| 研究生: |
吳信賢 Wu, Hsin-Hsien |
|---|---|
| 論文名稱: |
重要設施非結構構件之耐震性能與風險評估 Seismic Performance and Risk Assessment of Non-structural Components of Critical Facilities |
| 指導教授: |
盧煉元
Lu, Lyan-Ywan |
| 共同指導教授: |
洪李陵
Hung, Li-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 320 |
| 中文關鍵詞: | 非結構構件 、耐震性能評估 、機率式地震風險評估 、地震災損評估 、易損性分析 、設備耐震評估 、重要設施 |
| 外文關鍵詞: | non-structural components, loss estimation, seismic performance assessment, fragility analysis, critical facilities |
| 相關次數: | 點閱:281 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位處地震發生頻繁區域,重要設施如:高科技廠房、醫院、發電廠、通訊中心、警消等相關設施之耐震評估極為重要,而此類設施之震害又以非結構構件之損壞為大宗。舉例而言,高科技廠房於興建時大多採用設計地震力極高之彈性設計法,因此在地震來臨時主結構可能無損,但卻極可能因結構動態放大效應造成廠房內振動敏感之精密製程設備嚴重毁損;或因隔間牆等非結構構件損壞造成停工損失。又例如,耐震設計規範要求醫院結構必須採用較高之耐震係數,因此強震時醫院主結構可能輕微損傷,但卻可能因內部醫療設備或管線系統毁損,導致醫院喪失醫療功能。由上述說明可知,重要設施可能發生之震害機率大多來自設備與非結構構件之損失。然而,我國目前對於重要設施非結構構件尚缺乏一套完整的評估方法,大多僅針對特定設備進行定性式的耐震分析或易損性評估,且執行耐震評估時亦未加以量化為損失金額或停工成本等業主較關切之指標。
基於前述動機,本文乃參考美國FEMA P-58建物耐震評估法,針對非結構構件發展一套完整的機率式耐震評估流程,能夠對所選定之目標非結構構件進行量化的耐震評估,同時亦能於評估時將諸多不確定性因素加以考量。本文共建議二種評估方法,稱為性能評估法(一)與(二)。評估法(一)主要是依據FEMA P-58之耐震評估理論架構及評估流程發展而成;而評估法(二)則主要是結合核能電廠SPRA中所建議之易損性分析理論與FEMA P-58之流程架構而成。二者之主要差異在於非結構構件易損性曲線中需求參數之不同,前者為主結構反應;而後者為地表振動強度,因此使用者可依其現有之易損性資料加以選擇。同時,為展現本文建議方法之用效性,文中乃挑選一案例醫院中之四種非結構構件,包括:電腦斷層掃描機、消防撒水管線系統、升降機、病房隔間牆等,分別進行耐震評估。評估結果證實本文所提出之兩評估方法確實可針對特定非結構構件進行耐震性能評估。上述四種構件或設備具有不同的損壞狀態與邏輯,因此更能展現本文的適用性。
This study develops two probabilistic seismic assessment methods for non-structural components. These two methods that can be used to quantify seismic losses for target non-structural components are called performance assessment methods (1) and (2), respectively. Method (1) is based on methodology proposed by FEMA P-58: Seismic Performance Assessment of Buildings, while Method (2) combines the fragility analysis method of SPRA for nuclear power plant with the assessment process of FEMA P-58. The main difference between the two methods is the fragility demand parameters of the non-structural components. The former is based on the structural responses where components are mounted, while the latter is based on ground motion intensity. To demonstrate the effectiveness of the proposed two methods, this study chooses four different non-structural components from an existing hospital, including: computed tomography, fire sprinkle water-pipe system, elevators and partition walls. The assessment results confirm that the two methods proposed in this study are able to estimate the seismic losses of the chosen non-structural components.
1. Ang A. H-S., W. H. Tang (1975) “Probability Concepts in Engineering Planning and Design, Vol. 1: Basic Principles.” textbook, ISBN: 978-0471032007, August.
2. ASCE (2005) “Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities.” ASCE/SEI 43-05, American Society of Civil Engineers, Reston, Virginia.
3. ASCE (2010) “Minimum Design Loads for Buildings and Other Structures.” ASCE/SEI 7-10, American Society of Civil Engineers, Reston, Virginia.
4. ASCE (2013) “Seismic evaluation and Retrofit of Existing Buildings.” ASCE/SEI 41-13, American Society of Civil Engineers, Reston, Virginia.
5. Baker J. W. (2015) “Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis.” Earthquake Spectra, Volume 31, No. 1, 579–599
6. Cornell, C. A. (1968) “Engineering Seismic Risk Analysis.” Bulletin of the Seismological Society of America, Vol. 58, No. 5, 1583-1606.
7. Eduardo Miranda (2006) “Use of probability-based measures for automated damage assessment.” The Structural Design of Tall and Special Buildings, Volume 15, No. 1, 35–50.
8. EPRI (1991) “A Methodology for Assessment of Nuclear Power Plant Seismic Margin (Revision 1).” Electric Power Research Institute, NP-6041-SLR1.
9. EPRI (2013) “Seismic Probabilistic Risk Assessment Implementation Guide.” Electric Power Research Institute, 3002000709.
10. FEMA (2000) “Prestandard and. Commentary for the Seismic Rehabilitation of. Buildings.” Federal Emergency Management Agency, FEMA 356.
11. FEMA (2011) “Reducing the Risks of Nonstructural Earthquake Damage—A Practical Guide.” Federal Emergency Management Agency, Washington, D.C., FEMA E-74.
12. FEMA (2012) “Seismic Performance Assessment of Buildings, Volume 1—Methodology.” Federal Emergency Management Agency, FEMA P-58-1.
13. Huang, Y. N., Whittaker, A. S. & Luco, N. (2008) “Performance Assessment of Conventional and Base-Isolated Nuclear Power Plants for Earthquake and Blast Loadings.” MCEER, MCEER-08-0019, Technical Report.
14. Huang, Y. N., Whittaker, A. S. & Luco, N. (2010) “Seismic Performance Assessment of Base-Isolated Safety-Related Nuclear Structures.” Earthquake Engineering and Structural Dynamics, Vol. 39(13), 1421-1442.
15. Huang, Y. N., Whittaker, A. S. & Luco, N. (2011a) “A Probabilistic Seismic Risk Assessment Procedure for Nuclear Power Plants: (I) Methodology.” Nuclear Engineering and Design, Vol. 241(9), 3985-3995.
16. Huang, Y. N., Whittaker, A. S. & Luco, N. (2011b) “A Probabilistic Seismic Risk Assessment Procedure for Nuclear Power Plants: (II) Application.” Nuclear Engineering and Design, Vol. 241(9), 3996-4003.
17. Kiureghian, A. D. (2005) “Non-Ergodicity and PEER’s Framework Formula.” Earthquake Engineering and Structural Dynamics, Vol. 34 (13), 1643–1652.
18. Mahdi T., Mahdi A. (2012) “Sliding fragility of restrained and unrestrained block-type nonstructural components.” 15th World Conference on Earthquake Engineering.
19. MIDAS Information Technology Co., Ltd. (2016) “MIDAS Gen 2016.” Integrated Solution System for Building and General Structures.
20. Moehle, J. & Deierlein, G. G. (2004) “A Framework Methodology for Performance-Based Earthquake Engineering.” 13th World Conference on Earthquake Engineering, Vancouver, Canada.
21. NIST (1999) “Elemental Classification for Building Specifications, Cost Estimating and Cost Analysis.” UNIFORMAT II, National Institute of Standards and Technology, Gaithersburg, Maryland, NISTIR 6389 Report.
22. Papageorgiou A.V., Fragiadakis M., Vamvatsikos D. (2014) “Seismic loss and life cycle-cost assessment for reinforced concrete structure” Second European Conference on Earthquake Engineering and Seismology, Istanbul, Aug., 25-29.
23. PEER (2010) “Modeling and Acceptance Criteria for Seismic Design and Analysis of Tall Buildings.” Pacific Earthquake Engineering Research Center, PEER 2010/111.
24. Pickard, Lowe, Garrick, Inc., et al. (1981) “Zion Probabilistic Safety Study.” Commonwealth Edison, Chicago.
25. Porter K., Kennedy R., Bachman R. (2007) “Creating Fragility Functions for Performance-Based Earthquake Engineering.” Earthquake Spectra, Volume 23, No. 2, pages 471–489.
26. Smith, P. D., et al. (1980) “An Overview of Seismic Risk Analysis for Nuclear Power Plants.” Lawrence Livermore National Laboratory, Livermore, California, UCID-18680.
27. Sung Y.C., Hsu C.C., Hung H.H., & Chang Y.J. (2013) “Seismic risk assessment system of existing bridges in Taiwan. ” Structure and Infrastructure Engineering, 9, 903–917.
28. The MathWorks, Inc. (2016) “Matlab R2016a.” Matrix Laboratory.
29. TRC Companies, Inc. (2007) “XTRACT.” Cross-Sectional X Structural Analysis of Component.
30. USNRC (1981) “Seismic Safety Margins Research Program: Phase 1 Final Report.” U.S. Nuclear Regulatory Commission, NUREG/CR-2015, Washington, D.C.
31. USNRC (1983) “PRA Procedures Guide: A Guide to the Performance of Probabilistic Risk Assessments for Nuclear Power Plants.” U.S. Nuclear Regulatory Commission, NUREG/CR-2300, Washington, DC.
32. USNRC (1985) “An Approach to the Quantification of Seismic Margins in Nuclear Power Plants.” U.S. Nuclear Regulatory Commission, NUREG/CR-4334.
33. USNRC (1986) “Recommendations to the Nuclear Regulatory Commission on Trial Guidelines for Seismic Margin Reviews of Nuclear Power Plants.” U.S. Nuclear Regulatory Commission, NUREG/CR-4482., Washington, DC.
34. USNRC (1991a) “Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities.” U.S. Nuclear Regulatory Commission, Generic Letter No. 88-20, Supplement 4., Washington, DC.
35. USNRC (1991b) “Procedural and Submittal Guidance for IPEEE for Severe Accident Vulnerab.” U.S. Nuclear Regulatory Commission, NUREG-1407.
36. Yang, T. Y., Moehle, J., Stojadinovic, B. & Kiureghian, A. D. (2009) “Performance Evaluation of Structural Systems: Theory and Implementation.” Journal of Structural Engineering, Vol. 135 (10), 1146–1154.
37. Yang, T.Y., Moehle, J., Stojadinovic, B., and Der Kiureghian, A. (2009) “Seismic performance evaluation of facilities: methodology and implementation.” Journal of Structural Engineering, Vol. 135, No. 10, 1146-1154.
38. Yang, T.Y., Moehle, J., Stojadinovic, B., Der Kiureghian, A. (2006) “Anapplication of PEER performance-based earthquake engineering methodology.” Proceedings, 8th U.S. National Conference on Earthquake Engineering, San Francisco, California, Paper No. 1448.
39. Zeng X., Lu X., Yang T. Y.,Xu Z. (2016) “Application of the FEMA-P58 methodology for regional earthquake loss prediction.” Nat Hazard, 83(1): 177–192
40. 宋裕祺、黃世建、柴駿甫、郭耕杖、劉光晏、林克強、林凡茹、林哲民、李昭賢、洪曉慧、翁樸文、張毓文、張永叡、黃郁婷、楊耀昇、陳政孙、陳威中、陳緯蒼、簡文郁、蘇進國(2010),“2010年0304高雄甲仙地震事件勘災報告”,國家地震工程研究中心,NCREE-10-010。
41. 凃英烈(2012),“建築物中非結構物震損機率曲線之研究–以醫院及學校為例”,國立成功大學建築研究所博士論文,7月,指導教授:姚昭智、洪李陵。
42. 胡力維(2008),“高科技廠房之結構易損性分析”,國立中央大學土木工程學系碩士論文,2月,指導教授:蔣偉寧、許文科。
43. 胡佩文(2015),“醫院消防撒水系統耐震易損性分析研究”,國立臺灣大學工學院土木工程學系碩士論文,7月,指導教授:張國鎮。
44. 柴駿甫、黃震興(2015),“醫院耐震評估補強準則之研擬”,國家地震工程研究中心,NCREE-15-017。
45. 陳榮哲(2013),“非結構設備地震風險評估架構之研究”,國立中央大學土木工程學系碩士論文,6月,指導教授:蔣偉寧、許文科。
46. 黃昶閔(2009),“醫院重要醫療空間內設備物耐震性能評估之研究”,國立成功大學建築研究所碩士論文,6月,指導教授:姚昭智。
47. 黃郁婷(2010),“建築震害中功能性設施損壞及修復金額機率曲線研究”,國立成功大學建築研究所碩士論文,6月,指導教授:姚昭智。
48. 黃匯芳(2012),“非結構構件之耐震評估與補強方法及實例應用”,國立高雄第一科技大學營建工程系專題實務報告,12月,指導教授:盧煉元。
49. 葉昶辰(2016),“醫院消防撒水系統耐震評估與易損性簡化分析方法研究”, 國立臺灣大學工學院土木工程學系碩士論文,7月,指導教授:張國鎮。
50. 謝瑋桓(2017),“中高樓建築機率式耐震與倒塌風險評估之研究”,國立成功大學土木工程學系碩士論文,7月,指導教授:盧煉元。