簡易檢索 / 詳目顯示

研究生: 許維真
Hsu, Wei-Chen
論文名稱: 鈣鈦礦型LaNiO3觸媒應用於CH4/CO2重組反應之研究
CH4 reforming of CO2 over perovskite type LaNiO3 catalyst
指導教授: 黃啟祥
Hwang, Chii-Shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 121
中文關鍵詞: 觸媒重組反應LaNiO3CH4CO2
外文關鍵詞: CO2, CH4, LaNiO3, reforming reaction, catalyst
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化碳的甲烷重組反應可將同為溫室氣體之二氧化碳和甲烷轉化為合成氣(CO + H2),此氣體可用於生產甲醇或液態燃料等。為提高應用於此反應之觸媒的反應活性及穩定性,本研究以檸檬酸凝膠法製備LaNiO3觸媒,並檢討其他元素的添加、擔體的利用和煆燒條件對觸媒改質的影響。
    以檸檬酸凝膠法製備之前驅體粉末約在600 ℃開始形成LaNiO3相,於700 ℃煆燒2小時之LaNiO3觸媒粉末比表面積值為6.37 m2/g,粒徑約為130 nm。此粉末以GHSV=50000 l/Kg‧h之流速於700 ℃作活性反應對CH4和CO2之轉化率分別為63.9 % 和65.5 %。
    之後本研究以添加其他元素或擔體的方式作LaNiO3觸媒之改質,製備出LaNiyMg1-yO3,LaxCa1-xNiO3,LaxCa1-xNiyMn1-yO3,LaxCe1-xNiyCo1-yO3,LaNiO3/MgO,LaNiO3/γ-Al2O3,LaNiO3/α-Al2O3七組觸媒並作活性測試,結果顯示其中之LaNiO3/α-Al2O3觸媒活性最佳,此粉末以GHSV=50000 l/Kg‧h之流速於700 ℃作活性反應對CH4和CO2轉化率分別為57.7 % 和76.7 %。
    本研究再以改變煆燒條件的方法檢討LaNiO3觸媒之活性,結果以350 ℃持溫0.5小時後再以700 ℃煆燒2小時之LaNiO3觸媒具最佳之活性表現,該觸媒之比表面積值為7.14 m2/g,粒徑約為116 nm,此觸媒以GHSV=50000 l/Kg‧h之流速於700 ℃下反應1小時對CH4和CO2之轉化率分別為80.5 % 和81.3 %,但此反應亦伴隨積碳現象之產生,導致反應1小時後管線即因阻塞而終止反應。
    最後本研究以相同之煆燒條件製備LaNiO3/α-Al2O3觸媒,檢討LaNiO3擔載量與LaNiO3/α-Al2O3用量對反應活性之影響,結果以5 wt% LaNiO3/α-Al2O3之觸媒0.15 g,其反應活性最佳且較不積碳,擔載在α-Al2O3上之LaNiO3觸媒粒徑大小約為10 ~ 30 nm,此觸媒以GHSV=20000 l/Kg‧h之流速於700 ℃下反應1小時對CH4和CO2之轉化率分別為61.7 % 和81.4 %,在穩定性測試方面可在700 ℃下反應8小時仍維持其催化活性。

    The CH4 reforming of CO2 reaction could transform the greenhouse gas (CH4 and CO2) to synthesis gas (CO and H2). The synthesis gas could be used to produce methanol, liquid fuel and so on. To enhance the activity and stability of the LaNiO3 catalyst used in this reforming reaction, the catalyst was prepared by the citrate method and promoted by adding other elements or supports, or changing the calcination parameters.
    The LaNiO3 phase was formed at 600 ℃ initially from the precursor prepared by the citrate method. The specific surface area and particle size of LaNiO3 were 6.37 m2/g and about 130 nm respectively when the precursor calcined at 700 ℃ for 2 h, and the conversion of CH4 and CO2 were 63.9 % and 65.5 % respectively when reacted at 700 ℃ and GHSV=50000 l/Kg‧h.
    The LaNiO3 catalyst was promoted by adding other elements or supports. Seven new catalysts; LaNiyMg1-yO3, LaxCa1-xNiO3, LaxCa1-xNiyMn1-yO3, LaxCe1-xNiyCo1-yO3, LaNiO3/MgO, LaNiO3/γ-Al2O3, LaNiO3/α-Al2O3, were prepared and tested. The LaNiO3/α-Al2O3 catalyst had the best activity, the conversion of CH4 and CO2 were 57.7 % and 76.7 % respectively when reacted at 700 ℃ and GHSV=50000 l/Kg‧h.
    The LaNiO3 catalyst was then promoted by changing the calcination parameters. The LaNiO3 catalyst formed from the precursor pre-heated at 350 ℃ for 0.5 h and then calcined at 700 ℃ for 2 h showed the best activity. The specific surface area and particle size of the catalyst were 7.14 m2/g and about 116 nm respectively. And the conversion of CH4 and CO2 were 80.5 % and 81.3 % respectively when reacted at 700 ℃ for 1 h and GHSV=50000 l/Kg‧h. But the reaction was ceased after 1 h of reaction by lots amount of coke formation.
    The LaNiO3/α-Al2O3 catalyst was prepared by the same calcinations parameters with LaNiO3 catalyst, and the LaNiO3 loading amount and LaNiO3/α-Al2O3 catalyst using amount had been searched. The 5wt% LaNiO3/α-Al2O3 catalyst 0.15 g had the best activity and little coke formation, the particle size of LaNiO3 loading on α-Al2O3 was about 10 ~ 30 nm. The conversion of CH4 and CO2 were 61.7 % and 81.4 % respectively when reacted at 700 ℃ for 1 h and GHSV=20000 l/Kg‧h, and it could still maintained its activity (stability) after reaction at 700 ℃ for 8 h.

    中文摘要……………………………………………………………I 英文摘要……………………………………………………………II 誌 謝…….……………………………………………………IV 目 錄……………………………………………………………V 表 目 錄……………………………………………………………VIII 圖 目 錄……………………………………………………………IX 第一章 緒論…………………………………………………………1 1-1 前言………………………….………………………………1 1-2 研究動機與目的……………..…….………………………2 第二章 基本原理與文獻回顧……………………………………5 2-1 Perovskite結構……………………………………………5 2-2檸檬酸法…………………………………………………….6 2-2-1檸檬酸錯化合物法.…………………………………..7 2-2-2檸檬酸凝膠法…………………...…………………….7 2-3二氧化碳的減量…………………………………………….8 2-3-1二氧化碳儲存技術……………………………………8 2-3-2二氧化碳固定技術…………………..…….…………8 2-3-3二氧化碳轉化技術………………………….…………9 2-4合成氣…………………..…..…………….……………………10 2-5催化概述…………………………..…………………………...11 2-6甲烷的二氧化碳重組反應………..………………………...13 2-7甲烷二氧化碳重組反應的反應機制及動力學探討……14 第三章 實驗方法與步驟………………………………..…………29 3-1粉末製備流程……………………..…………………...……29 3-2觸媒活性測試……………………..…………………………31 3-2-1活性測試設備說明…………………………………...31 3-2-2活性反應之實驗步驟……………………………….32 3-3性質分析設備…………………………..…………………...33 第四章 結果與討論………………………………………………...46 4-1 LaNiO3觸媒粉末………………………………………….46 4-1-1 LaNiO3觸媒的成相……………………………..……46 4-1-2 LaNiO3觸媒結晶粒徑與形態分析………………..47 4-1-3 LaNiO3觸媒活性測試…………………….………..47 4-2 LaNiO3觸媒改質……………………………….………….49 4-2-1改質觸媒之相分析………………….…………..……50 4-2-2改質觸媒之粒子形態分析…………………………..51 4-2-3改質觸媒之活性測試……………………….………..52 4-3煆燒條件對LaNiO3觸媒活性之影響……….………….53 4-3-1預先熱處理時間對LaNiO3觸媒活性之影響…...54 4-3-2煆燒溫度對LaNiO3觸媒活性之影響….…………..55 4-3-3煆燒持溫時間對LaNiO3觸媒活性之影響………56 4-4 LaNiO3/α-Al2O3觸媒之活性測試……………………….57 4-4-1 LaNiO3/α-Al2O3觸媒擔載量對活性之影響………..57 4-4-2 LaNiO3/α-Al2O3觸媒用量對活性之影響…………..60 4-4-3 5wt% LaNiO3/α-Al2O3觸媒在低溫下之活性測試..61 4-5 LaNiO3觸媒與5wt% LaNiO3/α-Al2O3觸媒之比較……61 4-5-1表面形貌……………..……………………………………62 4-5-2積碳…….…………………………………………………62 4-5-3活性與穩定性……………………………………………63 第五章 結論…………………………………………………………110 參考文獻……………………………………………………………112

    1. S.G. Wang, “A detailed mechanism of thermal CO2 reforming of CH4”, J. Mol. Struct. (Theochem), 673, 181 (2004).
    2. D.L. Trimm, “The Formation and Removal of Coke from Nickel Catalyst”, Catal. Rev. Sci. Eng., 16, 155 (1977).
    3. J.T. Richardson, S.A. Paripatyadar, “carbon dioxide reforming of methane with supported rhodium”, Appl. Catal., 61, 293 (1990).
    4. A.T. Ashcroft, A.K. Cheetman, “Partial oxidation of methane to synthesis gas using carbon dioxide”, M.L.H. Green, P.D.F. Vernon, Nature, 352, 225 (1991).
    5. C.H. Bartholomew, “Carbon Deposition in Steam Reforming and Methanation”, Catal. Rev. Sci. Eng., 24, 67 (1982).
    6. C. Batiot-Dupeyrat, G.A. Sierra Gallego, F. Mondragon, J. Barrault, J.M. Tatiboue¨t, “CO2 reforming of methane over LaNiO3 as precursor material”, Catal. Today, 107–108, 474 (2005).
    7. C. Batiot-Dupeyrat, G. Valderrama, A. Meneses, F. Martinez, J. Barrault, J.M. Tatibouët, “Pulse study of CO2 reforming of methane over LaNiO3”, Appl. Catal. A: Gen., 248, 143–151 (2003).
    8. J.J. Guo, H. Lou, Y.H. Zhu, X.M. Zheng, “La-based perovskite precursors preparation and its catalytic activity for CO2 reforming of CH4”, Mater. Lett., 57, 4450–4455 (2003).
    9. S. M. Lima and J.M. Assaf, “Ni–Fe catalysts based on perovskite-type oxides for dry reforming of methane to syngas”, Catal. Lett., 108(1-2), 4450-4455 (2006).
    10. J.B. Goodenogh, J.M.Longo, “Landolt-Bornstein New Series”,Speinger-Verlag Berlin and New York, V4. Parta. 126 (1970).
    11. M.P. Pechini, “Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coationg Method Using the Same to Form a Capacitor”, U. S. Pat., No. 3 330 697, Jul. 11 (1967).
    12. A. Wold, B. Post, and E. Banks., “Lanthanum Rhodium and Lanthanum Cobalt Oxides”, J. Am. Chem. Soc., 79, 6365-6366 (1957).
    13. M.P. Pechini, “Barium Titanium Citrate, Barium Titanate and Processes for Producing Same”, U.S. Pat., No. 3 231 328, Jan. 25, (1969).
    14. D. Hennings, W. Mayr, “Theraml Decomposition of (BaTi) Citrates into Barium Titanate”, J. Solid State Chem., 26, 329-338 (1978).
    15. G.A. Hutchins, G.H. Maher, S.D. Ross, “Control of the Ba:Ti Ratio of BaTiO3 at a Value of Exactly 1 via Conversion to BaO.TiO2.3C6H8O7.6H2O”, Am. Ceram. Soc. Bull., 66 (4), 681-684 (1987).
    16. M. Kakihana, M.M. Milanova et al., “Polymerized Complex Route to Synthesis of Pure Y2Ti2O7 at 750 ℃ Using Yttrium-Titanium Mixed-Metal Citric Acid Complex”, J. Am. Ceram. Soc., 79 (6), 1673-1676 (1996).
    17. S.G. Cho, P.F. Johnson and R.A. Condrate, “Thermal decomposition of (Sr, Ti) organic precursor during the Pechini process”, J. Mater. Sci., 25, 4738-4744 (1990).
    18. 陳維新,江金龍,“空氣污染與防制”,高立圖書有限公司 (2001)。
    19. I. Tomoyuki, “Highly Effective Compounds by Using Newly Developed Multi-Functional Composite Catalysts”, Conference on Industrial Waste Minimization and Sustainable Development’97, 565-575 (1997).
    20. 袁中新,洪崇軒, ”溫室氣體二氧化碳之常溫光催化還原技術研究”,行政院環境保護署 (2002) 。
    21. 胡興中,“觸媒原理與應用”,高立圖書有限公司 (2002)。
    22. 吳榮宗,“工業觸媒槪論”,國興發行 (1989) 。
    23. F. Fischer, H. Tropsch, “Conversion of methane into hydrogen and carbon monoxide” Brennstoff Chem., 3, 39 (1928).
    24. S.G. Wang, Y.W. Li, J.X. Lu, M.Y. He and H.J. Jiao, “A detailed mechanism of thermal CO2 reforming of CH4”, J. Mol. Struct. (Theochem), 673, 181–189 (2004).
    25. M.R. Goldwasser, M.E. Rivas, E. Pietri, M.J. Pérez-Zurita, M.L. Cubeiro, L. Gingembre, L. Leclercq, G. Leclercq, “Perovskites as catalysts precursors: CO2 reforming of CH4 on Ln1−xCaxRu0.8Ni0.2O3 (Ln = La, Sm, Nd)”, Appl. Catal. A: Gen., 255, 45–57 (2003).
    26. X. Li, H.B. Zhang, F. Chi, S.J. Li, B.K. Xu and M.Y. Zhao, “Synthesis of nanocrystalline composite oxides La1-xSrxFe1-yCoyO3 with the perovskite structure using polyethylene glycol-gel method”, Mater. Sci. Eng., B18, 209-213 (1993).
    27. J.S. Choi, K.I. Moon, Y.G. Kima, J.S. Lee, C.H. Kimb and D.L. Trimm, “Stable carbon dioxide reforming of methane over modified Ni/Al2O3 catalysts”, Catal. Lett., 52, 43–47 (1998).
    28. K.J. Laidler, Chemical Kinetics, Third ed., Harper and Row, NewYork, 1987
    29. S.G. Wang, D.B. Cao, Y.W. Li, J.G. Wang and H.J. Jiao, “CO2 Reforming of CH4 on Ni(111): A Density Functional Theory Calculation”, J. Phys. Chem. B, 110, 9976-9983 (2006).
    30. Rostrup-Niesen, “J.R. Industrial Relevance of Coking”, Catal. Today, 37 (1997).
    31. Z.F. Yan, Q. Ling, X.M. Liu, L.H. Song, C.M. Song, R.G. Ding, A. Yuan and K. Qiao, “Mechanistic study of methane reforming with carbon dioxide on a supported nickel catalyst”, J. Chem. Res., 394, 400 (2005).
    32. 郭晏瑱,“La1-xSrxMnO3粉末之鑑定及催化CO + NO反應之研究”, 國立成功大學材料科學及工程學系,碩士論文,民國九十二年六月。
    33. Germa´n Sierra Gallego, Fanor Mondrago´n, Joe¨l Barrault, Jean-Michel Tatiboue¨t, Catherine Batiot-Dupeyrat, “CO2 reforming of CH4 over La–Ni based perovskite precursors”, Appl. Catal. A: Gen., 311, 164–171 (2006).
    34. S.M. Lima, J.M. Assaf, “Synthesis and Characterization of LaNiO3, LaNi(1-x)FexO3 and LaNi(1-x)CoxO3 Perovskite Oxides for Catalysis Application”, J. Mater. Res., 5 (3), 329-335 (2002).
    35. V.R. Choudhary, B.S. Uphade, and A.A. Belhekar, “Oxidative conversion of methane to syngas over LaNiO3 perovskite with or without simultaneous steam and CO2 reforming reactions:influence of partial substitution of La and Ni”, J. Catal., 163, 312–318 (1996).
    36. T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki and Y. Mori, “Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst”, Appl. Catal. A: Gen., 144, 111-120 (1996).
    37. Z.X. Cheng, Q.G. Wu, J.L. Li and Q.M. Zhu, “Effects of promoters and preparation procedures on reforming of methane with carbon dioxide over Ni/Al2O3 catalyst”, Catal. Today, 30, 147-155 (1996).
    38. H.D. Jeong, K.I. Kim, D.S. Kim and I.K. Song, “Effect of promoters in the methane reforming with carbon dioxide to synthesis gas over Ni/HY catalysts”, J. Mol. Catal. A: Chem., 246, 43–48 (2006).
    39. D. Halliche, O. Cherifi, A. Auroux, “Microcalorimetric studies and methane reforming by CO2 on Ni-based zeolite catalysts”, Thermochimica Acta, 434, 125–131 (2005).
    40. X. Chen, K. Honda, Z.G. Zhang, “A comprehensive comparison of CH4-CO2 reforming activities of NiO/Al2O3 catalysts under fixed- and fluidized-bed operations”, Appl. Catal. A: Gen., 288, 86–97 (2005).
    41. S.B. Wang and G.Q. (Max) Lu, “A Comprehensive Study on Carbon Dioxide Reforming of Methane over Ni/γ-Al2O3 Catalysts”, Ind. Eng. Chem. Res., 38, 2615-2625 (1999).
    42. X. Chen, K. Honda, Z.G. Zhang, “CO2–CH4 reforming over NiO/γ-Al2O3 in fixed-bed/fluidized-bed switching mode”, Catal. Today, 93–95, 87–93 (2004).
    43. H.Y. Wang and E. Ruckenstein, “ Conversions of methane to synthesis gas over Co/γ -Al2O3 by CO2 and/or O2”, Catal. Lett., 75 (1–2), 13-18 (2001).
    44. J.X. Chen, R.J. Wang, J.Y. Zhang, F. Heb, S. Hanb, “Effects of preparation methods on properties of Ni/CeO2–Al2O3 catalysts for methane reforming with carbon dioxide”, J. Mol. Catal. A: Chem., 235, 302–310 (2005).
    45. Z.Y. Hou, X.M. Zheng and T. Yashima, “High Coke-Resistence of K-Ca-Promoted Ni/α-Al2O3 Catalyst for CH4 Reforming with CO2”, React. Kinet. Catal. Lett., 84 (2), 229-235 (2005).
    46. A.A. Lemonidou, M.A. Goula, I.A. Vasalos, “Carbon dioxide reforming of methane over 5 wt.% nickel calcium aluminate catalysts - effect of preparation method”, Catal. Today, 46, 175-183 (1998).
    47. J.H. Fei, Z.Y. Houl, X.M. Zheng, and T. Yashima, “Doped Ni catalysts for methane reforming with CO2”, Catal. Lett., 98 (4), 241-245 (2004).
    48. Y.Q. Wang, L. Yang, T. Wang, Z.Y. Zhang, G. Ruan and S. Han, “Effect of Metal Oxides on the Reforming of Methane with Carbon Dioxside”, Reaet. Kinet. Oatal. Lett., 68 (2), 183-190 (1999).
    49. Z.Y. Hou, O. Yokota, T. Tanaka, and T. Yashima, “Investigation of CH4 reforming with CO2 on meso-porous Al2O3-supported Ni catalyst”, Catal. Lett., 89 (1–2), 121-127 (2003).
    50. W.Y. Li, J. Feng and K.C. Xie, “Studies on catalysts of anti-carbon deposition for CH4 reforming with CO2”, Reaet.Kinet. Catal.Lett., 64 (2), 381-388 (1998).
    51. Y.H. Cui, H.Y. Xu, Q.G. Ge, W.Z. Li, “Kinetic study on the CH4/CO2 reforming reaction: Ni–H in Ni/α-Al2O3 catalysts greatly improves the initial activity”, J. Mol. Catal. A: Chem., 243, 226–232 (2006).
    52. T. Shishido, M. Sukenobu, H. Morioka, R. Furukawa, H. Shirahase and K. Takehira, “CO2 reforming of CH4 over Ni/Mg–Al oxide catalysts prepared by solid phase crystallization method from Mg–Al hydrotalcite-like precursors”, Catal. Lett., 73 (1), 21-26 (2001).
    53. Anna R.S. Darujati and William J. Thomson, “Kinetic study of a ceria-promoted Mo2C/γ-Al2O3 catalyst indry-methane reforming ”, Chem. Eng. Sci., 61, 4309-4315 (2006).
    54. J.J. Guo, H.Lou, H. Zhao and X.M. Zheng, “Improvement of stability of out-layer MgAl2O4 spinel for a Ni/MgAl2O4/Al2O3 catalyst in dry reforming of methane”, React. Kinet. Catal. Lett., 84 (1), 93-100 (2005).
    55. L. Chen, Y. Lua, Q. Hong, J. Lin, F.M. Dautzenberg, “Catalytic partial oxidation of methane to syngas ove Ca-decorated-Al2O3-supported Ni and NiB catalysts”, Appl. Catal. A: Gen., 292, 295–304 (2005).
    56. Sh. S. Itkulova, “CO2 reforming of methane over Co-Pd/Al2O3 catalysts”, Bull. Korean Chem. Soc., 26 (12), 2017-2020 (2005).
    57. K. Heitnes, “Catalytic partial oxidation of methane to synthesis gas using monolithic reactors”, Catal. Today, 21, 471-480 (1994).
    58. A.T. Ashcroft, “Partial oxidation of methane to synthesis gas using carbon dioxide”, Nature, 352, 225-226 (1991).
    59. O.V. Krylov, A.Kh. Mamedov and S.R. Mirzabekova, “Interaction of carbon dioxide with methane on oxide catalysts”, Catalysis Today, 42, 211-215 (1998).
    60. S.B. Wang and G.Q.M. Lu, “CO2 reforming of methane on Ni catalysts: Effects of the support phase and preparation technique”, Appl. Catal. B: Environ., 16, 269-277 (1998).
    61. A. Nandini, K.K. Pant and S.C. Dhingra, “Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO2-Al2O3 catalyst”, Appl. Catal. A: Gen., 308, 119–127 (2006).
    62. J. Juna, J.C. Kimb, J.H. Shina, K.W. Leea and Y.S. Baek, “Effect of electron beam irradiation on CO2 reformingof methane over Ni/Al2O3 catalysts”, Radiation Phy. and Chem., 71, 1095-1101 (2004).
    63. H.S. Li and J.F. Wang, “Study on CO2 reforming of methane to syngas overAl2O3–ZrO2 supported Ni catalysts prepared via a direct sol–gel process”, Chem. Eng. Sci., 59, 4861-4867 (2004).
    64. U. Olsbye, O. Moenl, Å. Slagtern and I. M. Dahl, “An investigation of the coking properties of fixed and fluid bed reactors during methane-to-synthesis gas reactions”, Appl. Catal. A: Gen., 228, 289–303 (2002).
    65. T. Osaki1 and T. Mori, “Role of Potassium in Carbon-Free CO2 Reforming of Methane on K-Promoted Ni/Al2O3 Catalysts”, J. Catal., 204, 89–97 (2001).
    66. E. Ruckenstein and H.Y. Wang, “Combined catalytic partial oxidation and CO2 reforming of methane over supported cobalt catalysts”, Catal. Lett., 73 (2-4), 99-105 (2001).
    67. H.Y. Wang and E. Ruckenstein, “CO2 reforming of CH4 over Co/MgO solid solution catalysts— effect of calcination temperature and Co loading”, Appl. Catal. A: Gen., 209, 207–215 (2001).
    68. F. Frusteri, F. Arena, G. Calogero, T.Torre and A. Parmaliana, “Potassium-enhanced stability of Ni/MgO catalysts in the dry-reforming of methane”, Catal. Commun., 2, 49-56 (2001).
    69. Y.H. Hu and E. Ruckenstein, “An optimum NiO content in the CO2 reforming of CH4 with NiO / MgO solid solution catalysts”, Catal. Lett., 36, 145-149 (1996).
    70. Y.H. Hu and E. Ruckenstein, “The characterization of a highly effective NiO/MgO solid solution catalyst in theCO2 reforming ofCH4”, Catal. Lett., 43, 71-77 (1997).
    71. E. Ruckenstein and Y.H. Hu, “Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts”, Appl. Catal.s A: Gen., 133, 149-161 (1995).
    72. V.R. Choudhary, K.C. Mondal and T.V. Choudhary, “CO2 Reforming of Methane to Syngas over CoOx/MgO Supported on Low Surface Area Macroporous Catalyst Carrier: Influence of Co Loading and Process Conditions”, Ind. Eng. Chem. Res., 45, 4597-4602 (2006).
    73. Y.H. Hu and E. Ruckenstein, “ Binary MgO-based solid solution catalysts for methane conversion to syngas”, Catal. Rev., 44 (3), 423–453 (2002).
    74. H.W. Chen, C.Y. Wang, C.H. Yu, L.T. Tseng and P.H. Liao, “Carbon dioxide reforming of methane reaction catalyzed by stable nickel copper catalysts”, Catal. Today, 97, 173–180 (2004).
    75. A. Effendi, K. Hellgardt, Z.G. Zhang and T. Yoshida, “Characterisation of carbon deposits on Ni/SiO2 in the reforming of CH4–CO2 using fixed- and fluidised-bed reactors”, Catal. Commun., 4, 203–207 (2003).
    76. R. Takahashi, S. Sato, T. Sodesawa and S. Tomiyama, “CO2-reforming of methane over Ni/SiO2 catalyst prepared by homogeneous precipitation in sol–gel-derived silica gel”, Appl. Catal. A: Gen., 286, 142–147 (2005).
    77. Q.S. Jinga and X.M. Zhengb, “Combined catalytic partial oxidation and CO2 reforming of methane over ZrO2-modified Ni/SiO2 catalysts using fluidized-bed reactor”, Energy, 31, 2184–2192 (2006).
    78. K. Asamia, X.H. Li, K. Fujimoto, Y. Koyamab, A. Sakurama, Noritsugu Kometani and Yoshiro Yonezawa, “CO2 reforming of CH4 over ceria-supported metal catalysts”, Catal. Today, 84, 27–31 (2003).
    79. Y.L. Yang, W.Z. Li and H.G. Xu, “a new explanation for the carbon deposition and elimination over supported Ni, Ni-Ce and Ni-Co catalysts for CO2-reforming of methane”, React. Kinet. Catal. Lett., 77 (1), 155-162 (2002).
    80. J.B. Wang, Y.S. Wu, T.J. Huangb, “Effects of carbon deposition and de-coking treatments on the activation of CH4 and CO2 in CO2 reforming of CH4 over Ni/yttria-doped ceria catalysts”, Appl. Catal. A: Gen., 272, 289–298 (2004).
    81. S.B. Wang and G.Q. (Max) Lu, “Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane”, Appl. Catal.s B: Environ., 19, 267-277 (1998).
    82. K. Takanabea, K. Nagaoka, and K. Aika, “Improved resistance against coke deposition of titania supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane”, Catal. Lett., 102 (3-4), 153-157 (2005).
    83. K. Takanabe, K. Nagaoka, K. Nariai and K. Aika, “Influence of reduction temperature on the catalytic behavior of Co/TiO2 catalysts for CH4/CO2 reforming and its relation with titania bulk crystal structure”, J. Catal., 230, 75–85 (2005).
    84. Z.L. Zhang and X. E. Verykios, “Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts”, Appl. Catal. A: Gen., 138, 109-133 (1996).
    85. Z.L. Zhang and X.E. Verykios, “Mechanistic aspects of carbon dioxide reforming of methane to synthesis gas over Ni catalysts”, Catal. Lett., 38, 175-179 (1996).
    86. J.Z. Luo, L.Z. Gao, C.F. Ng and C.T. Au, “Mechanistic studies of CO2/CH4 reforming over Ni–La2O3/5A”, Catal. Lett., 62, 153–158 (1999).
    87. Z.L. Zhang, X.E. Verykios, S.M. MacDonald and S. Affrossman, “Comparative Study of Carbon Dioxide Reforming of Methane to Synthesis Gas over Ni/La2O3 and Conventional Nickel-Based Catalysts”, J. Phys. Chem., 100, 744-754 (1996).
    88. E. Ruckenstein and Y.H. Hu, “ Interactions between Ni and La2O3 in Ni/La2O3 Catalysts Prepared Using Different Ni Precursors”, J. Catal., 161, 55–61 (1996).
    89. V.A. Tsipouriari and X.E. Verykios, “Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst”, Catal. Today, 64, 83–90 (2001).
    90. T. Hayakawa, S. Suzuki, J. Nakamura, T. Uchijima, S. Hamakawa, K. Suzuki, T. Shishido and K. Takehir, “CO2 reforming of CH4 over Ni/perovskite catalysts prepared by solid phase crystallization method”, Appl. Catal. A: Gen., 183, 273-285 (1999).
    91. T. Hayakawa, H. Harihara, A.G. Andersen, K. Suzuki, H. Yasuda, T. Tsunoda, S. Hamakawa, Andrew P.E. York, Y.S. Yoon, M. Shimizua, K. Takehira, “Sustainable Ni/Cal-xSrxTiO3 catalyst prepared in situ for the partial oxidation of methane to synthesis gas”, Appl. Catal. A: Gen., 149, 391-410 (1997).
    92. R. Shiozaki, A.G. Andersen, T. Hayakawa, S. Hamakawa, K. Suzuki, M. Shimizu and K. Takehira, “Partial oxidation of methane over a catalyst Ni/BaTiO3 prepared by solid phase crystallization”, J. Chem. Soc., Faraday Trans., 93 (17), 3235-3242 (1997).
    93. T. Hayakawa, H. Harihara, A.G. Andersen, Andrew P. E. York, K. Suzuki, H.Yasuda, and K. Takehir, “A Sustainable Catalyst for the Partial Oxidation of Methane to Syngas: Ni/Ca1–xSrxTiO3 Prepared In Situ from Perovskite Precursors”, Angew Chem. In. Ed. Eng., 35 (2), 192-195 (1996).
    94. X.C. Li, M. Wu, Z.H. Lai, F. He, “Studies on nickel-based catalysts for carbon dioxide reforming of methane”, Appl. Catal. A: Gen., 290, 81–86 (2005).
    95. M. Rezaei, S.M. Alavi, S. Sahebdelfar and Z.F. Yan, “Nanocrystalline Zirconia as Support for Nickel Catalyst in Methane Reforming with CO2”, Energy & Fuels, 20, 923-929 (2006).
    96. Y.H. (Cathy) Chin, D.L. King, H.S. Roh, Y. Wang, S.M. Heald, “Structure and reactivity investigations on supported bimetallic Au–Ni catalysts used for hydrocarbon steam reforming”, J. Catal., 244, 153–162 (2006).
    97. S.B. Wang, G.Q. (Max) Lu and G.J. Millar, “Carbon Dioxide Reforming of Methane To Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art”, Energy & Fuels, 10, 896-904 (1996).
    98. D.J. Moon, J.M. Park, J.S. Kang, K.S. Yoo and S.I. Hong, “Cogeneration of a Synthesis Gas and Electricity Through Internal Reforming of Methane by Carbon Dioxide in a Solid Oxide Fuel Cell System”, J. Ind. Eng. Chem., 12 (1), 149-155 (2006).
    99. Michael C.J. Bradford, M. Albert Vannice, “Catalytic reforming of methane with carbon dioxide over nickel catalysts ΙΙ. Reaction kinetics”, Appl. Catal. A: Gen., 142, 97-122 (1996).
    100. Michael C.J. Bradford, M. Albert Vannice, “Catalytic reforming of methane with carbon dioxide over nickel catalysts Ι. Catalyst characterization and activity”, Appl. Catal. A: Gen., 142, 73-96 (1996).
    101. Tarek El Solh, Kai Jarosch, and Hugo de Lasa, “Catalytic Dry Reforming of Methane in a CREC Riser Simulator Kinetic Modeling and Model Discrimination”, Ind. Eng. Chem. Res., 42, 2507-2515 (2003).
    102. A. Takano, T. Tagawa and S. Goto, “Carbon dioxode reforming of methane on supported nickel catalysts”, J. Chem.l Eng. of Japan, 27 (6), 727-731 (1994).
    103. A.Berman, R.K. Karn, and M. Epstein, “A New Catalyst System for High - Temperature Solar Reforming of Methane”, Energy & Fuels, 20, 455-462 (2006).
    104. G.J. Kim, D.S. Cho, K.H. Kim and J.H. Kim, “The reaction of CO2 with CH4 to synthesize H2 and CO over nickel-loaded Y-zeolites”, Catal. Lett., 28, 41-52 (1994).
    105. S.M. Lima, J.M. Assaf, M.A. Pen˜, J.L.G. Fierro, “Structural features of La1-xCexNiO3 mixed oxides and performance for the dry reforming of methane”, Appl. Catal. A: Gen., 311, 94–104 (2006).
    106. O. Gonza´lez, J. Lujano, E. Pietri, M.R. Goldwasser, “New Co-Ni catalyst systems used for methane dry reforming based on supported catalysts over an INT-MM1 mesoporous material and a perovskite-like oxide precursor LaCo0.4Ni0.6O3”, Catal. Today, 107–108, 436–443 (2005).
    107. V.R. Choudhary, K.C. Mondal, “CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst”, Appl. Energy, 83, 1024–1032 (2006).
    108. Y.P. Wang, J.W. Zhu, L.L. Zhang, X.J. Yang, L.D. Lu, X. Wang, “Preparation and characterization of perovskite LaFeO3 nanocrystals”, Mater. Lett., 60, 1767–1770 (2006).
    109. http://tw.knowledge.yahoo.com/guestion/tuestion?gid=1005040202403
    110. 顧洋,二氧化碳處理技術簡介,經濟部能源局,94年10月。
    111. A. Roger, D. Souza, M. Saiful Islam and E. Ivers-Tiffee, “Formation and migration of cation defects in the perovskite oxide LaMnO3”, J. of Mater. Chem., 9, 1621-1627 (1999).
    112. J.W. Liu, Z. Zeng, Q.Q. Zheng, H.Q. Lin, “Effective Transfer Integrals for the Jahn-Teller Distortion in LaMnO3”, 60 (18), 12968-12973 (1999).
    113. M.S.G. Baythoun and F.R. Sale, “Production of Strontium-substituted Lanthanum Manganite Perovskite Powder by the Amorphous Citrate Process”, J. Mater. Sci., 17, 2757-2769 (1982).
    114. P.A. Lessing, “Mixed-Cation Oxide Powders via Polymeric Precursors”, Am. Ceram. Soc. Bull., 68 (5), 1002-1007 (1989).
    115. J.R. Smith, J.A. Appelbaum,Theory of Chemisorption, 19 (1980).
    116. D.A. King, D.P. Woodruff, The Chemical Physics of Solid Surface and Heterogeneous Catalysis (1981).
    117. G. Valderrama, M.R. Goldwasser, C.U. Navarro, J.M. Tatiboue¨t, J. Barrault, C. Batiot-Dupeyrat, F. Martı´nez, “Dry reforming of methane over Ni perovskite type oxides”, Catalysis Today, 107–108, 785–791 (2005).

    下載圖示 校內:2009-02-04公開
    校外:2009-02-04公開
    QR CODE