簡易檢索 / 詳目顯示

研究生: 吳明峰
Wu, Ming-Feng
論文名稱: D-半乳糖誘導小鼠老化之下肢缺血模式研究
A hind limb ischemia model of D-galactose-induced aging mice
指導教授: 黃玲惠
Huang, Lynn L.H.
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 88
中文關鍵詞: 下肢缺血氧化壓力活性氧物質D-半乳糖
外文關鍵詞: hind-limb ischemia, oxidative stress, reactive oxygen species, d-galactose
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 附表目錄 XII 附圖目錄 XIII 縮寫表 XIV 一、 研究背景 1 1-1 周邊動脈疾病的介紹 1 1-2 下肢缺血與糖尿病 2 1-3 下肢缺血與老化 3 1-4 嚴重下肢缺血動物模式 9 1-5 現今下肢缺血之治療 11 1-6 研究目的 16 二、材料與方法 17 2-1 實驗材料與溶液配置 17 2-2 小鼠飼養與照護 18 2-3 老化小鼠誘導及飼養 19 2-4 糖尿病小鼠的建立 19 2-5 實驗動物樣本採集與處理 20 2-6 血清樣本分析 21 2-7 下肢缺血小鼠動物模式建立 22 2-8 術後觀察與評估 24 2-9 組織切片與染色 25 2-10 運動能力分析 27 2-11 統計分析 28 三. 結果 29 3-1 不同下肢缺血手術方法對BALB/c的影響 29 3-2 實驗小鼠品系選擇 30 3-3 D-半乳糖誘導小鼠老化外觀與體重變化 31 3-4 D-半乳糖增加小鼠體內氧化壓力 32 3-5 糖尿病誘導合併D-半乳糖老化誘導對HLI小鼠之影響 33 3-6 不同D-半乳糖注射週數對HLI小鼠之影響 35 3-7 不同D-半乳糖注射週數對HLI小鼠肌肉之影響 36 3-8 不同D-半乳糖注射週數對HLI小鼠運動能力之影響 37 3-9 小鼠週齡對D-半乳糖誘導老化HLI小鼠之影響 38 四、討論 41 4-1 BALB/c適合的下肢缺血手術與 C57BL/6相比更簡易 41 4-2 BALB/c比C57BL/6下肢缺血壞死更嚴重 42 4-3 注射D-半乳糖增加小鼠體內氧化壓力 43 4-4 糖尿病誘導合併D-半乳糖老化誘導降低HLI對小鼠的影響 44 4-5 D-半乳糖注射使八週齡HLI小鼠肌肉萎縮 45 4-6 D-半乳糖注射使十六週齡HLI嚴重肢體缺血 46 4-7 對未來研究建議 47 4-8 結論 48 參考文獻 50 圖表 62 附錄 81

    靳椏棋,DIW膠對於糖尿病小鼠下肢缺血的作用研究,國立成功大學生物科技與產業科學系碩士論文,2021。

    鄭紫妃,改良之DIB膠於小鼠下肢缺血之治療,國立成功大學生物科技研究所碩士論文,2016。

    簡崇美,糖尿病下肢缺血小鼠之治療,國立成功大學生物科技研究所碩士論文,2014。

    Annex, B.H. Therapeutic angiogenesis for critical limb ischaemia. Nature Reviews Cardiology 10, 387-396, 2013.

    Aref, Z., de Vries, M.R., and Quax, P.H.A. Variations in Surgical Procedures for Inducing Hind Limb Ischemia in Mice and the Impact of These Variations on Neovascularization Assessment. International Journal of Molecular Sciences 20, 3704, 2019.

    Aronow, W.S. Peripheral arterial disease in the elderly. Clinical Interventions in Aging 2, 645-654, 2007.

    Azman, K.F., Safdar, A., and Zakaria, R. D-galactose-induced liver aging model: Its underlying mechanisms and potential therapeutic interventions. Experimental Gerontology 150, 111372, 2021.

    Azman, K.F., and Zakaria, R. D-Galactose-induced accelerated aging model: an overview. Biogerontology 20, 763-782, 2019.

    Baffour, R., Berman, J., Garb, J.L., Rhee, S.W., Kaufman, J., and Friedmann, P. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. Journal of Vascular Surgery 16, 181-191, 1992.

    Basta, G., Lazzerini, G., Massaro, M., Simoncini, T., Tanganelli, P., Fu, C., Kislinger, T., Stern, D.M., Schmidt, A.M., and De Caterina, R. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105, 816-822, 2002.

    Basta, G., Schmidt, A.M., and De Caterina, R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovascular Research 63, 582-592, 2004.

    Bo-Htay, C., Palee, S., Apaijai, N., Chattipakorn, S.C., and Chattipakorn, N. Effects of d-galactose-induced ageing on the heart and its potential interventions. Journal of Cellular and Molecular Medicine 22, 1392-1410, 2018.

    Brenes, R.A., Jadlowiec, C.C., Bear, M., Hashim, P., Protack, C.D., Li, X., Lv, W., Collins, M.J., and Dardik, A. Toward a mouse model of hind limb ischemia to test therapeutic angiogenesis. Journal of Vascular Surgery 56, 1669-1679, 2012.

    Cai, N., Wu, Y., and Huang, Y. Induction of Accelerated Aging in a Mouse Model. Cells 11, 1418, 2022.

    Chen, Y., Zhang, J., and Sun, S. Comparison of three approaches to establishing Balb/c mouse models of hind-limb ischemia. Journal of Southern Medical University 34, 1167-1170, 2014.

    Conte, F., van Buuringen, N., Voermans, N.C., and Lefeber, D.J. Galactose in human metabolism, glycosylation and congenital metabolic diseases: Time for a closer look. Biochimica et Biophysica Acta - General Subjects 1865, 129898, 2021.

    Conte, M.S., Bradbury, A.W., Kolh, P., White, J.V., Dick, F., Fitridge, R., Mills, J.L., Ricco, J.B., Suresh, K.R., and Murad, M.H. Global vascular guidelines on
    the management of chronic limb-threatening ischemia. Journal of Vascular
    Surgery 69, 3-125, 2019.

    Couffinhal, T., Silver, M., Zheng, L.P., Kearney, M., Witzenbichler, B., and Isner, J.M. Mouse model of angiogenesis. American Journal of Pathology 152, 1667-1679, 1998.

    Criqui, M.H., Matsushita, K., Aboyans, V., Hess, C.N., Hicks, C.W., Kwan, T.W., McDermott, M.M., Misra, S., and Ujueta, F. Lower Extremity Peripheral Artery Disease: Contemporary Epidemiology, Management Gaps, and Future Directions: A Scientific Statement From the American Heart Association. Circulation 144, e171-e191, 2021.

    DeFronzo, R.A., Ferrannini, E., Groop, L., Henry, R.R., Herman, W.H., Holst, J.J., Hu, F.B., Kahn, C.R., Raz, I., Shulman, G.I., Simonson, D.C., Testa, M.A., and Weiss, R. Type 2 diabetes mellitus. Nature Reviews Disease Primers 1, 15019, 2015.

    Devaraj, S., Xu, D.Y., and Jialal, I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation 107, 398-404, 2003.

    El-Far, A.H., Lebda, M.A., Noreldin, A.E., Atta, M.S., Elewa, Y.H.A., Elfeky, M., and Mousa, S.A. Quercetin Attenuates Pancreatic and Renal D-Galactose-Induced Aging-Related Oxidative Alterations in Rats. International Journal of Molecular Sciences 21, 4348, 2020.

    Ergul, A. Endothelin-1 and diabetic complications: focus on the vasculature. Pharmacological Research 63, 477-482, 2011.

    Golledge, J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nature Reviews Cardiology 19, 456-474, 2022.

    Grossin, N., Auger, F., Niquet-Leridon, C., Durieux, N., Montaigne, D., Schmidt, A.M., Susen, S., Jacolot, P., Beuscart, J.B., Tessier, F.J., and Boulanger, E. Dietary CML-enriched protein induces functional arterial aging in a RAGE-dependent manner in mice. Molecular Nutrition and Food Research 59, 927-938, 2015.

    Hadjipanayi, E., and Schilling, A.F. Hypoxia-based strategies for angiogenic induction: the dawn of a new era for ischemia therapy and tissue regeneration. Organogenesis 9, 261-272, 2013.

    Haider, S., Liaquat, L., Shahzad, S., Sadir, S., Madiha, S., Batool, Z., Tabassum, S., Saleem, S., Naqvi, F., and Perveen, T. A high dose of short term exogenous D-galactose administration in young male rats produces symptoms simulating the natural aging process. Life Sciences 124, 110-119, 2015.

    Hardman, R.L., Jazaeri, O., Yi, J., Smith, M., and Gupta, R. Overview of classification systems in peripheral artery disease. Seminars in Interventional Radiology 31, 378-388, 2014.

    Helisch, A., Wagner, S., Khan, N., Drinane, M., Wolfram, S., Heil, M., Ziegelhoeffer, T., Brandt, U., Pearlman, J.D., Swartz, H.M., and Schaper, W. Impact of mouse strain differences in innate hindlimb collateral vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology 26, 520-526, 2006.

    Hellingman, A.A., Bastiaansen, A.J., de Vries, M.R., Seghers, L., Lijkwan, M.A., Löwik, C.W., Hamming, J.F., and Quax, P.H. Variations in surgical procedures for hind limb ischaemia mouse models result in differences in collateral formation. European Journal of Vascular and Endovascular Surgery 40, 796-803, 2010.

    Holden, H.M., Thoden, J.B., Timson, D.J., and Reece, R.J. Galactokinase: structure, function and role in type II galactosemia. Cellular and Molecular Life Sciences 61, 2471-2484, 2004.

    Hong-guang, Z. Establishment and measurement of D-galactose induced aging
    model. Fudan University Journal of Medical Sciences 34, 617-619, 2007.

    Jackson, S.J., Andrews, N., Ball, D., Bellantuono, I., Gray, J., Hachoumi, L., Holmes, A., Latcham, J., Petrie, A., Potter, P., Rice, A., Ritchie, A., Stewart, M., Strepka, C., Yeoman, M., and Chapman, K. Does age matter? The impact of rodent age on study outcomes. Laboratory Animals 51, 160-169, 2017.

    Jani, B., and Rajkumar, C. Ageing and vascular ageing. Postgraduate Medical Journal 82, 357-362, 2006.

    Jones, W.S., Dolor, R.J., Hasselblad, V., Vemulapalli, S., Subherwal, S., Schmit, K., Heidenfelder, B., and Patel, M.R. Comparative effectiveness of endovascular and surgical revascularization for patients with peripheral artery disease and critical limb ischemia: systematic review of revascularization in critical limb ischemia. American Heart Journal 167, 489-498, 2014.

    Kalka, C., and Baumgartner, I. Gene and stem cell therapy in peripheral arterial occlusive disease. Vascular Medicine 13, 157-172, 2008.

    Kim, K., Anderson, E.M., Scali, S.T., and Ryan, T.E. Skeletal Muscle Mitochondrial Dysfunction and Oxidative Stress in Peripheral Arterial Disease: A Unifying Mechanism and Therapeutic Target. Antioxidants 9, 1304, 2020.

    Kinlay, S. Management of Critical Limb Ischemia. Circulation: Cardiovascular Interventions 9, e001946, 2016.

    Klimova, N., Fearnow, A., Long, A., and Kristian, T. NAD(+) precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms. Experimental Neurology 325, 113144, 2020.

    Koepsell, H. Glucose transporters in the small intestine in health and disease. Pflügers Archiv - European Journal of Physiology 472, 1207-1248, 2020.

    Kumar, V.A., Liu, Q., Wickremasinghe, N.C., Shi, S., Cornwright, T.T., Deng,
    Y., Azares, A., Moore, A.N., Acevedo-Jake, A.M., Agudo, N.R., Pan, S.,
    Woodside, D.G., Vanderslice, P., Willerson, J.T., Dixon, R.A., and Hartgerink,
    J.D. Treatment of hind limb ischemia using angiogenic peptide nanofibers.
    Biomaterials 98, 113-119, 2016.

    Laurent, S., and Boutouyrie, P. Arterial Stiffness and Hypertension in the Elderly. Frontiers in Cardiovascular Medicine 7, 544302, 2020.

    Limbourg, A., Korff, T., Napp, L.C., Schaper, W., Drexler, H., and Limbourg, F.P. Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nature Protocols 4, 1737-1746, 2009.

    Lv, C., Wang, L., Liu, X., Yan, S., Yan, S.S., Wang, Y., and Zhang, W. Multi-faced neuroprotective effects of geniposide depending on the RAGE-mediated signaling in an Alzheimer mouse model. Neuropharmacology 89, 175-184, 2015.

    Mac Gabhann, F., and Peirce, S.M. Collateral capillary arterialization following arteriolar ligation in murine skeletal muscle. Microcirculation 17, 333-347, 2010.

    Mahali, S., Raviprakash, N., Raghavendra, P.B., and Manna, S.K. Advanced glycation end products (AGEs) induce apoptosis via a novel pathway: involvement of Ca2+ mediated by interleukin-8 protein. Journal of Biological Chemistry 286, 34903-34913, 2011.

    Marklund, S., and Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47, 469-474, 1974.

    McVeigh, G.E., Allen, P.B., Morgan, D.R., Hanratty, C.G., and Silke, B. Nitric oxide modulation of blood vessel tone identified by arterial waveform analysis. Clinical Science 100, 387-393, 2001.

    Miura, S., Saitoh, S.I., Kokubun, T., Owada, T., Yamauchi, H., Machii, H., and
    Takeishi, Y. Mitochondrial-Targeted Antioxidant Maintains Blood Flow,
    Mitochondrial Function, and Redox Balance in Old Mice Following Prolonged
    Limb Ischemia. International Journal of Molecular Sciences 18, 1897, 2017.

    Mojzita, D., Koivistoinen, O.M., Maaheimo, H., Penttilä, M., Ruohonen, L., and Richard, P. Identification of the galactitol dehydrogenase, LadB, that is part of the oxido-reductive D-galactose catabolic pathway in Aspergillus niger. Fungal Genetics and Biology 49, 152-159, 2012.

    Morishita, R., Makino, H., Aoki, M., Hashiya, N., Yamasaki, K., Azuma, J., Taniyama, Y., Sawa, Y., Kaneda, Y., and Ogihara, T. Phase I/IIa clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology 31, 713-720, 2011.

    Murakami, M., and Simons, M. Fibroblast growth factor regulation of neovascularization. Current Opinion in Hematology 15, 215-220, 2008.

    Narula, N., Dannenberg, A.J., Olin, J.W., Bhatt, D.L., Johnson, K.W., Nadkarni, G., Min, J., Torii, S., Poojary, P., Anand, S.S., Bax, J.J., Yusuf, S., Virmani, R., and Narula, J. Pathology of Peripheral Artery Disease in Patients With Critical Limb Ischemia. Journal of the American College of Cardiology 72, 2152-2163, 2018.

    Newman, A.B. Peripheral arterial disease: insights from population studies of older adults. Journal of the American Geriatrics Society 48, 1157-1162, 2000.

    Nowotny, K., Jung, T., Höhn, A., Weber, D., and Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5, 194-222, 2015.

    O'Brien, P.D., Sakowski, S.A., and Feldman, E.L. Mouse models of diabetic neuropathy. Institute for Laboratory Animal Research Journal 54, 259-272, 2014.

    Ouma, G.O., Zafrir, B., Mohler, E.R., 3rd, and Flugelman, M.Y. Therapeutic
    angiogenesis in critical limb ischemia. Angiology 64, 466-480, 2013.
    Parameshwaran, K., Irwin, M.H., Steliou, K., and Pinkert, C.A. D-galactose effectiveness in modeling aging and therapeutic antioxidant treatment in mice.
    Rejuvenation Research 13, 729-735, 2010.

    Park, I.S., Mahapatra, C., Park, J.S., Dashnyam, K., Kim, J.W., Ahn, J.C., Chung, P.S., Yoon, D.S., Mandakhbayar, N., Singh, R.K., Lee, J.H., Leong, K.W., and Kim, H.W. Revascularization and limb salvage following critical limb ischemia by nanoceria-induced Ref-1/APE1-dependent angiogenesis. Biomaterials 242, 119919, 2020.

    Patrono, C., and Roth, G.J. Aspirin in ischemic cerebrovascular disease. How strong is the case for a different dosing regimen? Stroke 27, 756-760, 1996.

    Pedersen, B.L., Baekgaard, N., and Quistorff, B. Muscle mitochondrial function in patients with type 2 diabetes mellitus and peripheral arterial disease: implications in vascular surgery. European Journal of Vascular and Endovascular Surgery 38, 356-364, 2009.

    Pipinos, II, Judge, A.R., Zhu, Z., Selsby, J.T., Swanson, S.A., Johanning, J.M., Baxter, B.T., Lynch, T.G., and Dodd, S.L. Mitochondrial defects and oxidative damage in patients with peripheral arterial diseae. Free Radical Biology and Medicine 41, 262-269, 2006.

    Rabinovsky, E.D., and Draghia-Akli, R. Insulin-like growth factor I plasmid therapy promotes in vivo angiogenesis. Molecular Therapy 9, 46-55, 2004.

    Raza, H., Prabu, S.K., John, A., and Avadhani, N.G. Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats. International Journal of Molecular Sciences 12, 3133-3147, 2011.

    Ridker, P.M., Cushman, M., Stampfer, M.J., Tracy, R.P., and Hennekens, C.H. Plasma concentration of C-reactive protein and risk of developing peripheral
    vascular disease. Circulation 97, 425-428, 1998.

    Schmidt, C.A., Amorese, A.J., Ryan, T.E., Goldberg, E.J., Tarpey, M.D., Green,
    T.D., Karnekar, R.R., Yamaguchi, D.J., Spangenburg, E.E., and McClung, J.M. Strain-Dependent Variation in Acute Ischemic Muscle Injury. American
    Journal of Pathology 188, 1246-1262, 2018.

    Schmidt, C.A., Ryan, T.E., Lin, C.T., Inigo, M.M.R., Green, T.D., Brault, J.J., Spangenburg, E.E., and McClung, J.M. Diminished force production and mitochondrial respiratory deficits are strain-dependent myopathies of subacute limb ischemia. Journal of Vascular Surgery 65, 1504-1514, 2017.

    Seyhan, A.A. Lost in translation: the valley of death across preclinical and clinical divide – identification of problems and overcoming obstacles. Translational Medicine Communications 4, 1-19, 2019.

    Shimamura, M., Nakagami, H., Koriyama, H., and Morishita, R. Gene therapy and cell-based therapies for therapeutic angiogenesis in peripheral artery disease. BioMed Research International 2013, 186215, 2013.

    Shwe, T., Pratchayasakul, W., Chattipakorn, N., and Chattipakorn, S.C. Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Experimental Gerontology 101, 13-36, 2018.

    Signorelli, S.S., Scuto, S., Marino, E., Xourafa, A., and Gaudio, A. Oxidative Stress in Peripheral Arterial Disease (PAD) Mechanism and Biomarkers. Antioxidants 8, 367, 2019.

    Silva, E.A., Kim, E.S., Kong, H.J., and Mooney, D.J. Material-based deployment enhances efficacy of endothelial progenitor cells. Proceedings of the National Academy of Sciences of the United States of America 105, 14347-14352, 2008.

    Song, P., Rudan, D., Zhu, Y., Fowkes, F.J.I., Rahimi, K., Fowkes, F.G.R., and
    Rudan, I. Global, regional, and national prevalence and risk factors for
    peripheral artery disease in 2015: an updated systematic review and analysis. The Lancet Global Health 7, e1020-e1030, 2019.

    Song, X., Bao, M., Li, D., and Li, Y.M. Advanced glycation in D-galactose induced mouse aging model. Mechanisms of Ageing and Development 108, 239-251, 1999.

    Stabile, E., Burnett, M.S., Watkins, C., Kinnaird, T., Bachis, A., la Sala, A., Miller, J.M., Shou, M., Epstein, S.E., and Fuchs, S. Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation 108, 205-210, 2003.

    Tamarat, R., Silvestre, J.S., Huijberts, M., Benessiano, J., Ebrahimian, T.G., Duriez, M., Wautier, M.P., Wautier, J.L., and Lévy, B.I. Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice. Proceedings of the National Academy of Sciences of the United States of America 100, 8555-8560, 2003.

    Tan, L., Margaret, B., Zhang, J.H., Hu, R., Yin, Y., Cao, L., Feng, H., and Zhang, Y. Efficacy and Safety of Cilostazol Therapy in Ischemic Stroke: A Meta-analysis. Journal of Stroke and Cerebrovascular Diseases 24, 930-938, 2015.

    Tanii, M., Yonemitsu, Y., Fujii, T., Shikada, Y., Kohno, R., Onimaru, M., Okano, S., Inoue, M., Hasegawa, M., Onohara, T., Maehara, Y., and Sueishi, K. Diabetic microangiopathy in ischemic limb is a disease of disturbance of the platelet-derived growth factor-BB/protein kinase C axis but not of impaired expression of angiogenic factors. Circulation Research 98, 55-62, 2006.

    Tatum, V.L., Changchit, C., and Chow, C.K. Measurement of malondialdehyde by high performance liquid chromatography with fluorescence detection. Lipids 25, 226-229, 1990.

    Thangarajah, H., Yao, D., Chang, E.I., Shi, Y., Jazayeri, L., Vial, I.N., Galiano, R.D., Du, X.L., Grogan, R., Galvez, M.G., Januszyk, M., Brownlee, M., and Gurtner, G.C. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proceedings of the National Academy of Sciences of the United States of America 106, 13505-13510, 2009.

    Thiruvoipati, T., Kielhorn, C.E., and Armstrong, E.J. Peripheral artery disease
    in patients with diabetes: Epidemiology, mechanisms, and outcomes. World Journal of Diabetes 6, 961-969, 2015.

    Thukkani, A.K., and Kinlay, S. Endovascular intervention for peripheral artery
    disease. Circulation Research 116, 1599-1613, 2015.

    Uccioli, L., Meloni, M., Izzo, V., Giurato, L., Merolla, S., and Gandini, R. Critical limb ischemia: current challenges and future prospects. Vascular Health and Risk Management 14, 63-74, 2018.

    van Weel, V., Toes, R.E., Seghers, L., Deckers, M.M., de Vries, M.R., Eilers, P.H., Sipkens, J., Schepers, A., Eefting, D., van Hinsbergh, V.W., van Bockel, J.H., and Quax, P.H. Natural killer cells and CD4+ T-cells modulate collateral artery development. Arteriosclerosis, Thrombosis, and Vascular Biology 27, 2310-2318, 2007.

    Vignaud, A., Ramond, F., Hourdé, C., Keller, A., Butler-Browne, G., and Ferry, A. Diabetes provides an unfavorable environment for muscle mass and function after muscle injury in mice. Pathobiology 74, 291-300, 2007.

    Wang, H., Wei, S., Xue, X., You, Y., and Ma, Q. Adipose stem cells' antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function. International Journal of Immunopathology and Pharmacology 29, 376-385, 2016.

    Wang, Q., and Zou, M.H. Measurement of Reactive Oxygen Species (ROS) and Mitochondrial ROS in AMPK Knockout Mice Blood Vessels. Methods in Molecular Biology 1732, 507-517, 2018.

    Westvik, T.S., Fitzgerald, T.N., Muto, A., Maloney, S.P., Pimiento, J.M.,
    Fancher, T.T., Magri, D., Westvik, H.H., Nishibe, T., Velazquez, O.C., and Dardik, A. Limb ischemia after iliac ligation in aged mice stimulates angiogenesis without arteriogenesis. Journal of Vascular Surgery 49, 464-473, 2009.

    Williams, S.B., Cusco, J.A., Roddy, M.A., Johnstone, M.T., and Creager, M.A. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. Journal of the American College of Cardiology 27, 567-574, 1996.

    Yamagishi, S., Maeda, S., Matsui, T., Ueda, S., Fukami, K., and Okuda, S. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochimica et Biophysica Acta- General Subjects 1820, 663-671, 2012.

    Zhang, S., Dong, Z., Peng, Z., and Lu, F. Anti-aging effect of adipose-derived stem cells in a mouse model of skin aging induced by D-galactose. PLoS One 9, e97573, 2014.

    Zhang, Y., Wang, J., Cheng, X., Yi, B., Zhang, X., and Li, Q. Apigenin induces dermal collagen synthesis via smad2/3 signaling pathway. European Journal of Histochemistry 59, 2467, 2015.

    無法下載圖示 校內:2027-08-24公開
    校外:2027-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE