzheimer’s disease: mutual risks and mechanisms. Translational Neurodegeneration, 2022. 11(1): p. 40.
15. Gordon, M.N., et al., Impact of COVID-19 on the Onset and Progression of Alzheimer's Disease and Related Dementias: A Roadmap for Future Research. Alzheimer's & Dementia, 2022. 18(5): p. 1038-1046.
16. Mok, V.C.T., et al., Tackling challenges in care of Alzheimer's disease and other dementias amid the COVID-19 pandemic, now and in the future. Alzheimer's & Dementia, 2020. 16(11): p. 1571-1581.
17. Isaia, G., et al., Atypical Presentation of Covid-19 in an Older Adult With Severe Alzheimer Disease. The American Journal of Geriatric Psychiatry, 2020. 28(7): p. 790-791.
18. World Health, O., Global action plan on the public health response to dementia 2017–2025. 2017, Geneva: World Health Organization.
19. Sen, P.N. and P.J. Basser, Modeling diffusion in white matter in the brain: A composite porous medium. Magnetic Resonance Imaging, 2005. 23(2): p. 215-220.
20. Woerly, S., et al., Neural Tissue Formation Within Porous Hydrogels Implanted in Brain and Spinal Cord Lesions: Ultrastructural, Immunohistochemical, and Diffusion Studies. Tissue Engineering, 1999. 5(5): p. 467-488.
21. Heidrich, R., [On the anatomy and physiology of the subarachnoid space of the brain and spinal cord]. Z Arztl Fortbild (Berl), 1963. 57: p. 433-42.
22. Keith, A. and W. Brownell, Books Reviews - Neuroscience in Medicine. Third Edition. 2008. Edited by P. Michael Conn. Published by Humana Press. 816 pages. Price C$170 approx.
23. Beason-held, L.L. and B. Horwitz, Aging Brain, in Encyclopedia of the Human Brain, V.S. Ramachandran, Editor. 2002, Academic Press: New York. p. 43-57.
24. Raichle, M.E. and D.A. Gusnard, Appraising the brain's energy budget. Proceedings of the National Academy of Sciences, 2002. 99(16): p. 10237-10239.
25. Bear, M.F., B.W. Connors, and M.A. Paradiso, Neuroscience: Exploring the Brain. 2016.
26. Dandy, W.E., Where is cerebrospinal fluid absorbed? Journal of the American Medical Association, 1929. 92(24): p. 2012-2014.
27. Hal, B., Neuroanatomy through Clinical Cases. 2002.
28. Tayebi Meybodi, A., H. Tabani, and A. Benet, Chapter 2 - Arachnoid and dural reflections, in Handbook of Clinical Neurology, M.W. McDermott, Editor. 2020, Elsevier. p. 17-54.
29. Haines, D.E., On the question of a subdural space. The Anatomical Record, 1991. 230(1): p. 3-21.
30. Reina, M.A., et al., [Does the subdural space exist?]. Rev Esp Anestesiol Reanim, 1998. 45(9): p. 367-76.
31. Adeeb, N., et al., The cranial dura mater: a review of its history, embryology, and anatomy. Child's Nervous System, 2012. 28(6): p. 827-837.
32. Sakka, L., Anatomy of the Cranial and Spinal Meninges, in Pediatric Hydrocephalus, G. Cinalli, M.M. Ozek, and C. Sainte-Rose, Editors. 2018, Springer International Publishing: Cham. p. 1-55.
33. Sabec Pereira, D.K., et al., Anatomy of the dura mater venous sinus of Alouatta belzebul. Anatomia, Histologia, Embryologia, 2021. 50(1): p. 58-64.
34. Patchana, T., et al., Superior Sagittal Sinus: A Review of the History, Surgical Considerations, and Pathology. Cureus, 2019. 11(5): p. e4597.
35. Grzybowski, D.M., et al., Human arachnoid granulations Part I: a technique for quantifying area and distribution on the superior surface of the cerebral cortex. Cerebrospinal Fluid Research, 2007. 4(1): p. 6.
36. Bateman, G.A. and S.H. Siddique, Cerebrospinal fluid absorption block at the vertex in chronic hydrocephalus: obstructed arachnoid granulations or elevated venous pressure? Fluids and Barriers of the CNS, 2014. 11(1): p. 11.
37. Haines, D.E., H.L. Harkey, and O. Al-Mefty, The “Subdural” Space: A New Look at an Outdated Concept. Neurosurgery, 1993. 32(1).
38. Saboori, P. and A. Sadegh, Histology and Morphology of the Brain Subarachnoid Trabeculae. Anat Res Int, 2015. 2015: p. 279814.
39. Iliff, J.J., et al., A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Science Translational Medicine, 2012. 4(147): p. 147ra111-147ra111.
40. Lulu, X., et al., Sleep Drives Metabolite Clearance from the Adult Brain. Science, 2013. 342(6156): p. 373-377.
41. Aspelund, A., et al., A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. Journal of Experimental Medicine, 2015. 212(7): p. 991-999.
42. Louveau, A., et al., Structural and functional features of central nervous system lymphatic vessels. Nature, 2015. 523(7560): p. 337-341.
43. Benveniste, H., et al., The Glymphatic System and Waste Clearance with Brain Aging: A Review. Gerontology, 2019. 65(2): p. 106-119.
44. Vinje, V., et al., Intracranial pressure elevation alters CSF clearance pathways. Fluids and Barriers of the CNS, 2020. 17(1): p. 29.
45. Hablitz, L.M. and M. Nedergaard, The glymphatic system. Current Biology, 2021. 31(20): p. R1371-R1375.
46. Kaur, J., et al., Waste Clearance in the Brain. Frontiers in Neuroanatomy, 2021. 15.
47. Biot, M.A., General Theory of Three‐Dimensional Consolidation. Journal of Applied Physics, 1941. 12(2): p. 155-164.
48. Biot, M.A., Theory of Elasticity and Consolidation for a Porous Anisotropic Solid. Journal of Applied Physics, 1955. 26(2): p. 182-185.
49. Biot, M.A., Theory of Deformation of a Porous Viscoelastic Anisotropic Solid. Journal of Applied Physics, 1956. 27(5): p. 459-467.
50. Zienkiewicz, O.C. and T. Shiomi, Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics, 1984. 8(1): p. 71-96.
51. Zienkiewicz, O.C., et al., Static and dynamic behaviour of soils : a rational approach to quantitative solutions. I. Fully saturated problems. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1990. 429(1877): p. 285-309.
52. Tully, B. and Y. Ventikos, Coupling poroelasticity and CFD for cerebrospinal fluid hydrodynamics. IEEE Trans Biomed Eng, 2009. 56(6): p. 1644-51.
53. Tully, B.J., Allostasis of cerebral water: modelling the transport of cerebrospinal fluid. 2010.
54. Tully, B. and Y. Ventikos, Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. Journal of Fluid Mechanics, 2011. 667: p. 188-215.
55. Chou, D., Computational modelling of brain transport phenomena: application of multicompartmental poroelasticity. 2016, University of Oxford.
56. Chou, D., et al., A fully dynamic multi-compartmental poroelastic system: Application to aqueductal stenosis. J Biomech, 2016. 49(11): p. 2306-2312.
57. Guo, L., et al., A multiple-network poroelastic model for biological systems and application to subject-specific modelling of cerebral fluid transport. International Journal of Engineering Science, 2020. 147: p. 103204.
58. Nagashima, T., et al., Biomechanics of Hydrocephalus: A New Theoretical Model. Neurosurgery, 1987. 21(6).
59. Kaczmarek, M., R.P. Subramaniam, and S.R. Neff, The hydromechanics of hydrocephalus: Steady-state solutions for cylindrical geometry. Bulletin of Mathematical Biology, 1997. 59(2): p. 295-323.
60. Levine, D.N., The pathogenesis of normal pressure hydrocephalus: A theoretical analysis. Bulletin of Mathematical Biology, 1999. 61(5): p. 875-916.
61. Smillie, A., I.A.N. Sobey, and Z. Molnar, A hydroelastic model of hydrocephalus. Journal of Fluid Mechanics, 2005. 539: p. 417-443.
62. Clatz, O., et al., Dynamic Model of Communicating Hydrocephalus for Surgery Simulation. IEEE Transactions on Biomedical Engineering, 2007. 54(4): p. 755-758.
63. Linninger, A.A., B. Sweetman, and R. Penn, Normal and Hydrocephalic Brain Dynamics: The Role of Reduced Cerebrospinal Fluid Reabsorption in Ventricular Enlargement. Annals of Biomedical Engineering, 2009. 37(7): p. 1434-1447.
64. Lagaris, I.E., A. Likas, and D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 1998. 9(5): p. 987-1000.
65. Yazdi, H. and R. Pourreza, Unsupervised adaptive neural-fuzzy inference system for solving differential equations. Appl. Soft Comput., 2010. 10: p. 267-275.
66. Bar-Sinai, Y., et al., Learning data-driven discretizations for partial differential equations. Proceedings of the National Academy of Sciences, 2019. 116(31): p. 15344-15349.
67. Bar-Sinai, Y., et al. Data-driven discretization: machine learning for coarse graining of partial differential equations. 2018.
68. Aragon-Calvo, M.A. and J.C. Carvajal, Self-supervised learning with physics-aware neural networks – I. Galaxy model fitting. Monthly Notices of the Royal Astronomical Society, 2020. 498(3): p. 3713-3719.
69. Raissi, M., P. Perdikaris, and G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 2019. 378: p. 686-707.
70. Raissi, M. and G.E. Karniadakis, Hidden physics models: Machine learning of nonlinear partial differential equations. Journal of Computational Physics, 2018. 357: p. 125-141.
71. Raissi, M., Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations. Journal of Machine Learning Research, 2018. 19.
72. Parisi, D.R., M.C. Mariani, and M. Laborde, Solving differential equations with unsupervised neural networks. Chemical Engineering and Processing, 2003. 42: p. 715-721.
73. Pang, G., L. Lu, and G. Karniadakis, fPINNs: Fractional Physics-Informed Neural Networks. SIAM J. Sci. Comput., 2019. 41: p. A2603-A2626.
74. Pang, G., et al., nPINNs: Nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications. Journal of Computational Physics, 2020. 422: p. 109760.
75. Raissi, M., P. Perdikaris, and G. Karniadakis, Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations. ArXiv, 2017. abs/1711.10566.
76. Raissi, M., P. Perdikaris, and G. Karniadakis, Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. ArXiv, 2017. abs/1711.10561.
77. Raissi, M., P. Perdikaris, and G. Karniadakis, Machine learning of linear differential equations using Gaussian processes. J. Comput. Phys., 2017. 348: p. 683-693.
78. Lu, L., et al., DeepXDE: A Deep Learning Library for Solving Differential Equations. ArXiv, 2020. abs/1907.04502.
79. Terzaghi, K., Theoretical Soil Mechanics. 1943: p. i-xvii.
80. Rasmussen, G., Human Body Vibration Exposure and its Measurement. The Journal of the Acoustical Society of America, 1983. 73(6): p. 2229-2229.
81. Bederson, J.B., I.M. Germano, and L. Guarino, Cortical Blood Flow and Cerebral Perfusion Pressure in a New Noncraniotomy Model of Subarachnoid Hemorrhage in the Rat. Stroke, 1995. 26(6): p. 1086-1092.
82. Czosnyka, M. and J.D. Pickard, Monitoring and interpretation of intracranial pressure. Journal of Neurology, Neurosurgery & Psychiatry, 2004. 75(6): p. 813.
83. Chou, D., et al., An analytical steady-state solution for cerebral tissue based on multiple-network poroelasticity. 2019.
校內:2027-08-21公開