| 研究生: |
周仕涵 Chou, Shih-Han |
|---|---|
| 論文名稱: |
以S、N改質TiO2光觸媒在可見光下處理1,2-二氯乙烷之研究 Photocatalytic Degradation of 1,2-dichloroethane Under Visible Light with S- or N-doped TiO2 Photocatalysts |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 189 |
| 中文關鍵詞: | 1,2-二氯乙烷 、光觸媒 、可見光光催化 、N改質光觸媒 、S改質光觸媒 |
| 外文關鍵詞: | 1,2-dichloroethane, Titanium dioxide (TiO2), Visible light photocatalysis, N-doped catalyst, S-doped catalyst |
| 相關次數: | 點閱:130 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1,2-二氯乙烷(1,2-dichloroethane, DCE)為工業上常用的有機溶劑,但如果在使用過程中釋放到空氣中,與人體接觸或經人體吸入,將對健康造成危害,亦造成環境污染。光催化反應具有氧化能力強、處理效率高及操作程序簡單等優點,成為具有潛能的控制空氣污染技術。
本實驗利用溶膠凝膠法製備而成TiO2光觸媒,並以N或S改質/摻雜,期望藉由改質來提高TiO2光觸媒在可見光下降解1,2-二氯乙烷的效率。同時探討批次實驗中,不同改質/摻雜物質對光觸媒光催化活性的影響,並藉由各種輔助實驗,如UV-Visible、XRD、BET、XPS等精密儀器來研究光觸媒吸光度、晶相變化、粒徑分佈、化學鍵結等物化性質,藉以探討與1,2-二氯乙烷降解效率之關連性。
研究結果顯示,經由N或S改質TiO2光觸媒(N/TiO2、S/TiO2)能使吸收波長往可見光波長位移且光觸媒能隙(band gap)能有效下降;在XRD分析結果得知,當鍛燒溫度為500°C時自製TiO2光觸媒晶相大部分為anatase,另有部分rutile晶相產生。經過N、S改質/摻雜的TiO2光觸媒,anatase晶相比例明顯增加,而經S改質的TiO2粒徑明顯變小。
在日光照射下之光催化實驗中,光觸媒塗佈量為0.6 g,改質TiO2光觸媒處理1,2-二氯乙烷的轉化率分析可發現,經過改質後的TiO2其轉化效率皆大幅提升,以S/Ti = 10 mol%之光觸媒表現最佳,平均降解速率為55.3 nmol/min/g,其次是N/Ti = 20 mol%,為43.2 nmol/min/g。結果顯示,S的含量越高,在光催化實驗中活性越好。
從結果得知,N改質的TiO2光觸媒所含的rutile比例越高,其光催化活性則越差。
1,2-dichloroethane is widely used as organic solvents in industrial processes. While 1,2-dichloroethane evaporates, it will cause environmental pollution and harm to human health. Photocatalytic reaction with its fast oxidation rate, high decomposition rate, and simple procedures now has become one of novel technologies to degrade organic solvents and has been applied widely in relative researches.
In this study, TiO2 was prepared by sol-gel method and doped with N or S (N/TiO2 or S/TiO2). The photocatalytic decomposition rate of 1,2-dichloroethane under visible light condition was expected to increase via doping. Additionally, the physical and chemical properties of the photocatalysts such as adsorbance spectrum, crystallinity, particle size, and chemical bonding, measured by UV-Visible, XRD, BET and XPS, respectively, were obtained for a better understanding to the reaction of 1,2-dichloroethane decomposition rate.
The UV-Visible spectra analysis indicates that the adsorbance wavelength of N/TiO2 or S/TiO2 became closer to the visble light, resulting in the narrower band gap. The XRD pattern of TiO2 which was calcined at 500°C shows the coexistence of the crystal forms of anatase and rutile. By doping with N or S, the content of anatase obviously increased; moreover, the particle size of S/TiO2 was smaller than pure TiO2.
The photocatalytic degradation of 1,2-dichloroethane under fluorescent light was further studied using N/TiO2 and S/TiO2. The experimental results showed 1,2-dichloroethane conversion increased in N/TiO2 and S/TiO2 photocatalysts. It was found that S/TiO2 = 10 mol% achieved the greatest performance, and the average 1,2-dichloroethane conversion rate is 55.3 nmol/min/g. Following is N/TiO2 = 20 mol%, the average 1,2-dichloroethane conversion rate is 43.2 nmol/min/g. The higher S doping content, the better the photocatalytic decomposition efficiency. On the other hand, for N/TiO2 photocatalysts, the higher content of rutile, the worse the 1,2-dichloroethane decomposition efficiency.
Alberici, R.M., Jardim, W.E., 1997. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Applied Catalysis B-Environmental, 14, 55-68.
Andersson, M., Osterlund, L., Ljungstrom, S., Palmqvist, A., 2002. Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol. The Journal of Physical Chemistry B, 106, 10674-10679.
Anpo, M., Shima, T., Kodama, S., Kubokawa, Y., 1987. Photocatalytic Hydrogenation of CH3CCH with H2O on Small-Particle TiO2 - Size Quantization Effects and Reaction Intermediates. Journal of Physical Chemistry, 91, 4305-4310.
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293, 269-271.
Bandara, J., Mielczarski, J.A., Lopez, A., Kiwi, J., 2001. 2. Sensitized degradation of chlorophenols on iron oxides induced by visible light - Comparison with titanium oxide. Applied Catalysis B-Environmental, 34, 321-333.
Baolong, Z., Baishun, C., Keyu, S., Shangjin, H., Xiaodong, L., Zongjie, D., Kelian, Y., 2003. Preparation and characterization of nanocrystal grain TiO2 porous microspheres. Applied Catalysis B: Environmental, 40, 253-258.
Boccuzzi, F., Chiorino, A., Manzoli, M., Lu, P., Akita, T., Ichikawa, S., Haruta, M., 2001. Au/TiO2 Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation. Journal of Catalysis, 202, 256-267.
Boulamanti, A.K., Philippopoulos, C.J., 2009. Photocatalytic degradation of C5-C7 alkanes in the gas-phase. Atmospheric Environment, 43, 3168-3174.
Brillas, E., Mur, E., Sauleda, R., Sanchez, L., Peral, J., Domenech, X., Casado, J., 1998. Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B-Environmental, 16, 31-42.
Carp, O., Huisman, C.L., Reller, A., 2004. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33-177.
Chatterjee, D., Dasgupta, S., Rao, N.N., 2006. Visible light assisted photodegradation of halocarbons on the dye modified TiO2 surface using visible light. Solar Energy Materials and Solar Cells, 90, 1013-1020.
Chatterjee, D., Mahata, A., 2001. Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light. Applied Catalysis B-Environmental, 33, 119-125.
Chen, C., Bai, H., Chang, C., 2007. Effect of plasma processing gas composition on the nitrogen-doping status and visible light photocatalysis of TiO2. Journal of Physical Chemistry C, 111, 15228-15235.
Chen, L.C., Tu, Y.J., Wang, Y.S., Kan, R.S., Huang, C.M., 2008. Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. Journal of Photochemistry and Photobiology a-Chemistry, 199, 170-178.
Chen, X., Burda, C., 2004. Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles. The Journal of Physical Chemistry B, 108, 15446-15449.
Cho, Y.M., Choi, W.Y., Lee, C.H., Hyeon, T., Lee, H.I., 2001. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental Science & Technology, 35, 966-970.
Choi, W.Y., Termin, A., Hoffmann, M.R., 1994. Effects of Metal-Ion Dopants on the Photocatalytic Reactivity of Quantum-Sized TiO2 Particles. Angewandte Chemie-International Edition in English, 33, 1091-1092.
Crisan, M., Braileanu, A., Raileanu, M., Zaharescu, M., Crisan, D., Dragan, N., Anastasescu, M., Ianculescu, A., Nitoi, I., Marinescu, V.E., Hodorogea, S.M., 2008. Sol-gel S-doped TiO2 materials for environmental protection. Journal of Non-Crystalline Solids, 354, 705-711.
de Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., van den Heuvel, A., Osinga, T.J., 1966. Thet-curve of multimolecular N2-adsorption. Journal of Colloid and Interface Science, 21, 405-414.
Dhage, S.R., Choube, V.D., Samuel, V., Ravi, V., 2004. Synthesis of nanocrystalline TiO2 at 100 degrees C. Materials Letters, 58, 2310-2313.
Duminica, R.D., Maury, F., Hausbrand, R., 2007. N-doped TiO2 coatings grown by atmospheric pressure MOCVD for visible light-induced photocatalytic activity. Surface & Coatings Technology, 201, 9349-9353.
Fogler, H.S., Elements of Chemical reaction engineering, 3rd ed., Prentice Hall, 1999.
Hamal, D.B., Klabunde, K.J., 2007. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. Journal of Colloid and Interface Science, 311, 514-522.
Harizanov, O., Ivanova, T., Harizanova, A., 2001. Study of sol-gel TiO2 and TiO2-MnO obtained from a peptized solution. Materials Letters, 49, 165-171.
He, C., Yu, Y., Zhou, C.H., Hu, X.F., 2002. Structure and photocatalytic activities of Ag/TiO2 thin films. Journal of Inorganic Materials, 17, 1025-1033.
Ho, W., Yu, J.C., Lee, S., 2006. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. Journal of Solid State Chemistry, 179, 1171-1176.
Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W., 1995. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95, 69-96.
Hong, S.S., Lee, M.S., Park, S.S., Lee, G.D., 2003. Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol. Catalysis Today, 87, 99-105.
Hung, C.H., Marinas, B.J., 1997. Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films. Environmental Science & Technology, 31, 1440-1445.
Hung, W.C., Fu, S.H., Tseng, J.J., Chu, H., Ko, T.H., 2007. Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol-gel method. Chemosphere, 66, 2142-2151.
Hussain, S.T., Khan, K., Hussain, R., 2009. Size control synthesis of sulfur doped titanium dioxide (anatase) nanoparticles, its optical property and its photo catalytic reactivity for CO2 + H2O conversion and phenol degradation. Journal of Natural Gas Chemistry, 18, 383-391.
Kanai, N., Nuida, T., Ueta, K., Hashimoto, K., Watanabe, T., Ohsaki, H., 2004. Photocatalytic efficiency of TiO2/SnO2 thin film stacks prepared by DC magnetron sputtering. Vacuum, 74, 723-727.
Ksibi, M., Rossignol, S., Tatibouet, J.M., Trapalis, C., 2008. Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light. Materials Letters, 62, 4204-4206.
Legrand-Buscema, C., Malibert, C., Bach, S., 2002. Elaboration and characterization of thin films of TiO2 prepared by sol-gel process. Thin Solid Films, 418, 79-84.
Li, X., Xiong, R.C., Wei, G., 2008. S-N co-doped TiO2 photocatalysts with visible-light activity prepared by sol-gel method. Catalysis Letters, 125, 104-109.
Liu, C., Tang, X., Mo, C., Qiang, Z., 2008. Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium. Journal of Solid State Chemistry, 181, 913-919.
Liu, S., Chen, X., 2008. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. Journal of Hazardous Materials, 152, 48-55.
Liu, S.X., Chen, X.Y., Chen, X., 2006. Preparation of N-doped visible-light response nanosize TiO2 photocatalyst using the acid-catalyzed hydrolysis method. Chinese Journal of Catalysis, 27, 697-702.
Liu, S.X., Qu, Z.P., Han, X.W., Sun, C.L., 2004. A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today, 93-95, 877-884.
Lucky, R.A., Charpentier, P.A., 2010. N-doped ZrO2/TiO2 bimetallic materials synthesized in supercritical CO2: Morphology and photocatalytic activity. Applied Catalysis B: Environmental, 96, 516-523.
Lv, K.L., Zuo, H.S., Sun, J., Deng, K.J., Liu, S.C., Li, X.F., Wang, D.Y., 2009. (Bi, C and N) codoped TiO2 nanoparticles. Journal of Hazardous Materials, 161, 396-401.
Madarasz, J., Braileanu, A., Crisan, M., Pokol, G., 2009. Comprehensive evolved gas analysis (EGA) of amorphous precursors for S-doped titania by in situ TG-FTIR and TG/DTA-MS in air: Part 2. Precursor from thiourea and titanium(IV)-n-butoxide. Journal of Analytical and Applied Pyrolysis, 85, 549-556.
Miao, L., Jin, P., Kaneko, K., Terai, A., Nabatova-Gabain, N., Tanemura, S., 2003. Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering. Applied Surface Science, 212-213, 255-263.
Mo, J., Zhang, Y., Xu, Q., Lamson, J.J., Zhao, R., 2009. Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment, 43, 2229-2246.
Mohamed, M.M., Al-Esaimi, M.M., 2006. Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: Degradation of methylene blue dye. Journal of Molecular Catalysis A: Chemical, 255, 53-61.
Nadtochenko, V., Denisov, N., Gorenberg, A., Kozlov, Y., Chubukov, P., Rengifo, J.A., Pulgarin, C., Kiwi, J., 2009. Correlations for photocatalytic activity and spectral features of the absorption band edge of TiO2 modified by thiourea. Applied Catalysis B-Environmental, 91, 460-469.
Nakamura, R., Tanaka, T., Nakato, Y., 2004. Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes. The Journal of Physical Chemistry B, 108, 10617-10620.
Nishijima, K., Kamai, T., Murakami, N., Tsubota, T., Ohno, T., 2008. Photocatalytic hydrogen or oxygen evolution from water over S- or N-doped TiO2 under visible light. International Journal of Photoenergy, -.
Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., 2004. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis a-General, 265, 115-121.
Park, M., Komarneni, S., Roy, R., 2000. Microwave-hydrothermal decomposition of chlorinated organic compounds. Materials Letters, 43, 259-263.
Ramanthan, K., Spivey, J.J., 1989. Catalytic-Oxidation of 1,1-Dichloroethane. Combustion Science and Technology, 63, 247-255.
Ren, L., Yang, F.D., Zhang, Y.M., Yang, J., Li, M.Y., 2008. Preparation and visible-light responsive photocatalytic activity of N-doped TiO2 photocatalyst. Chinese Journal of Inorganic Chemistry, 24, 541-546.
Sathish, M., Viswanathan, B., Viswanath, R.P., 2007. Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti-melamine complex. Applied Catalysis B-Environmental, 74, 307-312.
Sclafani, A., Herrmann, J.M., 1996. Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions. The Journal of Physical Chemistry, 100, 13655-13661.
Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., Hidaka, H., 1995. Exploiting the Interparticle Electron-Transfer Process in the Photocatalyzed Oxidation of Phenol, 2-Chlorophenol and Pentachlorophenol - Chemical Evidence for Electron and Hole Transfer between Coupled Semiconductors. Journal of Photochemistry and Photobiology a-Chemistry, 85, 247-255.
Shankar, K., Tep, K.C., Mor, G.K., Grimes, C.A., 2006. An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties. Journal of Physics D-Applied Physics, 39, 2361-2366.
Sonawane, R.S., Hegde, S.G., Dongare, M.K., 2003. Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating. Materials Chemistry and Physics, 77, 744-750.
Spurr, R.A., Myers, H., 1957. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Analytical Chemistry, 29, 760-762.
Srebowata, A., Juszczyk, W., Kaszkur, Z., Sobczak, J.W., Kepinski, L., Karpinski, Z., 2007. Hydrodechlorination of 1,2-dichloroethane and dichlorodifluoromethane over Ni/C catalysts: The effect of catalyst carbiding. Applied Catalysis a-General, 319, 181-192.
Sun, H., Liu, H., Ma, J., Wang, X., Wang, B., Han, L., 2008. Preparation and characterization of sulfur-doped TiO2/Ti photoelectrodes and their photoelectrocatalytic performance. Journal of Hazardous Materials, 156, 552-559.
Sun, H.Q., Bai, Y., Liu, H.J., Jin, W.Q., Xu, N.P., 2009. Photocatalytic decomposition of 4-chlorophenol over an efficient N-doped TiO2 under sunlight irradiation. Journal of Photochemistry and Photobiology a-Chemistry, 201, 15-22.
Umebayashi, T., Yamaki, T., Itoh, H., Asai, K., 2002. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids, 63, 1909-1920.
USEPA, Alternative Control Techniques Document - Industrial Cleaning Solvents, EPA453/R-94-015, U.S. Environment Protection Agency Emission Standards Division, 1994.
Vincent, G., Marquaire, P.M., Zahraa, O., 2009. Photocatalytic degradation of gaseous 1-propanol using an annular reactor: Kinetic modelling and pathways. Journal of Hazardous Materials, 161, 1173-1181.
Wei, F., Ni, L., Cui, P., 2008. Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity. Journal of Hazardous Materials, 156, 135-140.
Yang, X., Cao, C., Hohn, K., Erickson, L., Maghirang, R., Hamal, D., Klabunde, K., 2007. Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde. Journal of Catalysis, 252, 296-302.
Yates, J.R., Eng, J., Mccormack, A.L., Moji, T., Pious, D., 1995. Studies of Immunological Pathways by Using Tandem Mass-Spectrometry and Database Searching. Abstracts of Papers of the American Chemical Society, 209, 122-ANYL.
Yin, S., Yamaki, H., Komatsu, M., Zhang, Q.W., Wang, J.S., Tang, Q., Saito, F., Sato, T., 2003. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. Journal of Materials Chemistry, 13, 2996-3001.
Yokosuka, Y., Oki, K., Nishikiori, H., Tatsumi, Y., Tanaka, N., Fujii, T., 2009. Photocatalytic degradation of trichloroethylene using N-doped TiO2 prepared by a simple sol-gel process. Research on Chemical Intermediates, 35, 43-53.
Yu, C.L., Yu, J.C., 2009. A Simple Way to Prepare C-N-Codoped TiO2 Photocatalyst with Visible-Light Activity. Catalysis Letters, 129, 462-470.
Yu, H., Zheng, X., Yin, Z., Tag, F., Fang, B., Hou, K., 2007. Preparation of Nitrogen-doped TiO2 Nanoparticle Catalyst and Its Catalytic Activity under Visible Light. Chinese Journal of Chemical Engineering, 15, 802-807.
Yu, J.C., Ho, W., Yu, J., Yip, H., Wong, P.K., Zhao, J., 2005. Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania. Environmental Science & Technology, 39, 1175-1179.
Zanoni, R., Righini, G., Montenero, A., Gnappi, G., Montesperelli, G., Traversa, E., Gusmano, G., 1994. XPS analysis of sol-gel processed doped and undoped TiO2 films for sensors. Surface and Interface Analysis, 22, 376-379.
Zhang, Y., Shen, Y., Gu, F., Wu, M.M., Xie, Y., Zhang, J.C., 2009. Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films. Applied Surface Science, 256, 85-89.
Zhou, M.H., Yu, J.G., 2008. Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders. Journal of Hazardous Materials, 152, 1229-1236.
化工資訊,「化學品原料商情」,四月,2003,92-96。
垰田博史,「光觸媒圖解」,商周出版社,2003。
林銳敏、梁嘉宏、林允涵,「有機性有害空氣污染物生成機制與控制技術評估」,行政院環保署,NSC 91-EPA-Z-327-002,2002。
林有銘,「無所不在的環境清潔工─奈米光觸媒」,科學發展,第四○八期,24-31,2006。
高濂、鄭珊、張青紅,「奈米光觸媒」,五南圖書出版股份有限公司,2004。
黃振家,「揮發性有機廢氣處理技術:活性碳吸附」,化工技術,第四十四卷,第三期,1997,49-59。
陳慧英、黃定加、朱秦億,「溶膠凝膠法在薄膜製備上的應用」,化工技術,第七卷,第十一期,1999,152-167。
勞工安全衛生研究所,「行政院勞委會標準分析參考方法:1,2-二氯乙烷」,2008。
劉國棟,「VOC管制趨勢展望」,工業污染防制,第四十八期,1992,15-31。
蔡文田,張慶源,「揮發性有機物(VOCs)催化燃燒處理」,環境工程會刊,第四期,1992,41-58。
蔡文田,「含氯溶劑可行減廢技術介紹」,工業污染防治,第三期,1993,171-182。
蔡文田、謝國鎔、張元銘,「表面清洗處理業使用含氯揮發性有機溶劑之安全衛生及空氣污染防制評估」,環報資訊月刊,第六十四期,2003。
盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防制,第二十九期,1989,102-117。
環保署毒災應變中心,「物質安全資料表:1,2-二氯乙烷」,2007。
環境保護署,「有機性有害空氣污染物排放特性調查與管制策略研究」,NSC 91-EPA-Z-327-002,2003。
環境保護署,「有害空氣污染物排放管制規範研訂計畫」,EPA-82-F103-09-13,1994。