簡易檢索 / 詳目顯示

研究生: 黃于禎
Huang, Yu-Chen
論文名稱: 具奈米結構的高分子薄膜對其熱驅動分子重組的研究
Thermally-induced Molecular Rearrangements of Nanostructured Polymer Thin Films
指導教授: 郭昌恕
Kuo, Chang-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 79
中文關鍵詞: 定點熱植種熱探針微影技術共聚合物相分離高分子薄膜
外文關鍵詞: in-situ thermal seeding, scanning thermal microscope, copolymer, phase separation, polymer thin films
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用掃描探針顯微鏡及掃描熱探針微影技術來探討均聚物及嵌段共聚物薄膜之結晶行為和形貌特性。掃描熱探針微影技術利用微米及奈米尺度熱探針在同排聚苯乙烯均聚物薄膜上進行定點熱處理。檢視原始及施加掃描熱探針微影技術處理的同排聚苯乙烯薄膜觀察其成核誘導時間及結晶成長行為。掃描熱探針微影技術提供熱植種所需的能量有效地加速同排聚苯乙烯成核誘導時間。和同排聚苯乙烯自結晶相比,經掃描熱探針微影處理之同排聚苯乙烯薄膜在140度恆溫結晶下其成核誘導時間快了20分鐘。另外,對所有試片來說同排聚苯乙烯的結晶成長速度保持相同。
    嵌段共聚物,P4VP-b-PMMA,用來製備具有兩性表面結構的薄膜。逐層分子自組裝經由交替吸附帶負電的PAA及帶正電的P4VP在P4VP-b-PMMA薄膜上形成多層自組裝層,特別只在富含P4VP的區域上。這些有著不同多層自組裝層厚度及回火處理的試片利用掃描探針顯微鏡得到其表面形貌並經由快速傅立葉轉換分析。 快速傅立葉轉換分析可以使表面疏水的PMMA及親水的PAA/P4VP相分離現象加以量化。結果亦指出靜電形成之多層自組裝層可以使原本在熱處理之後會消失的P4VP區域留在原地不動。
    本實驗示範了無論是在均聚物或是嵌段共聚物薄膜上分子級的重新排列。定點熱植種加速了成核誘導時間並可使高分子在所需的圖形下進行結晶。嵌段共聚物的相分離行為可被附著在其上的奈米結構多層自組裝層改變。

    In this research work, the crystallization behavior and the morphological features of homopolymer and block copolymer thin films were investigated using the scanning thermal lithography (SThL) and the scanning probe microscopy (SPM). SThL technique was equipped with micro- or nano-scaled thermal probes providing the in-situ thermal treatment to the homopolymer thin films made of the isotactic polystyrene (i-PS). The induction period and the crystal growth of the i-PS thin films were examined with or without the desired SThL processes. SThL provided the energy to the thermal seeding which significantly accelerated the induction time of the i-PS nucleation. In comparison with the self-nucleation behavior, SThL-treated i-PS thin films revealed the induction period as fast as 20 minutes at the isothermal crystallization of 140 oC. Alternatively, the rates of the i-PS crystal growth remained the same for all samples.
    Block copolymer, P4VP-b-PMMA, was employed to prepare the thin film samples containing amphiphilic surface structures. Self-assembly layer-by-layer multilayers based on the alternating adsorptions of anionic PAA and cationic P4VP were introduced to the P4VP-b-PMMA thin films where the multilayers were established exclusively to the P4VP-enriched domains. Surface morphologies of these samples with various multilayer thicknesses and annealing treatments were extracted by SPM, followed by the analysis of the fast Fourier transform (FFT). FFT analysis quantified the surface phase separations constructed by the hydrophobic PMMA and hydrophilic PAA/P4VP. Results also indicated the electrostatic multilayers immobilized the P4VP domains originally submerged upon the thermal treatment.
    This work demonstrates the molecular-level rearrangements achieved in either homopolymer or block copolymer thin film samples. In-situ thermal seeding accelerates the induction period and directs the polymer crystallization with desired patterns. Phase separations of block copolymers can be altered by the nanostructured multilayers attached to the surfaces.

    致謝 I 中文摘要 II Abstract IV Table of contents VI List of Tables VIII List of illustrations IX Chapter 1 Introduction 1 1.1 Scanning probe microscopy (SPM) and scanning probe lithography (SPL) 2 1.1.1 Scanning probe microscopy (SPM) 2 1.1.2 Scanning probe lithography (SPL) 9 1.2 Polymer orientation/rearrangement 13 1.2.1 Langmuir-Blodgett deposition 13 1.2.2 Stretching 15 1.2.3 Mechanical rubbing methods 16 1.2.4 Photoalignment 18 1.3 Phase separations of copolymers or polymer blends 19 1.4 Polymer crystallization 20 1.4.1 Nucleation mechanism of polymers 20 1.4.2 Crystal growth mechanism of polymers 21 1.5 Fast Fourier transform (FFT) 22 1.6 Motivation of research 24 Chapter 2 Experiments 26 2.1 Materials and experimental instruments 26 2.1.1 Materials 26 2.1.2 Experimental instruments 29 2.2 Experimental processes 31 2.2.1 Film preparation 31 2.2.2 The observation of in-situ thermal seeding on isotactic PS 33 2.2.3 Preparations of PAA/P4VP self-assembly multilayers 35 2.3 Analysis instrument 37 2.3.1 The surface morphologies: SPM 37 2.3.2 Fast Fourier transform (FFT) filtering 38 2.3.3 Contact angle measurements 38 Chapter 3 Results and discussion 40 3.1 In-situ thermal seeding of isotactic PS thin films 40 3.1.1 The Morphology of in-situ thermal seeding and isothermal crystallization 40 3.1.2 The crystallization rate determination of isotactic PS 45 3.1.3 Comparisons between SThL by micro- and nanoprobe 53 3.2 Self-assembly PAA/P4VP bilayers behavior on P4VP-b-PMMA films 54 3.2.1 Surface morphology 54 3.2.2 Thermal analysis of P4VP-b-PMMA thin films by SThM 60 3.2.3 Fast Fourier transform (FFT) filtering 62 3.2.4 Contact angle measurements 68 Chapter 4 Conclusion 72 Reference 73

    1. Loos, J., The art of SPM: Scanning probe microscopy in materials science. Advanced Materials 2005, 17 (15), 1821-1833.
    2. Poggi, M. A.; Gadsby, E. D.; Bottomley, L. A.; King, W. P.; Oroudjev, E.; Hansma, H., Scanning probe microscopy. Analytical Chemistry 2004, 76 (12), 3429-3443.
    3. Wang, D.; Kodali, V. K.; II, W. D. U.; Jarvholm, J. E.; Okada, T.; Jones, S. C.; Rumi, M.; Dai, Z.; King, W. P.; Marder, S. R.; Curtis, J. E.; Riedo, E., Thermochemical Nanolithography of Multifunctional Nanotemplates for Assembling Nano-Objects. Advanced Functional Materials 2009, 19 (23), 3696-3702.
    4. Liu, G. Y.; Xu, S.; Qian, Y. L., Nanofabrication of self-assembled monolayers using scanning probe lithography. Accounts Chem. Res. 2000, 33 (7), 457-466.
    5. Hansma, P. K.; Tersoff, J., Scanning tunneling microscopy. Journal of Applied Physics 1987, 61 (2), R1-R24.
    6. Binnig, G.; Quate, C. F.; Gerber, C., Atomic force microscope. Physical Review Letters 1986, 56, 930.
    7. Yacoot, A.; Koenders, L., Aspects of scanning force microscope probes and their effects on dimensional measurement. Journal of Physics D-Applied Physics 2008, 41 (10).
    8. Meyer, E., Atomic force microscopy. Progress in Surface Science 1992, 41, 3-3.
    9. Simpson, G. J.; Sedin, D. L.; Rowlen, K. L., Surface roughness by contact versus tapping mode atomic force microscopy. Langmuir 1999, 15 (4), 1429-1434.
    10. Pylkki, R. J.; Moyer, P. J.; West, P. E., Scanning near-field optical microscopy and scanning thermal microscopy. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1994, 33 (6B), 3785-3790.
    11. Durig, U.; Pohl, D. W.; Rohner, F., NEAR-FIELD OPTICAL-SCANNING MICROSCOPY. Journal of Applied Physics 1986, 59 (10), 3318-3327.
    12. Dunn, R. C., Near-field scanning optical microscopy. Chemical Reviews 1999, 99 (10), 2891-+.
    13. Majumdar, A., Scanning thermal microscopy. Annu. Rev. Mater. Sci. 1999, 29 (1), 505-585.
    14. Zhou, J.; et al., Nanoscale thermal–mechanical probe determination of 'softening transitions' in thin polymer films. Nanotechnology 2008, 19 (49), 495703.
    15. Iverson, B. D.; Blendell, J. E.; Garimella, S. V., Note: Thermal analog to atomic force microscopy force-displacement measurements for nanoscale interfacial contact resistance. Rev. Sci. Instrum. 2010, 81 (3).
    16. Lefevre, S.; Volz, S.; Saulnier, J. B.; Fuentes, C.; Trannoy, N., Thermal conductivity calibration for hot wire based dc scanning thermal microscopy. Rev. Sci. Instrum. 2003, 74 (4), 2418-2423.
    17. Rosa, L. G.; Liang, J., Atomic force microscope nanolithography: dip-pen, nanoshaving, nanografting, tapping mode, electrochemical and thermal nanolithography. J. Phys.-Condes. Matter 2009, 21 (48).
    18. Wang, Y.; Hong, X. D.; Zeng, J.; Liu, B. Q.; Guo, B.; Yan, H., AFM tip hammering nanolithography. Small 2009, 5 (4), 477-483.
    19. Jradi, K.; Bistac, S.; Schmitt, M.; Schmatulla, A.; Reiter, G., Enhancing nucleation and controlling crystal orientation by rubbing/scratching the surface of a thin polymer film. Eur. Phys. J. E 2009, 29 (4), 383-389.
    20. Sahoo, D. R.; Haberle, W.; Sebastian, A.; Pozidis, H.; Eleftheriou, E., High-throughput intermittent-contact scanning probe microscopy. Nanotechnology 2010, 21 (7).
    21. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A., "Dip-pen" nanolithography. Science 1999, 283 (5402), 661-663.
    22. Salaita, K.; Wang, Y.; Mirkin, C. A., Applications of dip-pen nanolithography. Nat Nano 2007, 2 (3), 145-155.
    23. Lee, W. K.; Whitman, L. J.; Lee, J.; King, W. P.; Sheehan, P. E., The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography. Soft Matter 2008, 4 (9), 1844-1847.
    24. Duvigneau, J.; Schonherr, H.; Vancso, G. J., Atomic force microscopy based thermal lithography of poly(tert-butyl acrylate) block copolymer films for bioconjugation. Langmuir 2008, 24 (19), 10825-10832.
    25. Kongshaug, K. O.; Steen, H., Submicron gold structures formed by atomic force microscopy lithography on thin films of poly(methyl methacrylate). Surface Science 2008, 602 (18), 3051-3056.
    26. Hua, Y. M.; Saxena, S.; Clifford, H.; King, W. P., Nanoscale thermal lithography by local polymer decomposition using a heated atomic force microscope cantilever tip. Journal of Micro-Nanolithography Mems and Moems 2007, 6 (2).
    27. Fenwick, O.; Bozec, L.; Credgington, D.; Hammiche, A.; Lazzerini, G. M.; Silberberg, Y. R.; Cacialli, F., Thermochemical nanopatterning of organic semiconductors. Nat. Nanotechnol. 2009, 4 (10), 664-668.
    28. Grell, M.; Bradley, D. D. C., Polarized luminescence from oriented molecular materials. Adv. Mater. 1999, 11 (11), 895-+.
    29. Yang, C. Y.; Hide, F.; Diaz-Garcia, M. A.; Heeger, A. J.; Cao, Y., Microstructure of thin films of photoluminescent semiconducting polymers. Polymer 1998, 39 (11), 2299-2304.
    30. Matsui, J.; Yoshida, S.; Mikayama, T.; Aoki, A.; Miyashita, T., Fabrication of polymer Langmuir-Blodgett films containing regioregular poly(3-hexylthiophene) for application to field-effect transistor. Langmuir 2005, 21 (12), 5343-5348.
    31. Thomas, C.; Seguela, R.; Detrez, F.; Miri, V.; Vanmansart, C., Plastic deformation of spherulitic semi-crystalline polymers: An in situ AFM study of polybutene under tensile drawing. Polymer 2009, 50 (15), 3714-3723.
    32. Bjornholm, T.; Hassenkam, T.; Reitzel, N., Supramolecular organization of highly conducting organic thin films by the Langmuir-Blodgett technique. J. Mater. Chem. 1999, 9 (9), 1975-1990.
    33. Reitzel, N.; Greve, D. R.; Kjaer, K.; Hows, P. B.; Jayaraman, M.; Savoy, S.; McCullough, R. D.; McDevitt, J. T.; Bjornholm, T., Self-assembly of conjugated polymers at the air/water interface. Structure and properties of Langmuir and Langmuir-Blodgett films of amphiphilic regioregular polythiophenes. J. Am. Chem. Soc. 2000, 122 (24), 5788-5800.
    34. Ujihara, M.; Mitamura, K.; Torikai, N.; Imae, T., Fabrication of metal nanoparticle monolayers on amphiphilic poly(amido amine) dendrimer Langmuir films. Langmuir 2006, 22 (8), 3656-3661.
    35. Matsui, J.; Suzuki, T.; Mikayama, T.; Aoki, A.; Miyashita, T., Self-organized dendritic patterns in the polymer Langmuir-Blodgett film. Thin Solid Films 2011, 519 (6), 1998-2002.
    36. Matsui, J.; Sato, Y.; Mikayama, T.; Miyashita, T., Fabrication of electrochemical transistor based on pi-conjugate polymer Langmuir-Blodgett film. Langmuir 2007, 23 (16), 8602-8606.
    37. Sharma, S. K.; Singhal, R.; Malhotra, B. D.; Sehgal, N.; Kumar, A., Langmuir-Blodgett film based biosensor for estimation of galactose in milk. Electrochim. Acta 2004, 49 (15), 2479-2485.
    38. Bradley, D. D. C., PRECURSOR-ROUTE POLY(P-PHENYLENEVINYLENE) - POLYMER CHARACTERIZATION AND CONTROL OF ELECTRONIC-PROPERTIES. J. Phys. D-Appl. Phys. 1987, 20 (11), 1389-1410.
    39. Yang, C. Y.; Lee, K.; Heeger, A. J., Tensile drawing induced symmetry in poly(p-phenylene vinylene) films. J. Mol. Struct. 2000, 521, 315-323.
    40. Jiang, Z. Y.; Tang, Y. J.; Rieger, J.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Wu, Z. H.; Li, Z. H.; Men, Y. F., Structural evolution of tensile deformed high-density polyethylene at elevated temperatures: Scanning synchrotron small- and wide-angle X-ray scattering studies. Polymer 2009, 50 (16), 4101-4111.
    41. Sadeghi, F.; Tabatabaei, S. H.; Ajji, A.; Carreau, P. J., PROPERTIES OF UNIAXIALLY STRETCHED POLYPROPYLENE FILMS: EFFECT OF DRAWING TEMPERATURE AND RANDOM COPOLYMER CONTENT. Can. J. Chem. Eng. 2010, 88 (6), 1091-1098.
    42. Morandi, V.; Galli, M.; Marabelli, F.; Comoretto, D., Polarized pressure dependence of the anisotropic dielectric functions of highly oriented poly(p-phenylene vinylene). J. Appl. Phys. 2010, 107 (7).
    43. Pooley, C. M.; Tabor, D., FRICTION AND MOLECULAR STRUCTURE - BEHAVIOR OF SOME THERMOPLASTICS. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 1972, 329 (1578), 251-&.
    44. Fenwick, D.; Ihn, K. J.; Motamedi, F.; Wittmann, J. C.; Smith, P., CHARACTERIZATION OF FRICTION-DEPOSITED POLYTETRAFLUOROETHYLENE TRANSFER FILMS. J. Appl. Polym. Sci. 1993, 50 (7), 1151-1157.
    45. Wittmann, J. C.; Smith, P., HIGHLY ORIENTED THIN-FILMS OF POLY(TETRAFLUOROETHYLENE) AS A SUBSTRATE FOR ORIENTED GROWTH OF MATERIALS. Nature 1991, 352 (6334), 414-417.
    46. Brinkmann, M.; Charoenthai, N.; Traiphol, R.; Piyakulawat, P.; Wlosnewski, J.; Asawapirom, U., Structure and Morphology in Highly Oriented Films of Poly(9,9-bis(n-octyl)fluorene-2,7-diyl) and Poly(9,9-bis(2-ethylhexyl)fluorene-2,7-diyl) Grown on Friction Transferred Poly(tetrafluoroethylene). Macromolecules 2009, 42 (21), 8298-8306.
    47. Tanigaki, N.; Yase, K.; Kaito, A., Oriented films of insoluble polymers by the friction technique. Thin Solid Films 1996, 273 (1-2), 263-266.
    48. Nagamatsu, S.; Takashima, W.; Kaneto, K.; Yoshida, Y.; Tanigaki, N.; Yase, K., Polymer field-effect transistors by a drawing method. Appl. Phys. Lett. 2004, 84 (23), 4608-4610.
    49. Tanigaki, N.; Nagamatsu, S.; Takashima, W.; Yoshida, Y., Molecular orientation of poly(3-butylthiophene) friction-transferred films. Thin Solid Films 2009, 518 (2), 853-856.
    50. Dinelli, F.; Leggett, G. J.; Shipway, P. H., Nanowear of polystyrene surfaces: molecular entanglement and bundle formation. Nanotechnology 2005, 16 (6), 675-682.
    51. Derue, G.; Serban, D. A.; Leclere, P.; Melinte, S.; Damman, P.; Lazzaroni, R., Controlled nanorubbing of polythiophene thin films for field-effect transistors. Org. Electron. 2008, 9 (5), 821-828.
    52. Abbas, M.; D'Amico, F.; Ali, M.; Mencarelli, I.; Setti, L.; Bontempi, E.; Gunnella, R., Rubbing effects on the structural and optical properties of poly(3-hexylthiophene) films. J. Phys. D-Appl. Phys. 2010, 43 (3).
    53. Ge, J. J.; Li, C. Y.; Xue, G.; Mann, I. K.; Zhang, D.; Wang, S. Y.; Harris, F. W.; Cheng, S. Z. D.; Hong, S. C.; Zhuang, X. W.; Shen, Y. R., Rubbing-induced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains. J. Am. Chem. Soc. 2001, 123 (24), 5768-5776.
    54. Sakamoto, K.; Arafune, R.; Ito, N.; Ushioda, S.; Suzuki, Y.; Morokawa, S., Determination of molecular orientation of very thin rubbed and unrubbed polyimide films. J. Appl. Phys. 1996, 80 (1), 431-439.
    55. Mahajan, M. P.; Rosenblatt, C., Correlation between rub-induced grooves in a polyimide-treated substrate and microstructure of rubbing fiber: An atomic force microscopy study. J. Appl. Phys. 1998, 83 (12), 7649-7652.
    56. Ruetschi, M.; Grutter, P.; Funfschilling, J.; Guntherodt, H. J., CREATION OF LIQUID-CRYSTAL WAVE-GUIDES WITH SCANNING FORCE MICROSCOPY. Science 1994, 265 (5171), 512-514.
    57. Rastegar, A.; Skarabot, M.; Blij, B.; Rasing, T., Mechanism of liquid crystal alignment on submicron patterned surfaces. J. Appl. Phys. 2001, 89 (2), 960-964.
    58. Natansohn, A.; Rochon, P., Photoinduced motions in azo-containing polymers. Chem. Rev. 2002, 102 (11), 4139-4175.
    59. Yu, H. F.; Kobayashi, T.; Hu, G. H., Photocontrolled microphase separation in a nematic liquid-crystalline diblock copolymer. Polymer 2011, 52 (7), 1554-1561.
    60. Meinhardt, R.; Macko, S.; Qi, B.; Draude, A.; Zhao, Y.; Wenig, W.; Franke, H., Photoinduced molecular motion in an azobenzene-containing diblock copolymer. J. Phys. D-Appl. Phys. 2008, 41 (19).
    61. Ichimura, K., Photoalignment of liquid-crystal systems. Chem. Rev. 2000, 100 (5), 1847-1873.
    62. Sakamoto, K.; Yasuda, T.; Miki, K.; Chikamatsu, M.; Azumi, R., Anisotropic field-effect hole mobility of liquid crystalline conjugated polymer layers formed on photoaligned polyimide films. J. Appl. Phys. 2011, 109 (1).
    63. Schon, P.; Bagdi, K.; Molnar, K.; Markus, P.; Pukanszky, B.; Vancso, G. J., Quantitative mapping of elastic moduli at the nanoscale in phase separated polyurethanes by AFM. Eur. Polym. J. 2011, 47 (4), 692-698.
    64. Yamamoto, T.; Otsuka, S.; Namekawa, K.; Fukumoto, H.; Yamaguchi, I.; Fukuda, T.; Asakawa, N.; Yamanobe, T.; Shiono, T.; Cai, Z. G., Alternating copolymer of bithiophene and dialkylbithiazole and its tendency to align on the surfaces. Polymer 2006, 47 (17), 6038-6041.
    65. Pang, Y. Y.; Dong, X.; Zhao, Y.; Han, C. C.; Wang, D. J., Phase Separation Induced Morphology Evolution and Corresponding Impact Fracture Behavior of iPP/PEOc Blends. J. Appl. Polym. Sci. 2011, 121 (1), 445-453.
    66. O'Driscoll, S.; Demirel, G.; Farrell, R. A.; Fitzgerald, T. G.; O'Mahony, C.; Holmes, J. D.; Morris, M. A., The morphology and structure of PS-b-P4VP block copolymer films by solvent annealing: effect of the solvent parameter. Polym. Adv. Technol. 2011, 22 (6), 915-923.
    67. Farrell, R. A.; Fitzgerald, T. G.; Borah, D.; Holmes, J. D.; Morris, M. A., Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films. Int. J. Mol. Sci. 2009, 10 (9), 3671-3712.
    68. Wang, C.; Lin, C. C.; Tseng, L. C., Miscibility, crystallization and morphologies of syndiotactic polystyrene blends with isotactic polystyrene and with atactic polystyrene. Polymer 2006, 47 (1), 390-402.
    69. You, J. C.; Hu, S. S.; Liao, Y. G.; Song, K. X.; Men, Y. F.; Shi, T. F.; An, L. J., Composition effect on dewetting of ultrathin films of miscible polymer blend. Polymer 2009, 50 (19), 4745-4752.
    70. Kim, J. K.; Yang, S. Y.; Lee, Y.; Kim, Y., Functional nanomaterials based on block copolymer self-assembly. Prog. Polym. Sci. 2010, 35 (11), 1325-1349.
    71. Chung, H.; Ohno, K.; Fukuda, T.; Composto, R. J., Internal phase separation drives dewetting in polymer blend and nanocomposite films. Macromolecules 2007, 40 (2), 384-388.
    72. Taguchi, K.; Miyaji, H.; Izumi, K.; Hoshino, A.; Miyamoto, Y.; Kokawa, R., Growth shape of isotactic polystyrene crystals in thin films. Polymer 2001, 42 (17), 7443-7447.
    73. Mamun, A.; Umemoto, S.; Okui, N.; Ishihara, N., Self-seeding effect on primary nucleation of isotactic polystyrene. Macromolecules 2007, 40 (17), 6296-6303.
    74. Liu, Y. X.; Chen, E. Q., Polymer crystallization of ultrathin films on solid substrates. Coord. Chem. Rev. 2010, 254 (9-10), 1011-1037.
    75. Maillard, D.; Prud'homme, R. E., Crystallization of ultrathin films of polylactides: From chain chirality to lamella curvature and twisting. Macromolecules 2008, 41 (5), 1705-1712.
    76. Liu, S. B.; Hua, D.; Chen, W. W.; Wang, Q. J., Tribological modeling: Application of fast Fourier transform. Tribol. Int. 2007, 40 (8), 1284-1293.
    77. Bowen, W. R.; Doneva, T. A., Artefacts in AFM studies of membranes: correcting pore images using fast fourier transform filtering. J. Membr. Sci. 2000, 171 (1), 141-147.
    78. Nandan, B.; Hsu, J. Y.; Chen, H. L., Crystallization behavior of crystalline-amorphous diblock copolymers consisting of a rubbery amorphous block. Polym. Rev. 2006, 46 (2), 143-172.
    79. Peltonen, J. P. K.; He, P. S.; Rosenholm, J. B., ORDER AND DEFECTS OF LANGMUIR-BLODGETT-FILMS DETECTED WITH THE ATOMIC FORCE MICROSCOPE. J. Am. Chem. Soc. 1992, 114 (20), 7637-7642.
    80. Wang, H.; Composto, R. J., Kinetics of surface and interfacial fluctuations in phase separating polymer blend films. Macromolecules 2002, 35 (7), 2799-2809.
    81. Beers, K. L.; Douglas, J. F.; Amis, E. J.; Karim, A., Combinatorial measurements of crystallization growth rate and morphology in thin films of isotactic polystyrene. Langmuir 2003, 19 (9), 3935-3940.

    下載圖示 校內:2016-08-15公開
    校外:2016-08-15公開
    QR CODE