簡易檢索 / 詳目顯示

研究生: 許順盛
Hsu, Shun-Sheng
論文名稱: 60-GHz CMOS射頻晶片嵌入式天線及915-MHz近身軟板印刷式天線的研究設計
Research on 60-GHz CMOS RFIC-On-Chip Antennas and 915-MHz Printed Antenna on the Flexible Substrate Proximate to the Human Body
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 107
中文關鍵詞: CMOS60 GHz射頻晶片嵌入式天線共面波導三角單極子天線槽孔天線八木天線印刷式天線軟板
外文關鍵詞: Printed antenna, 60 GHz, Triangular monopole, CMOS, Yagi antenna, Slot antenna, Flexible substrate, CPW, RFIC-on-Chip Antenna
相關次數: 點閱:99下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究主要分為兩個部分,第一部分是利用TSMC 0.18-μm CMOS製程研製應用於60-GHz WPAN RFIC之射頻晶片嵌入式天線,其中包含了三角單極子天線、meander-line單極子天線、摺疊槽孔天線、縮小化槽孔天線及八木天線;且天線饋入系統皆是採用共面波導之饋入架構。量測方面已在probe station上採用on-wafer方式量測VSWR及最大天線功率增益,在內文中已探討dummy對天線輸入阻抗之影響、製程下方之損耗基底層對天線輻射場型及輻射效率之影響,以及晶片實際切割面積對天線共振頻率之影響。第二部分是無線生理監控偵測模組中的近身軟板印刷式天線之研究。
    三角單極子天線方面,在50-65 GHz量測之VSWR皆小於2;60 GHz的頻率下天線增益為 -8.4 dB;晶片總面積為1.0 × 0.81 mm2。meander-line單極子天線方面,在55-65 GHz量測之VSWR皆小於2.2;60 GHz的頻率下天線增益為 -12.3 dB;晶片總面積為1.0 × 0.865 mm2。
    摺疊槽孔天線方面,在55-65 GHz量測之VSWR皆小於2;60 GHz的頻率下天線增益為 -6.4 dB;晶片總面積為1.3 × 1.3 mm2。而縮小化之槽孔天線方面,在55-65 GHz量測之VSWR皆小於2;60 GHz的頻率下天線增益為 -9.3 dB;晶片總面積為1.0 × 0.95 mm2。
    八木天線方面,在55-65 GHz量測之VSWR皆小於2;60 GHz的頻率下天線增益為 -10.6 dB;晶片總面積為1.39 × 1.35 mm2。由E-plane可看出輻射場型確實有向前集中之特性,且前後比(FB)約為9 dB。
    近身軟板印刷式天線方面,本論文已成功設計出無線生理監控偵測模組中之軟板型meander-line單極子天線,且內文中已探討人體組織對天線各項特性所造成的效應,包含單層肌肉及三層腹部組織對天線的響應。由模擬結果得知,天線下方的人體組織中,導電率較低之脂肪層確實有阻隔肌肉層對天線吸收能量的效果;在天線下方加上floating metal之後,則可減小天線被人體組織所吸收的能量。

    The thesis presents the research on two sections. The first is the 60 GHz millimeter-wave RFIC-on-chip antennas fabricated with TSMC 0.18-μm CMOS process. The antennas include a triangular monopole, a meander-line monopole, two slot antennas and a Yagi antenna. A feeding network is designed in coplanar waveguide (CPW) technology. The second is the design of a 915-MHz printed meander-line antenna and investigation of body effect on antenna radiation characteristics for wireless biometry application.
    The measured VSWR of the triangular monopole antenna is less than 2 from 50 to 65 GHz. The measured maximum antenna power gain at 60 GHz is about -8.4 dB. The chip size is 1.0 × 0.81 mm2. The measured VSWR of the meaner-line monopole antenna is less than 2.2 from 55 to 65 GHz. The measured maximum antenna power gain at 60 GHz is about -12.3 dB. The chip size is 1.0 × 0.865 mm2.
    The measured VSWR of the folded-slot antenna is less than 2 from 55 to 65 GHz. The measured maximum antenna power gain at 60 GHz is about -6.4 dB. The chip size is 1.3 × 1.3 mm2. The measured VSWR of the miniaturized slot antenna is less than 2 from 55 to 65 GHz. The measured maximum antenna power gain at 60 GHz is about -9.3 dB. The chip size is 1.0 × 0.95 mm2.
    The measured VSWR of the Yagi antenna is less than 2 from 55 to 65 GHz. The simulated radiation pattern of E-plane performed an end-fire pattern, and the front-to-back ratio is approximately 9 dB. The measured maximum antenna power gain at 60 GHz is about -10.6 dB. The chip size is 1.39 × 1.35 mm2.
    A 915-MHz meander-line printed antenna for the biometry applications the investigation of the body effect on the antenna radiation characteristics is presented. The human tissue includes single layer of muscle and three layers tissue. From the simulated results, it can be observed that the induced current in fat layer is very small due to the lowest dielectric constant and conductivity. After add floating metal, the absorbed energy of human tissue will be reduced.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 60 GHz WPAN簡介 2 1.3 無線生理監控之背景與應用 3 1.4 論文架構 5 第二章 60 GHz之毫米波CMOS單極子射頻晶片天線 7 2.1 基本理論 7 2.1.1 共面波導(Coplanar Waveguide, CPW) 7 2.1.2 偶極子天線(Dipole) 9 2.1.3 鏡像原理(Image Theory) 12 2.1.4 單極子天線(Monopole) 13 2.2 60 GHz共面波導饋入之三角單極子射頻晶片天線 15 2.2.1 架構簡介 15 2.2.2 設計流程 16 2.2.3 模擬與量測 17 2.2.4 結果與討論 22 2.3 60 GHz共面波導饋入之Meander-line單極子射頻晶片天線 24 2.3.1 架構簡介 24 2.3.2 設計流程 27 2.3.3 模擬與量測 27 2.3.4 結果與討論 31 2.4 結論 33 第三章 60 GHz之毫米波CMOS槽孔射頻晶片天線 35 3.1 槽孔天線簡介 35 3.2 60 GHz共面波導饋入之摺疊槽孔射頻晶片天線 37 3.2.1 架構簡介 37 3.2.2 設計流程 38 3.2.3 模擬與量測 38 3.2.4 結果與討論 42 3.3 縮小化之60 GHz共面波導饋入槽孔射頻晶片天線 45 3.3.1 架構簡介 45 3.3.2 設計流程 46 3.3.3 模擬與量測 46 3.3.4 結果與討論 49 3.4 結論 50 第四章 60 GHz之毫米波CMOS八木射頻晶片天線 53 4.1 八木天線之基本原理 53 4.2 60 GHz共面波導饋入式CMOS射頻晶片嵌入式八木天線 57 4.2.1 架構簡介 57 4.2.2 設計流程 58 4.2.3 模擬與量測 59 4.3 結論 63 第五章 近身軟板印刷式天線之研究 65 5.1 研究動機 65 5.2 規格及基本理論 66 5.2.1 天線規格 66 5.2.2 微帶線(Microstrip Line, MS) 67 5.2.3 人體組織之電氣參數 69 5.3 天線設計與模擬結果 70 5.3.1 矩形槽孔微帶天線 70 5.3.2 Meander-line單極子天線 72 5.4 結論 78 第六章 結論 79 附錄A 八木天線之簡介 87 附錄B Ansoft HFSS模擬軟體介紹 93 B.1 HFSS之簡介 93 B.2 3D FEM之基本概念 94 B.3 設計及模擬流程 96 附錄C 射頻晶片天線增益之號角天線量測法 99 附錄D 空腔模型 103

    [1] http://www.ee.ntu.edu.tw/college/index1.html
    [2] Y. P. Zhang, M. Sun, and L. H. Guo, “On-chip Antennas for 60-GHz Radios in Silicon Technology,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1664-1668, Jul. 2005.
    [3] C. H. Doan, S. Emami, D.A. Sobel, A. M. Niknejad, and R. W. Brodersen, “Design Considerations for 60 GHz CMOS Radios,” IEEE Commun. Mag., vol. 42, pp. 132-140, Dec. 2004.
    [4] N. Guo, R. C. Qiu, S. S. Mo and K. Takahashi, “60-GHz Millimeter-Wave Radio: Principle, Technology, and New Results,” EURASIP Journal on Wirelless Communications and Networking, vol. 8, 2007.
    [5] http://www.ieee802.org/15/pub/TG3c.html
    [6] http://www.read.com.tw/web/hypage.cgi?HYPAGE=subject/sub_aging_society.asp
    [7] http://www.biopharm.org.tw/media/mdnews/61/6104.html
    [8] T.-C. Huang, C.-H. Chu, S.-S. Hsu, C.-C. Lin and H.-R. Chuang, “Design of a 915-MHz Printed Meander-line Antenna and Investigation of Body Effect on Antenna Radiation Characteristics for Wireless Biometry Application,” IEEE APS., Jun. 2007.
    [9] S. Chaimool, S. Kerdsumang, P. Akkraeakthalin and V. Vivek, “A broadband CPW-fed square slot antenna using loading metallic strips and a widened tuning stub, ” ISCIT, pp. 730-733, Oct. 2004.
    [10] C. P Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microw. Theory Tech., vol. MTT-17, no. 12, pp. 1087-1090, Dec. 1969.
    [11] K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, Washington, pp. 375-399, 1996.
    [12] R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems, New York: Wiley, 2001.
    [13] 陳一仁,共面波導饋入圓極化微帶及環槽天線之分析與設計,國立台灣大學電機工程研究所碩士論文,民國九十二年。
    [14] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. New York: Wiley, 1998.
    [15] C. A. Balanis, Antenna Theory Analysis and Design, 3rd ed. New York: Wiley, 2005.
    [16] R. B. Waterhouse and D. Novak, “Printed foled flared monopole antenna,” Electron. Lett., vol. 42, no. 3, Feb. 2006.
    [17] K. L. Wong and Y. F. Lin, “Stripline-fed printed triangular monopole,” Electron. Lett., vol. 33, no. 17, Aug. 1997.
    [18] H. D. Chen, and H. T. Chen, “A CPW-Fed Dual-Frequency Monopole Antenna,” IEEE Trans. Antennas Propag., vol. 52, no. 4, Apr. 2004.
    [19] Rainee N. Simons and Richard Q. Lee, “On-Wafer Characterization of Millimeter-Wave Antennas for Wireless Applications”, IEEE Trans. Microw. Theory Tech. , vol. 47, no. 1, pp. 92-96, Jan. 1999.
    [20] T. J. Warnagiris, and T. J. Minardo, “Performance of a Meandered Line as an Electrically Small Transmitting Antenna,” IEEE Trans. Antennas Propag., vol. 46, no. 12, Dec. 1998.
    [21] G. Marrocco, “Gain-Optimized Self-Resonant Meander Line Antennas for RFID Applications,” IEEE Antennas Wireless Propag. Lett., vol. 2, 2003.
    [22] 郭士偉,無線通訊平面式天線及CMOS射頻晶片嵌入式天線之設計研究,國立成功大學電機工程研究所碩士論文,民國九十四年。
    [23] H. G. Booker, “Slot aerials and their relation to complementary wire aerials,” J. IEE(London), part 3A, vol. 93, pp. 620-626, 1946.
    [24] 柯正學,應用於無線區域網路之低剖面槽孔天線研究設計,國防大學中正理工學院電子工程研究所碩士論文,民國九十二年。
    [25] M. C. Mukandatimana, T. A. Denidni and L. Talbi, “Design of a new dual-band CPW-fed slot antenna for ISM applications,” IEEE VTC, vol. 1, May 2004.
    [26] R. Usaha and M. Ali, “Design of broadband modified folded slot antennas for C-band wireless applications,” IEEE Wireless Communication Technology, Oct. 2003.
    [27] H. D. Chen, “Broadband CPW-fed square slot antennas with a widened tuning stub,” IEEE Trans. Antennas Propag., vol. 51, no. 8, Aug. 2003.
    [28] J.-Y. Chiou, J.-Y. Sze and K.-L. Wong, “A broad-band CPW-fed strip-loaded square slot antenna,” IEEE Trans. Antennas Propag., vol. 51, no. 4, Apr. 2003.
    [29] S. Chaimool, P. Akkaraekthalin and V. Vivek, “Dual-band CPW-fed slot antennas using loading metallic strips and a widened tuning stub,” IEICE Trans. Electron., vol. E88-C, no.12, Dec. 2005.
    [30] N. Lenin and P. H. Rao, “Broadband printed square slot loop antenna,” in IEEE AP-S Symp., vol. 1B, 2005.
    [31] C.-J. Wang and J.-J. Lee, “A pattern-frequency-dependent wide-band slot antenna,” IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 65-68, 2006.
    [32] R. Chair, A. A. Kishk, and K. F. Lee, “Ultrawide-band coplanar waveguide-fed rectangular slot antenna,” IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 227-229, 2004.
    [33] M. A. Saed, “Reconfigurable broadband microstrip antenna fed by a coplanar waveguide,” PIER 55, pp. 227-239, 2005.
    [34] A. A. Eldek, A. Z. Elsherbeni, and C. E. Smith, “Rectangular Slot Antenna with Patch Stub for Ultra Wideband Applications and Phased Array Systems,” PIER 53, pp. 227-237, 2005.
    [35] R. Chair, A. A. Kishk, K. F. Lee, C. E. Smith, and D. Kajfez, “Microstrip Line and CPW Fed Ultra Wideband Slot Antennas with U-Shaped Tuning Stub and Reflector,” PIER 56. pp. 163-182, 2006.
    [36] S. Sadat, M. Fardis, F. Geran and G. Dadashzadeh, “A compact microstrip square-ring slot antenna for UWB applications,” PIER 67, pp. 173-179, 2007.
    [37] 陳文山,雙頻及寬頻槽孔天線的研究,國立中山大學電機工程研究所碩士論文,民國九十年。
    [38] J. Papapolymerou, C. Schwartzlow and G. Ponchak, “A folded-slot antenna on low resistivity Si substrate with a polyimide interface layer for wireless circuits,” IEEE SMIC, pp. 215-218, 2001.
    [39] M. A. Aziz, H. Ghali, H. F. Ragaie, H. Haddara, P. Pons, K. Grenier and R. Plana, “Design of Si-based micromachined slot antenna,” IEEE MWSCAS, vol. 2, pp. 893-896, 2004.
    [40] P. Caudrillier, A. Takacs, O. Pascal, H. Aubert, P. Pons and R. Plana, “Compact circularly polarized radiating element for Ka-band satellite communications,” in IEEE AP-S Symp., vol. 1, pp. 18-21, Jun. 2002.
    [41] N. Segura, S. Montusclat, C. Person, S. Tedjini and D. Gloria, “On-wafer radiation pattern measurements of integrated antennas on standard BICMOS and glass processes for 40-80GHz applications,” Proc. IEEE ICMTS, vol. 18, pp. 107-111, Apr. 2005.
    [42] Y. Tsutsumi, H. Kanaya and K. Yoshida, “Design and performance of an electrically small slot loop antenna with a miniaturized superconducting matching circuit,” IEEE Transactions on Applied Superconductivity, vol. 15, no. 2, pp. 1020-1023, Jun. 2005.
    [43] G. Forma and J. M. Laheurte, “Compact oscillating slot loop antenna with conductor backing,” Electron. Lett., vol. 32, no. 18, Aug. 1996.
    [44] S.-W. Lu, T.-F. Huang and P. Hsu, “CPW-fed slot-loop coupled patch antenna on narrow substrate,” Electron. Lett., vol. 35, no. 9, Apr. 1999.
    [45] S.-W. Lu, T.-F. Huang, and P. Hsu, “A CPW-fed slot-loop antenna with low cross-polarization radiation,” Proc. 2000 Asia-Pacific Microwave Conf., pp. 1400-1402, Dec. 2000.
    [46] D. Anagnostou, M. T. chryssomallis, J. C. Lyke and C. G. Christodoulou, “A CPW Koch dipole slot antenna” in Proc. IEEE Topical conf. on WCT, pp. 337, Oct. 2003.
    [47] http://bv3fg.tripod.com/cqm/27/27094.htm
    [48] G. A. Thiele, “Analysis of Yagi-Uda-type anennas,” IEEE Trans. Antennas Propag., vol. AP-17, no. 1, Jan. 1969.
    [49] P. P. Viezbicke, “Yagi Antenna Design, ” NBS Tech. NOTE 688, Dec. 1976.
    [50] K. Tilley, X.-D. Wu and K. Chang, “Coplanar waveguide fed coplanar strip dipole antenna,” Electron. Lett., vol. 30, no. 3, Feb. 1994.
    [51] C. J. Panagamuwa, J. C. Vardaxoglou, “Optically reconfigurable balanced dipole antenna,” ICAP, vol. 1, pp. 237-240, Apr. 2003.
    [52] H. K. Kan, R. B. Waterhuse, A. M. Abbosh and M. E. Bialkowski, “Simple broadband planar CPW-fed quasi-Yagi Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 6, Apr. 2007.
    [53] G. Zheng, A. A. Kishk, A. W. Glisson and A. B. Yakovlev, “Simplified feed for modified printed Yagi antenna,” Electron. Lett., vol. 40, no. 8, Apr. 2004.
    [54] P. R. Grajek, B. Schoenlinner and G. M. Rebeiz, “A 24-GHz high-gain Yagi-Uda antenna array,” IEEE Trans. Antennas Propag., vol. 52, no. 5, Apr. 2004.
    [55] K. M. K. H. Leong, Y. Qian and T. Itoh, “First demonstration of a conductor backed coplanar waveguide fed quasi-Yagi antenna,” in IEEE AP-S Symp., 2000.
    [56] Y. Qian, W. R. Deal, N. Kaneda and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” Electron. Lett., vol. 34, no. 23, Nov. 1998.
    [57] J. Sor, Y. Qian and T. Itoh, “Coplanar waveguide fed quasi-Yagi antenna,” Electron. Lett., vol. 26, no. 1, Jan. 2000.
    [58] N. Kaneda, W. R. Deal, Y. Qian, R. Waterhouse and T. Itoh, “A broad-band planar quasi-Yagi antenna,” IEEE Trans. Antennas Propag., vol. 50, no. 8, Apr. 2002.
    [59] Y. P. Zhang, M. Sun, and L. H. Guo, “On-chip antennas for 60-GHz radios in silicon technology,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1664-1668, Jul. 2005.
    [60] D. Neculoiu, G. Konstantinidis, L. Bary, A. Muller, D. Vasilache, A. Stavinidris, P. Pons, R. Plana, “Membrane supported Yagi-Uda millimeter-wave antennas,” EuCAP., Oct. 2006.
    [61] D. Neculoiu, P. Pons, M. Saadaoui, L. Bary, D. Vasilache, K. Grenier, D. Dubuc, A. Muller and R. Plana, “Membrane supported Yagi-Uda antenna for millimeter-wave applications,” IEE Proc.-Microw. Antennas Propag., vol. 151, no. 4, Aug. 2004.
    [62] http://www.pt-medical.nl/products.asp?id=72
    [63] 張盛富、戴明鳳,無線通信之射頻被動電路設計,全華科技圖書股份有限公司,民國八十七年。
    [64] M. Burkhardt and N. Kuster, “Appropriate modeling of the ear for compliance testing of handheld MTE with SAR safety limits at 900/1800 MHz,” IEEE Trans. Microwave Theory Tech., vol. 48, no. 11, Nov. 2000.
    [65] S. Nishizawa and O. Hashimoto, “Effectiveness analysis of lossy eielectric shields for a three-layered human model,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 3, Mar. 1999.
    [66] G. Marrocco, “Body-matched RFID antennas for wireless biometry,” Proc. IEEE EuCAP., Nov. 2006.
    [67] J. Kim and Y. R.Samii, “Implanted antennas inside a human body: simulations, designs, and characterizations,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 8, Aug. 2004.
    [68] M. Qkoniewski and M. A. Stuchly, “A study of the handset antenna and human body interaction,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 10, Oct. 1996.
    [69] O. P. Gandhi, G. Lazzi and C. M. Furse, “Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 10, Oct. 1996.
    [70] K. Kiminami, A. Hirata, Y. Horii and T. Shiozawa, “A study on human body modeling for the mobile terminal antenna design at 400MHz band,” Journal of Electromagnetic Waves and Applications, vol. 19, no. 5, pp. 671-687, 2005.
    [71] T. S. P. See and Z.-N. Chen, “Effects of human body on performance of wearable PIFAs and RF transmission,” in IEEE AP-S Symp., vol. 1B, pp. 686-689, 2005.
    [72] K. Ogawa, T. Uwano and M. Takahashi, “A shoulder-mounted planar antenna for mobile radio applications,” IEEE Trans. Vehicular Tech., vol. 49, no. 3, pp. 1041-1044, May 2000.
    [73] M. R. Kamarudin, Y. I. Nechayev and P. S. Hall, “Antenna for on-body communication systems,” IEEE IWAT, pp. 17-20, Mar. 2005.
    [74] H.-R. Chuang, “Numerical computation of fat layer effects on microwave near-field radiation to the abdomen of a full-scale human body model,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 1, Jan. 1997.
    [75] H.-R. Chuang, “Human operator coupling effects on radiation characteristics of a portable communication dipole antenna,” IEEE Trans. Antennas Propag., vol. 42, no. 4, Apr. 1994.

    下載圖示 校內:2008-09-10公開
    校外:2008-09-10公開
    QR CODE