簡易檢索 / 詳目顯示

研究生: 梁青芳
Liang, Chin-Fang
論文名稱: 類神經網路法簡化DOE程式對冷負荷計算之研究
Study of applying Artificial Neural Network to simplify the cooling load calculation based on DOE Code
指導教授: 邱政勳
Chiou, Jenq-Shing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 81
中文關鍵詞: DOE空調負荷類神經網路
外文關鍵詞: Cooling load, DOE, Artificial Neural Networks
相關次數: 點閱:112下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   台灣在夏季尖峰用電時段,耗費在建築空調的用電往往佔總體發電量的三分之一,但大部份的空調負載容量卻往往因為未能精確低計算而做保守性的高估,使得空調主機經常處於低效率的半載狀態,不但浪費設備成本,同時也浪費電能。另外雖然較準確的空調負荷計算軟體已經容易取得,但由於其往往過於繁複,一般使用者無法正確使用。
      為了使一般設計者能簡易又準確的估算空調負荷,本研究採用具公信力的大型空調軟體DOE2.2程式,以台北市十小時類辦公大樓依其特性及本地建材與氣象資料建立出準確的負荷來當作學習資料,然後採用倒傳遞類神經網路來學習這些資料,在經測試後可完成以類神經網路架構的簡易預測程式。為了更確定學習資料的準確性,也利用DOE程式計算一建築模型之冷負荷,結果語McQUISTON等人利用RTS法所估算的結果相當接近。
      從測試結果顯示,完成學習的類神經網路容易使用,計算時間甚短,比起原DOE軟體預測誤差大約6.67%。

      With a hot and humid weather in Taiwan, the consumption of electricity foe Air-Conditioning purpose is tremendously large and often exceed one third of summer peak load. Without an accurate estimation process, the majority of chillers used in the construction building is over-size fur to conservative load calculation. Many cooling facilities are always operating under a partial condition with low overall efficiency. Although, the large computer software which can accurately calculate the building cooling load is available and can be easily obtained through many channels, there are usually too complicate and difficult to be correctly applied.
      In order to assist the designer to correctly estimate the cooling load in a simpler way, DOE code is used to calculate the cooling load for many office buildings located in Taipei. The results were used as the learning data for a neural network model. After a series of learning and testing processes, the revised network model is finalized and a simpler neural network program is completed in this study. It is worth mentioned that cooling load predicted by DOE code for an example building were very similar to the McQuiston results which were calculated by RTS method.
      The simplified code developed in this study has an easy input procedure, very short computation time and a reasonable prediction accuracy. Comparing the predictions by the original DOE code, the prediction error of the current code is under 6.67%

    總目錄 Ⅰ 表目錄 Ⅲ 圖目錄 Ⅳ 符號說明 Ⅶ 第一章 緒論 1 1-1 研究動機與目的 1 1-2 現有空調負荷估算法 2 1-2-1 面積概估法 2 1-2-2 重點負荷概估法 5 1-3 研究方法 6 1-4 文獻回顧 6 1-5 本文架構 8 第二章 類神經網路之理論 2-3 燃燒器系統 9 2-1 人工神經元 2-4 安全及控制系統 9 2-2 網路系統架構 11 2-2-1 前饋式類神經網路 11 2-2-2 回饋式類神經網路 11 2-3 學習方式 12 2-3-1 監督式學習 12 2-3-2 非監督式學習 13 2-4 倒傳遞類神經網路 14 2-4-1 倒傳遞網路架構 14 2-4-2 倒傳遞網路演算法 15 第三章 空調負荷模擬程式 20 3-1 理論分析 20 3-1-1 空調負荷之組成部分 21 3-1-2 空調負荷計算 21 3-2 DOE程式簡介 26 3-2-1 DOE-2程式架構 27 3-3 氣象年簡介 29 3-4 DOE程式驗證 29 第四章 類神經網路模型建立 33 4-1 變因選取 33 4-2 室內發散熱 39 4-3 空調系統設定 41 4-4 類神經網路模擬 44 4-4-1 模擬方法 44 4-4-2 使用方法 48 4-5 測試分析 49 第五章 結論與建議 62 參考文獻 65 附錄 67

    1. 莊嘉文, ‘‘建築設備概論’’ 詹氏書局, 1994.
    2. McCulloch, W.S. and Pitts, W, ‘‘A Logical calculus of The Ideas Immanent in Nervous Activity’’ Bulletin of Mathematical Biophysics, pp. 115-133, 1943.
    3. Hebb, D.O., ‘‘The Organization of Behaviror’’, New York; Wiley, 1949.
    4. Rosenblatt, F., ‘‘Two Theorems of Statistical Separability in The Perceptron’’ , In Mechanisation of though processes: Proceedings of a Symposium held at the National Physical Laboratory, November 1958, Vol.1, pp. 421-456.
    5. Widrow, G. and Hoff, M.E., ‘‘Adaptive Switching Circuits’’ ,Institute of Radio Engineers, Wetern Electronic Show and Convention, Convention Record, Part 4, pp. 96-104, 1960.
    6. Hopfied, J.J., ‘‘Nerual Networks and Physical Systems with Emergent Collective Computational Abilities’’, Proceedings of the National Acadmy of Sciences, USA, pp. 2554-2558, 1979.
    7. Rumelhart, D.E and McCielland, J.L. eds, ‘‘Parallel Distributed Processing’’, Vol.I: Foundations, MIT Press, Cambridge, MA, 1986.
    8. Becerikli Y., Konar A.F. and Samad T., ‘‘Intelligent Optimal Control with Dynamic Neural Network’’ Neural Network 16(2): pp. 251-259, 2003
    9. Ambrozic T. and Turk G., ‘‘Prediction of Subsidence Due to Underground Mining by Artificial Neural Networks’’ Computers and Geosciences, pp. 627-637, 2003
    10. Catherine F.B. and Pierre L.C. ‘‘Modelling of the Flow Behavior of Activated Carbon Cloths Using a Neural Network Approacb’’ Chemical Engineering and Processing, pp.645-652, 2003
    11. Mitalas, G.P and D.G. Stephenson ‘Room thermal response factors. ASHRAE Transactions. 1967
    12. P.O. Fanger, ‘‘Thermal Comfort’’, McGraw-Hill, New York.
    13. Truiel R. Curtis and M.D. Levine., ‘‘Analysis of Energy Conservation Standards for Singapore Office Buildings’’ Energy, Vol. 10, No. 1, pp. 95-107, 1985.
    14. 黃國倉 ‘‘空調設備量簡易預測法之研究’’ 國立成功大學建築所碩士論文, 2002.
    15. 蕭艾玲 ‘‘學校建築節能設計分析與前尺度實驗印證’’ 國立中山大學建築所碩士論文, 2003.
    16. 張斐章, ‘‘類神經網路理論與實務’’ 東華書局, 2003
    17. F.C. McQuiston, J.D. Parker and F.D. Spitler., ‘‘Heating, Ventilating, and Air Conditioning,’’ John Wiley & Sons, Oklahoma.
    18. 林憲德, 黃國倉., ‘‘台灣TMY2標準氣象年之研究與應用’’ 建築學報, 53期, pp. 79-94, 2005.
    19. 林憲德, ‘‘建築節約能源基本教材’’ 1996.
    20 吳復強, ‘‘田口方法之原理與應用’’ 全威圖書, 2005.
    21 黃漢泉, ‘‘辦公類建築耗能總量調查之研究’’ 1999.
    22 林憲德, ‘‘建築節約能源設計技術規範與實例,辦公室類’’ 營建雜誌社 2003.
    23 許宗熙, ‘‘換器與空氣調節設備技術規範’’ 內政部營建署, 1986.

    下載圖示 校內:2007-08-08公開
    校外:2009-08-08公開
    QR CODE