簡易檢索 / 詳目顯示

研究生: 李昱廷
Li, Yu-Ting
論文名稱: 發展植入式無線生醫微系統用於清醒動物模式之神經刺激與生理訊號量測
Development of Implantable Wireless Biomicrosystems for Nerve Stimulation and Physiological Signal Measurement in Awake Animal Models
指導教授: 陳家進
Chen, Jia-Jin
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 95
中文關鍵詞: 阻抗測量電刺激神經再生植入式生醫微系統快速掃描循環伏安法無線伏安系統回饋預期
外文關鍵詞: Impedance measurement, Electrical stimulation, Nerve regeneration, Implantable biomicrosystem, Fast-scan cyclic voltammetry, Wireless voltammetry system, Reward prediction
相關次數: 點閱:105下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相對於傳統的有線方式,利用無線傳輸技術來擷取生理訊號提供了動物研究上相當多的優勢。一般來說,導線穿透皮膚可能會造成傷口的感染,且連接線也可能會被動物給損壞或者限制了動物的行動能力。然而,透過無線傳輸技術將可以在一個廣大的空間上對清醒且活動自由的動物進行生理訊號監測及電刺激。在本研究中,我們將無線生醫微系統應用在坐骨神經損傷的大鼠上,並利用阻抗量測方式來評估神經的再生情況;另外也將無線系統應用在回饋預期的學習研究上,並利用快速掃描循環伏安技術來偵測短暫的多巴胺訊號變化。

    穿皮電刺激通常被應用在促進周邊神經的再生。然而,很少研究進行過長期監測神經再生的情況。在此研究的第一個部分中,我們以坐骨神經損傷的大鼠作為實驗模式,並利用植入式生醫微系統所產生的刺激電流來促進神經修復,且藉由紀錄隨時間變化的神經阻抗數值來評估神經再生的情形。為了能進行長時間的植入,我們利用經表皮的電磁耦合技術進行電力及數據的傳輸。在為期42天的動物實驗中,此植入式模組被放置在大鼠腹部的皮下,而環狀電極則包裹在具有8-mm間距的坐骨神經上。在術後的第8至21天中,第一組的動物藉由環狀電極來進行單相定電流的神經刺激,而第二組動物則沒有接受任何電刺激。在術後的第42天,具有神經再生的組別,其阻抗值從初始的數值增加到150%以上,而沒有神經再生的組別,其阻抗值只有增加113%。因此,神經再生組別的阻抗值上升將可以作為明顯功能恢復前的觀察方法。而在具有神經再生的組別當中,有接受電刺激的組別比沒有接受電刺激的組別產生了相對較高的髓鞘纖維密度(20686 vs. 11417 fiber/mm2)。因此,我們所發展的植入式生醫微系統已被證實對於利用長期電刺激來促進神經纖維生長,以及利用阻抗測量方式來評估隨時間變化的神經再生情形是一項有效的實驗工具。

    快速掃描循環伏安法普遍地被用來監測短暫的多巴胺釋放,並常常用在有線的記錄與有限的動物行為實驗上。在此研究的第二個部分中,我們整合一個可監測腹側紋狀體多巴胺訊號的無線快速掃描循環伏安系統與一個可以產生雙相刺激電流並興奮多巴胺神經的電刺激器,並且將此整合系統應用於清醒且活動自由的老鼠上。此無線快速掃描循環伏安模組利用單向傳輸方式將測量到的多巴胺訊號傳至電腦主機端。為了減少電氣的干擾,光耦合器與各自的獨立電源被用來隔離快速掃描循環伏安系統與電刺激器。而此電刺激器則可經由紅外光控制並加以驅動。在系統驗證測試中,此無線模組與傳統的有線快速掃描循環伏安系統有著相似的效能,而且此無線模組對於老鼠的活動力並無太大的影響。在古柯鹼測試中,老鼠接受10 mg/kg古柯鹼注射的20分鐘後,電刺激所誘發的多巴胺分泌訊號增加了約230%左右。而在古典制約實驗的『維持階段(maintenance phase)』裡的連續50個試驗中,多巴胺訊號對於線索訊號的反應增加了60 nM,而電刺激所誘發的多巴胺濃度則從90 nM 降低至 50 nM。相反地,在『消退階段(extinction phase)』實驗中,多巴胺訊號對於線索訊號的反應則逐漸下降,而電刺激誘發的多巴胺濃度也完全被消除。在為期5個月的長期電刺激電極植入後,大腦的組織切片只呈現些微的損傷。因此,我們所發展的無線快速掃描循環伏安系統已被證實對於在活動自由老鼠的學習行為研究下的連續多巴胺監測是一項有效的實驗工具。

    Physiological data collection using wireless transmission technique has many advantages over traditional wired approaches in animal studies. Usually, wire passing through skin might cause wound infection and the wire could be damaged by the animal and impede the animal movement. Furthermore, the physiological data monitoring and electrical stimulation can be performed via wireless transmission approach in an awake freely moving animal in a large space studies. In this study, we utilized the wireless biomicrosystems for assessing the condition of nerve regeneration via impedance measurement technique in injured sciatic nerve rat model as well as detecting phasic dopamine signal via fast-scan cyclic voltammtery (FSCV) technique in reward-predictive learning study.

    Electrical stimulation is usually applied percutaneously for facilitating peripheral nerve regeneration. However, few studies have conducted long-term monitoring of the condition of nerve regeneration. The first part of this study implemented an implantable biomicrosystem for inducing pulse current for aiding nerve repair and monitoring the time-course changes of nerve impedance for assessing nerve regeneration in sciatic nerve injury rat model. For long-term implantation, a transcutaneous magnetic coupling technique was adopted for power and data transmission. For in vivo study, the implanted module was placed in the rat’s abdomen and the cuff electrode was wrapped around an 8-mm sciatic nerve gap of the rat for nerve impedance measurement for 42 days. One group of animals received monophasic constant current via the cuff electrode and a second group had no stimulation between days 8 to 21. The nerve impedance increased to above 150% of the initial value in the nerve regeneration groups with and without stimulation whereas the group with no nerve regeneration increased to only 113% at day 42. The impedance increase in nerve regeneration groups can be observed before evident functional recovery. Also, the nerve regeneration group that received electrical stimulation had relatively higher myelinated fiber density than that of no stimulation group, 20686 vs. 11417 fiber/mm2. The developed implantable biomicrosystem is proven to be a useful experimental tool for long-term stimulation in aiding nerve fiber growth as well as impedance assessment for understanding the time-course changes of nerve regeneration.

    FSCV is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. The second part of this study integrated a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. In the validation test, the wireless backpack system has similar performance in comparison with conventional wired system and it does not significantly affect the locomotor activity of rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg/kg cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 nM to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after 5 months chronic implantation of stimulating electrode. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous monitoring of dopamine levels during animal learning behavior studies of freely moving rats.

    中文摘要..............................i Abstract..............................iii 致謝..............................vi Contents..............................vii List of Figures and Tables..............................x Chapter 1 Introduction..............................1 1.1 Introduction to wireless biomicrosystems for in vivo application..............................1 1.1.1 Implantable miniature microstimulator..............................3 1.1.2 Wireless implantable sensing devices..............................5 1.1.3 Wireless neural headstage system..............................6 1.2 Introduction to peripheral nerve regeneration and treatments..............................8 1.3 Application of electrical stimulation for treating nerve regeneration..............................9 1.3.1 Electrical stimulation via needle-like percutaneous electrodes..............................9 1.3.2 Electrical stimulation and signal sensation via cuff electrode..............................10 1.4 The assessments of peripheral nerve regeneration and function recovery..............................10 1.5 The principle of two- and four-terminal impedance measurement techniques..............................11 1.6 Introduction to dopaminergic neurons and reward-prediction..............................13 1.7 Dopamine sensing techniques..............................14 1.7.1 Microdialysis..............................14 1.7.2 Electrochemical approaches..............................15 1.8 Motivation and the aims of this study..............................17 Chapter 2 Implantable Wireless Biomicrosystem for Monitoring and Stimulating Nerve Regeneration..............................21 2.1 The design and fabrication of cuff electrodes..............................21 2.2 Overall structure of wireless implantable biomicrosystem for impedance measurement and electrical stimulation..............................21 2.3 Experimental setup for system validation..............................27 2.4 In vivo experimental procedures..............................28 2.5 Functional assessment and histological evaluation..............................32 Chapter 3 Integrated Wireless Biomicrosystem for Dopamine Sensing..............................33 3.1 Fabrication of carbon fiber microelectrode..............................33 3.2 Structure of integrated wireless FSCV and electrical stimulator..............................34 3.3 In vivo experimental procedures..............................40 3.3.1 Animal preparation..............................40 3.3.2 Validation tests of FSCV dopamine recordings..............................45 3.3.3 Changes in dopamine concentration during classical conditioning test..............................46 3.3.4 Post-calibration and data analysis..............................47 3.3.5 Histological evaluation..............................48 Chapter 4 Results..............................49 4.1 Implantable wireless biomicrosystem for monitoring and stimulating nerve regeneration..............................49 4.1.1 Implantable wireless biomicrosystem..............................49 4.1.2 System validation for impedance measurement and electrical stimulation function..............................52 4.1.3 Assessment of nerve regeneration using implantable impedance measurement..............................55 4.1.4 Functional assessment and histological evaluation..............................58 4.2 Integrated wireless biomicrosystem for dopamine sensing..............................60 4.2.1 Implementation of wireless voltammetry system with isolated electrical stimulator..............................60 4.2.2 Locomotor activity test under wearing with and without backpack system..............................63 4.2.3 FSCV validation test under varied electrical stimulation..............................63 4.2.4 Validation tests after cocaine administration..............................66 4.2.5 Classical conditioning test..............................67 4.2.6 Histological evaluation..............................70 Chapter 5 Discussion..............................71 5.1 Implantable wireless biomicrosystem for monitoring and stimulating nerve regeneration..............................71 5.2 Integrated wireless biomicrosystem for dopamine sensing..............................76 Chapter 6 Conclusions..............................80 References..............................82

    Ackmann J.J., 1993. Complex bioelectric impedance measurement system for the frequency range from 5 Hz to 1 MHz. Ann. Biomed. Eng., 21(2), 135-146.

    Bath B.D., Michael D.J., Trafton B.J., Joseph J.D., Runnels P.L. and Wightman R.M., 2000. Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. Anal. Chem., 72(24), 5994-6002.

    Belkas J.S., Shoichet M.S. and Midha R., 2004. Peripheral nerve regeneration through guidance tubes. Neurol. Res., 26(2), 151-160.

    Bergstrom B.P. and Garris P.A., 1999. Utility of a tripolar stimulating electrode for eliciting dopamine release in the rat striatum. J. Neurosci. Methods, 87(2), 201-208.

    Berridge C.W., Devilbiss D.M., Andrzejewski M.E., Arnsten A.F., Kelley A.E., Schmeichel B., Hamilton C. and Spencer R.C., 2006. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol. Psychiatry, 60(10), 1111-1120.

    Bertelli J.A. and Mira J.C., 1995. The grasping test: a simple behavioral methos for objective quantitative assessment of peripheral nerve regeneration in the rat. J. Neurosic. Methods, 58(1-2), 151-155.

    Bledsoe J.M., Kimble C.J., Covey D.P., Blaha C.D., Agnesi F., Mohseni P., Whitlock S., Johnson D.M., Horne A., Bennet K.E., Lee K.H. and Garris P.A., 2009. Development of the wireless instantaneous neurotransmitter concentration system for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry. J. Neurosurg., 111(4), 712-723.

    Bosch J.L., 2005. The bion device: a minimally invasive implantable ministimulator for pudendal nerve neuromodulation in patients with detrusor overactivity incontinence. Urol. Clin. North. Am., 32(1), 109-112.

    Boyer S., Sawan M., Abdel-Gawad M., Robin S. and Elhilali M.M., 2000. Implantable selective stimulator to improve bladder voiding: design and chronic experiments in dogs. IEEE Trans. Rehabil. Eng., 8(4), 464-470.

    Brushart T.M., 1988. Preferential reinnervation of motor nerves by regenerating motor axons. J. Neurosci., 8(3), 1026-1031.

    Chader G.J., Weiland J. and Humayun M.S., 2009. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog. Brain Res., 175, 317-332.

    Chang C.H., Liao J.D., Chen J.J., Ju M.S. and Lin C.C., 2004. Alkanethiolate self-assembled monolayers as functional spacers to resist protein adsorption upon Au-coated nerve microelectrode. Langmuir, 20(26), 11656-11663.

    Cheer J.F., Heien M.L., Garris P.A., Carelli R.M. and Wightman R.M., 2005. Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: implications for intracranial self-stimulation. Proc. Natl. Acad. Sci. U S A, 102(52), 19150-19155.

    Chen C.C., Chan C.Y., Chen L.S., Tsai F.J., Yao C.H., Tsai C.C. and Chen Y.S., 2012. Investigation of neurochemical techniques for assessment of nerve regeneration within polymer guides. J. Med. Biol. Eng., 32(2), 131-138.

    Chen H.Y., Wu J.S., Hyland B., Lu X.D. and Chen J.J., 2008. A low noise remotely controllable wireless telemetry system for single-unit recording in rats navigating in a vertical maze. Med. Biol. Eng. Comput., 46(8), 833-839.

    Chen Y.S., Hu C.L., Hsieh C.L., Lin J.G., Tsai C.C., Chen T.H. and Yao C.H., 2001. Effects of percutaneous electrical stimulation on peripheral nerve regeneration using silicone rubber chambers. J. Biomed. Mater. Res., 57(4), 541-549.

    Crespi F. 2010. Wireless in vivo voltammetric measurements of neurotransmitters in freely behaving rats. Biosens. Bioelectron., 25(11), 2425-2430.

    Crespi F., Dalessandro D., Annovazzi-Lodi V., Heidbreder C. and Norgia M., 2004. In vivo voltammetry: from wire to wireless measurements. J. Neurosci. Methods, 140(1-2), 153-161.

    Day J.J., Roitman M.F., Wightman R.M. and Carelli R.M., 2007. Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat. Neurosci., 10(8), 1020-1028.

    Dinh P., Hazel A., Palispis W., Suryadevara S. and Gupta R., 2009. Functional assessment after sciatic nerve injury in a rat model. Microsurgery, 29(8), 644-649.

    Du Y.C., Lee Y.Y., Lu Y.Y., Lin C.H., Wu M.J., Chen C.L. and Chen T., 2011. Development of a telecare system based on ZigBee mesh network for monitoring blood pressure of patients with hemodialysis in health care centers. J. Med. Syst., 35(5), 877-883.

    Fan D., Rich D., Holtzman T., Ruther P., Dalley J.W., Lopez A., Rossi M.A., Barter J.W., Salas-Meza D., Herwik S., Holzhammer T., Morizio J. and Yin H.H., 2011. A wireless multi-channel recording system for freely behaving mice and rats. PLoS One, 6(7), e22033.

    Fisher L.E., Tyler D.J., Anderson J.S. and Triolo R.J., 2009. Chronic stability and selectivity of four-contact spiral nerve-cuff electrodes in stimulating the human femoral nerve. J. Neural Eng., 6(4), 046010.

    Ford C.P., Gantz S.C., Phillips P.E. and Williams J.T., 2010. Control of extracellular dopamine at dendrite and axon terminals. J. Neurosci., 30(20), 6975-6983.

    Fregni F. and Pascual-Leone A., 2007. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol., 3(7), 383-393.

    Garris P.A., Christensen J.R., Rebec G.V. and Wightman R.M., 1997. Real-time measurement of electrically evoked extracellular dopamine in the striatum of freely moving rats. J. Neurochem., 68(1), 152-161.

    Garris P.A., Ensman R., Poehlman J., Alexander A., Langley P.E., Sandberg S.G., Greco P.G., Wightman R.M. and Rebec G.V., 2004. Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle. J. Neurosci. Methods, 140(1-2), 103-115.

    Grill W.M. and Mortimer J.T., 2000. Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes. J. Biomed. Mater. Res., 50(2), 215-226.

    Haastert-Talini K., Schmitte R., Korte N., Klode D., Ratzka A. and Grothe C., 2011. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps. J. Neurotrauma, 28(4), 661-674.

    Hawley E.S., Hargreaves E.L., Kubie J.L., Rivard B. and Muller R.U., 2002. Telemetry system for reliable recording of action potentials from freely moving rats. Hippocampus, 12(4), 505-513.

    Hayes M.A., Kristensen E.W. and Kuhr W.G., 1998. Background-subtraction of fast-scan cyclic staircase voltammetry at protein-modified carbon-fiber electrodes. Biosens. Bioelectron., 13(12), 1297-305.

    Heien M.L., Johnson M.A. and Wightman R.M., 2004. Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal. Chem., 76(19), 5697-5704.

    Hess P., Clozel M. and Clozel J.P., 1996. Telemetry monitoring of pulmonary arterial pressure in freely moving rats. J. Appl. Physiol., 81(2), 1027-1032.

    Hoffer J.A., Stein R.B., Haugland M.K., Sinkjaer T., Durfee W.K., Schwartz A.B., Loeb G.E. and Kantor C., 1996. Neural signals for command control and feedback in functional neuromuscular stimulation: a review. J. Rehabil. Res. Dev., 33(2), 145-157.

    Hsieh I.T., Yang C.C.H., Chen C.Y., Lee G.S., Kao F.J., Kuo K.L. and Kuo T.B.J., 2012. Uninterrupted wireless long-term recording of sleep patterns and autonomic function in freely moving rats. J. Med. Biol. Eng. doi: 10.5405/jmbe.1039.

    Hsieh T.H., Chen J.J., Chen L.H., Chiang P.T. and Lee H.Y., 2011. Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion. Behav. Brain Res., 222(1), 1-9.

    Jellinger K.A., 1999. Post mortem studies in Parkinson’s disease: Is it possible to detect brain areas for specific symptoms? J. Neural. Transm. Suppl., 56, 1-29.

    Johansen E.B. and Sagvolden T., 2005. Behavioral effects of intra-cranial self-stimulation in an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav. Brain Res., 162(1), 32-46.

    Kagohashi M., Nakazato T., Yoshimi K., Moizumi S., Hattori N. and Kitazawa S., 2008. Wireless voltammetry recording in unanesthetised behaving rats. Neurosci. Res., 60(1), 120-127.

    Kane M.J., Breen P.P., Quondamatteo F. and ÓLaighin G., 2011. BION microstimulators: a case study in the engineering of an electronic implantable medical device. Med. Eng. Phys., 33(1), 7-16.

    Kish S.J., Shannak K. and Hornykiewicz O., 1988. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N. Engl. J. Med., 318(14), 876-880.

    Koka R. and Hadlock T.A., 2001. Quantification of functional recovery following rat sciatic nerve transaction. Exp. Neurol., 168(1), 192-195.

    Korivi N.S. and Ajmera P.K., 2011. Self-closing cuff electrode for functional neural stimulation and recording. J. Med. Biol. Eng., 31(5), 353-357.

    Lee K.H., Blaha C.D., Harris B.T., Cooper S., Hitti F.L., Leiter J.C., Roberts D.W. and Kim U., 2006. Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson's disease. Eur. J. Neurosci., 23(4), 1005-1014.

    Lee S.Y., Su Y.C., Liang M.C., Hong J.H., Hsieh C.H., Yang C.M., Chen Y.Y., Lai H.Y., Lin J.W. and Fang Q., 2011. A programmable implantable micro-stimulator SoC with wireless telemetry: Application in closed-loop endocardial stimulation for cardiac pacemaker. IEEE Trans. Biomed. Circuits Syst. 5(6), 511-522.

    Lee T.H., Pan H., Kim I.S., Kim J.K., Cho T.H., Oh J.H., Yoon Y.B., Lee J.H., Hwang S.J. and Kim S.J., 2010. Functional regeneration of a severed peripheral nerve with a 7-mm gap in rats through the use of an implantable electrical stimulator and a conduit electrode with collagen coating. Neuromodulation, 13(4), 299-305.

    Li Y.T., Lin C.H., Wang C.C. and Chen J.J.J., 2008. Development of an implantable wireless biomicrosystem with impedance spectroscopy measurement and nerve stimulation functions. Int. J. Elec. Eng., 15(3), 169-178.

    Liang C.K., Chen J.J., Chung C.L., Cheng C.L. and Wang C.C., 2005. An implantable bi-directional wireless transmission system for transcutaneous biological signal recording. Physiol. Meas., 26(1), 83-97.

    Loeb G.E., Peck R.A., Moore W.H. and Hood K., 2001. BION system for distributed neural prosthetic interfaces. Med. Eng. Phys., 23(1), 9-18.

    Loeb G.E., Richmond F.J. and Baker L.L., 2006. The BION devices: injectable interfaces with peripheral nerves and muscles. Neurosurg. Focus, 20(5), E2.

    Lu M.C., Ho C.Y., Hsu S.F., Lee H.C., Lin J.H., Yao C.H. and Chen Y.S., 2008. Effects of electrical stimulation at different frequencies on regeneration of transected peripheral nerve. Neurorehabil. Neural Repair, 22(4), 367-373.

    Mendonca A.C., Barbieri C.H. and Mazzer N., 2003. Directly applied low intensity direct electric current enhances peripheral nerve regeneration in rats. J. Neurosci. Methods, 129(2), 183-190.

    Merletti R., Knaflitz M. and DeLuca C.J., 1992. Electrically evoked myoelectric signals. Crit. Rev. Biomed. Eng., 19(4), 293-340.

    Michael D., Travis E.R. and Wightman R.M., 1998. Color images for fast-scan CV measurements in biological systems. Anal. Chem., 70(17), 586A–592A.

    Mills P.A., Huetteman D.A., Brockway B.P., Zwiers L.M., Gelsema A.J., Schwartz R.S. and Kramer K., 2000. A new method for measurement of blood pressure, heart rate, and activity in the mouse by radiotelemetry. J. Appl. Physiol., 88(5), 1537-1544.

    Obeid I., Nicolelis M.A. and Wolf P.D., 2004. A multichannel telemetry system for single unit neural recordings. J. Neurosci. Methods, 133(1-2), 33-38.

    Oleson E.B., Salek J., Bonin K.D., Jones S.R. and Budygin E.A., 2009. Real-time voltammetric detection of cocaine-induced dopamine changes in the striatum of freely moving mice. Neurosci. Lett., 467(2), 144-146.

    Owesson-White C.A., Cheer J.F., Beyene M., Carelli R.M. and Wightman R.M., 2008. Dynamic changes in accumbens dopamine correlate with learning during intracranial self-stimulation. Proc. Natl. Acad. Sci. U S A, 105(33), 11957-11962.

    Paxinos G. and Watson C., 1996. The rat brain in stereotaxic coordinates New York: Academic Press.

    Rebec G.V., Christensen J.R., Guerra C. and Bardo M.T., 1997. Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res., 776(1-2), 61-67.

    Rey M., Weber E.W. and Hess P.D., 2012. Simultaneous pulmonary and systemic blood pressure and ECG Interval measurement in conscious, freely moving rats. J. Am. Assoc. Lab Anim. Sci., 51(2), 231-238.

    Ritz M.C., Lamb R.J., Goldberg S.R. and Kuhar M.J., 1987. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science, 237(4819), 1219-1223.

    Robinson D.L., Heien M.L. and Wightman R.M., 2002. Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J. Neurosci., 22(23), 10477-10486.

    Robinson D.L., Phillips P.E., Budygin E.A., Trafton B.J., Garris P.A. and Wightman R.M., 2001. Sub-second changes in accumbal dopamine during sexual behavior in male rats. Neuroreport, 12(11), 2549-2552.

    Robinson D.L., Venton B.J., Heien M.L. and Wightman R.M., 2003. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin. Chem., 49(10), 1763-1773.

    Rodriguez N., Weissberg J. and Loeb G.E., 2007. Flexible Communication and Control Protocol for Injectable Neuromuscular Interfaces. IEEE Trans. Biomed. Circuits Syst. 1(1), 19-27.

    Roitman M.F., Stuber G.D., Phillips P.E., Wightman R.M. and Carelli R.M., 2004. Dopamine operates as a subsecond modulator of food seeking. J. Neurosci., 24(6), 1265-1271.

    Roy S. and Wang X., 2012. Wireless multi-channel single unit recording in freely moving and vocalizing primates. J. Neurosci. Methods, 203(1), 28-40.

    Rozmam J., Zorko B. and Seliskar A., 2000. Regeneration of the radial nerve in a dog influenced by electrical stimulation. Pflugers Arch., 439(3), 184-186.

    Schmidt C.E. and Leach J.B., 2003. Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng., 5, 293-347.

    Smith B., Tang Z., Johnson M.W., Pourmehdi S., Gazdik M.M., Buckett J.R. and Peckham P.H., 1998. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans. Biomed. Eng., 45(4), 463-475.

    Sonuga-Barke E.J., 2003. The dual pathway model of ADHD: an elaboration of neuro-developmental characteristics. Neurosci. Biobehav. Rev., 27(7), 593-604.

    Sonuga-Barke E.J., 2005. Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol. Psychiatry, 57(11), 1231-1238.

    Thil M.A., Duy D.T., Colin I.M. and Delbeke J., 2007. Time course of tissue remodelling and electrophysiology in the rat sciatic nerve after spiral cuff electrode implantation. J. Neuroimmunol., 185(1-2), 103-114.

    Tomita K., Kubo T., Matsuda K., Hattori R., Fujiwara T., Yano K. and Hosokawa K., 2007. Effect of conduit repair on aberrant motor axon growth within the nerve graft in rats. Microsurgery, 27(5), 500-509.

    Troyk P.R., 1999. Injectable electronic identification, monitoring, and stimulation systems. Annu. Rev. Biomed. Eng., 1, 177–209.

    Tsai T.C., Guo C.X., Han H.Z., Li Y.T., Huang Y.Z., Li C.M. and Chen J.J., 2012. Microelectrodes with gold nanoparticles and self-assembled monolayers for in vivo recording of striatal dopamine. Analyst, 137(12), 2813-2820.

    Uemura K., Kawada T., Sugimachi M., Zheng C., Kashihara K., Sato T. and Sunagawa K., 2004. A self-calibrating telemetry system for measurement of ventricular pressure-volume relations in conscious, freely moving rats. Am. J. Physiol. Heart Circ. Physiol., 287(6), H2906-2913.

    Uranga A., Barniol N., Marín D., Villa R. and Aguiló J., 2002. An integrated implantable electrical sacral root stimulator for bladder control. Neuromodulation, 5(4), 238-247.

    Valdastri P., Menciassi A., Arena A., Caccamo C. and Dario P., 2004. An implantable telemetry platform system for in vivo monitoring of physiological parameters. IEEE Trans. Inf. Techno.l Biomed., 8(3), 271-278.

    Varejão A.S.P., Meek M.F., Ferreira A.J.A., Patrício J.A.B. and Cabrita A.M.S., 2001. Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J. Neurosci. Methods, 108(1), 1-9.

    Venton B.J., Michael D.J. and Wightman R.M., 2003. Correlation of local changes in extracellular oxygen and pH that accompany dopaminergic terminal activity in the rat caudate-putamen. J. Neurochem., 84(2), 373-381.

    Venton B.J. and Wightman R.M., 2003. Psychoanalytical electrochemistry: dopamine and behavior. Anal. Chem., 75(19), 414A–421A.

    Vivó M., Puigdemasa A., Casals L., Asensio E., Udina E. and Navarro X., 2008. Immediate electrical stimulation enhances regeneration and reinnervation and modulates spinal plastic changes after sciatic nerve injury and repair. Exp. Neurol., 211(1), 180-193.

    Volkow N.D., Wang G.J., Newcorn J.H., Kollins S.H., Wigal T.L., Telang F., Fowler J.S., Goldstein R.Z., Klein N., Logan J., Wong C. and Swanson J.M., 2011. Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol. Psychiatry, 16(11), 1147-1154.

    Wagenaar D.A. and Potter S.M., 2004. A versatile all-channel stimulator for electrode arrays, with real-time control. J. Neural Eng., 1(1), 39-45.

    Wang P.H., Tseng I.L. and Hsu S.H., 2011. Review: bioengineering approaches for guided peripheral nerve regeneration. J. Med. Biol. Eng., 31(3), 151-160.

    Weiergräber M., Henry M., Hescheler J., Smyth N. and Schneider T., 2005. Electrocorticographic and deep intracerebral EEG recording in mice using a telemetry system. Brain Res. Protoc., 14(3), 154-164.

    Wiedemann D.J., Kawagoe K.T., Kennedy R.T., Ciolkowski E.L. and Wightman R.M., 1991. Strategies for low detection limit measurements with cyclic voltammetry. Anal. Chem., 63(24), 2965-2970.

    Willand M.P., Lopez J.P., Bruin H., Fahnestock M., Holmes M. and Bain J.R., 2011. A new system and paradigm for chronic stimulation of denervated rat muscle. J. Med. Biol. Eng., 31(2), 87-92.

    Williams L.R., Longo F.M., Powell H.C., Lundborg G. and Varon S., 1983. Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay. J. Comp. Neurol., 218(4), 460-470.

    Wilson B.S. and Dorman M.F., 2008. Cochlear implants: current designs and future possibilities. J. Rehabil. Res. Dev., 45(5), 695-730.

    Yang Y., Wang J., Yu G., Niu F. and He P., 2006. Design and preliminary evaluation of a portable device for the measurement of bioimpedance spectroscopy. Physiol. Meas., 27(12), 1293-1310.

    Yavich L. and Tiihonen J., 2000. In vivo voltammetry with removable carbon fibre electrodes in freely-moving mice: dopamine release during intracranial self-stimulation. J. Neurosci. Methods, 104(1), 55-63.

    Yeh C.C., Lin Y.C., Tsai F.J., Huang C.Y., Yao C.H. and Chen Y.S., 2010. Timing of applying electrical stimulation is an important factor deciding the success rate and maturity of regenerating rat sciatic nerves. Neurorehabil. Neural Repair, 24(8), 730-735.

    Yúfera A., Rueda A., Muñoz J.M., Doldán R., Leger G. and Rodríguez-Villegas E.O., 2005. A tissue impedance measurement chip for myocardial ischemia detection. IEEE Trans. Circuits Syst. I, 52(12), 2620-2628.

    Zeng F.G., Rebscher S., Harrison W., Sun X. and Feng H., 2008. Cochlear implants: system design, integration, and evaluation. IEEE Rev. Biomed. Eng., 1, 115-142.

    Zierhofer C.M. and Hochmair, E.S., 1990. High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link. IEEE Trans. Biomed. Eng., 37(7), 716-722.

    無法下載圖示 校內:2015-02-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE