簡易檢索 / 詳目顯示

研究生: 楊聖回
Yang, Sheng-Hwei
論文名稱: 以氮氣霧化高矽鋁合金粉末與碳化矽製備發泡鋁合金性質之研究
The Study of Properties of Foam Fabricated by High Silicon Aluminum Powder and Silicon Carbide
指導教授: 曹紀元
Tsao, Chi-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 140
中文關鍵詞: AC9A高矽壓縮強度阻尼發泡材料吸音
外文關鍵詞: sound absorption, AC9A, high silicon, damping, compressive collapse strength
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬發泡材料以其輕量化、高剛性、高比表面積、與特殊之吸音、吸震、防火效能,在1950年代之後興起大量研究的風潮。
    本研究以高矽鋁合金AC9A進行發泡材料製程與成品性質之研究。將粉末霧化後以半固態緻密化之方法,將AC9A粉末、空隙填充物與添加相在模具內成型。所得之AC9A與添加SiC之複合發泡材在孔洞率約為76 %時,壓縮強度達到3.87~6.48MPa之間。其阻尼特性因為合金內矽含量過多而隨著SiC添加量增加而下降。吸音係數上則隨著SiC添加量增加,吸音峰值之頻率往高頻移動。

    Metal foam attracted much research after 1950’s by its light-weight, high stiffness, high surface to volume ratio, sound absorption ability, energy absorption and flame resistance.
    In this research, we studied in how to fabricate high silicon content AC9A/0~15 vol.% SiC foam and the properties of AC9A/0~15 vol.% SiC foam. AC9A was atomized into powders and compacted with space-holder and SiC in mold at semisolid temperature. Compressive collapse strength of AC9A/0~15 vol.% SiC foam which porosity was about 76% was ranged from 3.87 MPa to 6.48 MPa. The damping capacity of this high Si alloy/composite foam descended with SiC content increasing because of excess Si content. Peak sound absorption coefficient moved to higher frequency when SiC content increasing.

    總目錄 摘要 III Abstract IV 總目錄 V 表目錄 IX 圖目錄 X Chapter 1 序論 1 Chapter 2 文獻回顧 3 2.1 金屬發泡材料的分類 3 2.2 商用發泡金屬材料之製造方式 3 2.2.1 熔體發泡法(Melt gas injection) 3 2.2.2 熔體發泡劑法(Gas-releasing particle decomposition in the melt) 4 2.2.3 半固態發泡劑法 (Gas-releasing particle decomposition in semi-solids) 5 2.2.4 (Solid-gas eutectic solidification, gasars) 5 2.2.5 模型鑄造法 (Casting method) 6 2.2.6 噴覆成型法 (Spray forming method) 6 2.2.7 填充燒結法 (Sintering and dissolution process) 7 2.3 商用發泡金屬材料之機械強度分佈 8 2.4 商用發泡金屬材料之應用與優缺點 8 2.5 粉末堆積理論 9 2.6 粉末霧化理論 10 2.7 半固態粉末緻密化(SSPD, semisolid powder densification method) 12 2.8 發泡材料之機械性質表現 13 2.8.1 彈性變形(Elastic deformation) 13 2.8.2 平緩曲線(Plateau curve) 15 2.8.3 緻密化上升 16 2.9 發泡材料之阻尼表現 17 2.10 發泡材料之吸音表現 21 Chapter 3 實驗方法 24 3.1 鋁合金粉末製造 24 3.1.1 鋁合金粉末選擇 24 3.1.2 鋁合金粉末霧化過程 24 3.2 空隙填充物選擇 25 3.3 強化項之選擇 26 3.4 凝固實驗 26 3.5 半固態粉末緻密化 28 3.6 添加碳化矽顆粒 31 3.7 試片裁切 32 3.8 壓縮試驗 32 3.9 阻尼測試 ( Damping test) 33 3.10 吸音測試 ( Sound absorption test ) 34 3.11 金相製作方案 36 3.12 其他實驗工具 36 Chapter 4 結果與討論 38 4.1 AC9A粉末霧化結果 38 4.2 凝固實驗結果 39 4.3 半固態粉末緻密化 40 4.4 微結構與硬度分析 43 4.5 壓縮試驗 45 4.6 阻尼實驗結果分析 50 4.7 吸音實驗結果分析 53 Chapter 5 結論 57 參考文獻 59 表 64 圖 77 表目錄 Table 1 Ranges for mechanical properties of commercial metallic foams[11]. 64 Table 2 Aluminum foam damping capacity in recent reference. 66 Table 3 AC9A JIS composition and ingot composition list. 67 Table 4 NaCl /AC9A /SiC powder mixing ratio table 68 Table 5 Sample properties for AC9A/ 0 ~ 15 vol. %SiC foam 69 Table 6 Grid and polish method for aluminum foam. 70 Table 7 Gas atomized AC9A alloy powder particle size distribution. 71 Table 8 Results of density fraction for SSPD tests. 71 Table 9 Primary Si and SiC particle size of SSPD and 2 stage densification foams. 72 Table 10 Properties of compression curve of AC9A composite foam. 73 Table 11 Mechanical properties estimated by Eq.(2.8.5) and Eq.(2.8.6). 74 Table 12 Bulk properties of AC9A / 0 ~ 15 vol.% SiC 75 Table 13 Area fraction of extreme strain for Fig. 65 to Fig. 72. 75 Table 14 Parameters for estimating sound absorption coefficient in Lu model 76 圖目錄 Fig. 1 A schematic illustration of the manufacture of an aluminum foam by the melt gas injection method.[69] 77 Fig. 2 Gas-releasing particle decomposition in the melt. (“Alporas“ – pro- cess)[70] 77 Fig. 3 Schematic representation of the gas-releasing particle decomposition in semi-solids[4]. 78 Fig. 4 Pore formation (schematic) on the surface of the native solidification front during unidirectional heat removal: 1-6 consecutive gasar growth steps. 79 Fig. 5 Pore structure of a “gasar”. Surface normal to direction of pores is shown[12]. 80 Fig. 6 Schematic illustration of the fabrication process for Duocel open cell aluminum foams[11]. 81 Fig. 7 Manufacture of metal foam by spray forming[6] 82 Fig. 8 Schematic illustration of sintering and dissolution method for manufacture metallic foam. 83 Fig. 9 Comparison properties of commercial metallic foam between (a) Young’s modulus and density, (b) compressive strength (σc, equals to collapse stress) and density, (c) E0.5/ρ andσc2/3/ρ[11]. 85 Fig. 10 Applications of cellular metals grouped according to the degree of “open - ness” needed and whether the application is more functional or structural.[12] 86 Fig. 11 The reduction in specific volume for mixed large and small spheres, showing the condition of optimal packing where the small spheres fill all voids in the large sphere packing[71]. 87 Fig. 12 Two-dimensional representations of the effects from combination of different sizes; (a) monosized , (b) bimodal with a large difference , (c) trimodal with a large difference, and (d) bimodal with a small difference[71]. 88 Fig. 13 The porosity versus composition for bimodal mixtures of varying particle size ratios, assuming an inherent fraction packing density of 0.50[72]. 88 Fig. 14 The diagram of gas atomization. 89 Fig. 15 The atomized mechanism of gas atomization[14]. 89 Fig. 16 Compressive stress-strain curves for (a) elastomeric foam, (b) elastic-plastic foam and (c) elastic-brittle foam[2]. 90 Fig. 17 SEM micrograph of aluminum foam made using a spherical space-holder carbamide by sintering and dissolution process (porosity = 70%)[21]. 90 Fig. 18 Cell wall fracture of bulking in (a) elastic open-cell foam, (b) plastic bending in plastic open-cell foam and (c) brittle crush in brittle open-cell foam[2]. 91 Fig. 19 The densification strain, εD, plotted against relative density, ρ*/ρs, which ρ*/ρs equals to ρ/ρs in this research[2]. 92 Fig. 20 Time dependence of (a) stress and strain under cyclic loading, and (b) stress vs. strain hysteresis loop under cyclic loading. 92 Fig. 21 Schematic diagram showing (a) amplitude decay during free vibration, and (b) Lorentzian peak: amplitude square vs. frequency. 93 Fig. 22 Sound absorption coefficient of (a) as-received, uncompressed Alporas foam plotted as a function of frequency for selected values of relative foam density at fixed foam thickness 10 mm and (b) foam thickness at fixed relative density 0.09; (c) sound absorption coefficient of 50-mm-thick glass-wool as a function of frequency[31]. 94 Fig. 23 Model metallic foam with (a) idealized cellular structure backed by rigid wall: cross-section area; (b) regular hexagonal array arrangement of circular apertures; (c) unit cell [34]. 95 Fig. 24 Morphology of NaCl particle by stereomicroscope. 96 Fig. 25 Al-Si phase diagram[73] 96 Fig. 26 Simulated solidification line by ThermoCalc software (a) for full scale and (b) for liquid fraction of 25%~0%. 97 Fig. 27 Schematically illustration of solidification test apparatus set-up. 98 Fig. 28 Semi-solid powder densification process when a poly-crystalline prealloyed powder is heated to a temperature between the liquidus and solidus temperature[20]. 98 Fig. 29 Schematic diagram of SSPD test device. 99 Fig. 30 The V-Shape container for powder mixing 99 Fig. 31 Morphology of SiC particle. 100 Fig. 32 Compression test sampling position. 101 Fig. 33 Perkin-Elmer Diamond Dynamic mechanical analyzer device. 101 Fig. 34 Surface morphology of (a) AC9A/ 0%SiC, (b) AC9A/ 5% SiC, (c) AC9A/ 10%SiC and (d)AC9A/ 15%SiC foam. 102 Fig. 35 Apparatus and instrument for (a) ASTM E1050-98[33] and (b) device setting for 2 microphone impedance tube method. 103 Fig. 36 Metal flow rate of Al-Si alloys without atomization effect[49]. 104 Fig. 37 AC9A powder particle size weight percent distribution and accumulated weight percent. 104 Fig. 38 Morphology of nitrogen atomized AC9A alloy powder. 106 Fig. 39 Relationship between time and center sample temperature, center sample temperature cooling rate. 107 Fig. 40 Heat capacity and enthalpy value during AC9A solidification. 108 Fig. 41 Solidification lines of experimental solidification test and ThermoCalc simulated. 109 Fig. 42 UTS crosee-head stroke vs. time curve for (a) SSPD at 530℃ (b) hot compaction at 500℃, and (c) 2 stage densification for SSPD at 550℃ and hot compaction at 500℃. 110 Fig. 43 Density fraction of AC9A foam cell wall by SSPD process and 2 stage densification process. 111 Fig. 44 Schematic relationship of heating time, temperature and pressure during 2 stage densification process. 111 Fig. 45 Metallography by OM for AC9A SSPD foam sample of (a) upper, (b) middle and (c) bottom of the sample. 112 Fig. 46 Metallography of SSPD AC9A/ 0 vol. % SiC foam 113 Fig. 47 Metallography of 2 stage densification of AC9A/ 0 vol. % SiC foam 114 Fig. 48 Metallography of 2 stage densification of AC9A/5 vol. % SiC foam 115 Fig. 49 Metallography of 2 stage densification of AC9A/10 vol. % SiC foam 116 Fig. 50 Metallography of 2 stage densification of AC9A/15 vol. % SiC foam. 117 Fig. 51 Microstructure of AC9A/ 10 vol.% SiC foam through 2 stage densification process by scanning electron microscope and EDAX analysis. 118 Fig. 52 Location of microhardness print for AC9A/ (a)0 and (b) 5 vol.% SiC foam by 2 stage densifiation process. 119 Fig. 53 Location of microhardness print for AC9A/ (a)10 and (b) 15 vol.% SiC foam by 2 stage densifiation process. 120 Fig. 54 Effect of SSPD temperature on microhardness of AC9A foam. 121 Fig. 55 Effect of process difference on microhardness of AC9A foam. 121 Fig. 56 Effect of SiC addition of microhardness on 2 stage densification AC9A/ 0~ 15 vol.% SiC foam. 122 Fig. 57 Compression stress and strain curve for (a) AC9A/ 0 vol.% SiC foam, (b) AC9A/ 5 vol.% SiC foam, (c) AC9A/ 10 vol.% SiC foam, and (d) AC9A/ 15 vol.% SiC foam. 123 Fig. 58 Evolution of AC9A/0%SiC foam compressed collapse. 124 Fig. 59 Evolution of AC9A/5%SiC foam compressed collapse. 125 Fig. 60 Evolution of AC9A/10%SiC foam compressed collapse. 126 Fig. 61 Evolution of AC9A/15%SiC foam compressed collapse. 127 Fig. 62 Plastic collapse region and elastic deformation region of AC9A/ 0 % SiC – 1 foam in compression test at strain = 18% 128 Fig. 63 Microstructure of a foam sample with a spherical space-holder carbamide: (a) cross section vertical to compacting direction; (b) cross section parallel to compacting direction (porosity = 70%)[21]. 129 Fig. 64 Microstructure of a foam sample with a strip-shaped space-holder carbamide: (a) cross section vertical to compacting direction; (b) cross section parallel to compacting direction (porosity = 70%) [21]. 129 Fig. 65 Strain map of collapse evolution by step of 1 % total strain for AC9A/ 0 vol. % SiC-1 foam. 130 Fig. 66 Strain map of collapse evolution by step of 1 % total strain for AC9A/ 0 vol. % SiC-2 foam. 130 Fig. 67 Strain map of collapse evolution by step of 1 % total strain for AC9A/ 5 vol. % SiC-1 foam. 131 Fig. 68 Strain map of collapse evolution by step of 1 % total strain for AC9A/ 5 vol. % SiC-2 foam. 131 Fig. 69 Strain map of collapse evolution by step of 1 % total strain for AC9A/ 10 vol. % SiC-1 foam. 132 Fig. 70 Strain map of collapse evolution by step of 1 % total strain for AC9A/ 10 vol. % SiC-2 foam. 132 Fig. 71 Strain map of collapse evolution by step of 1 % total strain for AC9A/ 15 vol. % SiC-1 foam. 133 Fig. 72 Strain map of collapse evolution by step of 1 % total strain for AC9A/ 15 vol. % SiC-2 foam. 133 Fig. 73 The nominal stress–nominal strain curves of the Al2O3 foam and the Al–Si alloy foam[56]. 134 Fig. 74 Schematic illustrations of deformation mechanism of (a) the Al2O3 foam and (b) the Al–Si alloy foam[56]. 134 Fig. 75 Compressive true stress and true strain curve for AC9A/ 0~15 vol.% SiC bulk 135 Fig. 76 Collapse stress and energy absorption ability for AC9A/SiC foam with variety SiC volume content. 136 Fig. 77 Damping capacity and storage modulus with variable temperature between 25 to 190℃ with damping frequency of (a)10 Hz, (b)5 Hz, (c) 1 Hz and (d) 0.5 Hz. 137 Fig. 78 Relationship between frequency and damping capacity at 25~35℃. 138 Fig. 79 Interconnect channel pore on cell wall of AC9A/ SiC composite foam by 2 stage densification process. 139 Fig. 80 Sound absorption coefficient measured by 2 microphone impedance tube method of AC9A foam with 0 vol. % SiC, 5 vol. % SiC, 10 vol. % SiC, 15 vol. % SiC. 140 Fig. 81 Prediction sound absorption coefficient by Lu model with variety orifice diameter. 140

    參考文獻
    1. United States, Pantent No. 3773098, Method of static mixing to produce metal foam.
    2. L. J. Gibson and M. F. Ashby, Cellular Solids: Strcture and Properties. 1 ed. 1988, Pergamon.
    3. S. Esmaeelzadeh, A. Simchi, and D. Lehmhus, Effect of ceramic particle addition on the foaming behavior, cell structure and mechanical properties of P/M AlSi7 foam. Materials Science and Engineering: A, 2006. 424(1-2): p. 290-299.
    4. J. Banhart, J. Baumeister, and M. Weber, Damping properties of aluminium foams. Materials Science and Engineering A, 1996. 205(1-2): p. 221-228.
    5. V. Shapovalov and L. Boyko, Gasar-A new Class of Porous Materials. Advanced Engineering Materials, 2004. 6(6): p. 407-410.
    6. United States, Pantent No. 5266099, Method for Producing Closed Cell Spherial Porosity in Spray Foamed Metals.
    7. P. Kelley, C. R. Wong, and A. L. Moran, Controlled Porosity in Spray Formed Phosphor Bronze. The Inernational Journal of Powder Metallurgy, 1993. 29(2): p. 161-170.
    8. E. J. Lavernia and Y. Wu, Spray Atomization and Deposition. 1996, New York, Wiley.
    9. Y. H. F. Su, Y. C. Chen, and C. Y. A. Tsao, Workability of spray-formed 7075 Al alloy reinforced with SiCp at elevated temperatures. Materials Science and Engineering A, 2004. 364(1-2): p. 296-304.
    10. Y. Y. Zhao and D. X. Sun, A novel sintering-dissolution process for manufacturing Al foams. Scripta Materialia, 2001. 44(1): p. 105-110.
    11. M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal foams: a design guide. Materials & Design. Vol. 23. 2000, Oxford, UK, Butterworth-Heinemann.
    12. J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 2001. 46(6): p. 559-632.
    13. S. Ozbilen, A. Unal, and T. Sheppard, Influence of liquid metal properties on particle size of inert gas atomized powders. Powder Metallurgy, 1996. 39(1): p. 44-52.
    14. R. M. German, Powder Metallurgy Science. 2nd ed. 1994, Princeton, NJ, Metal Powder Industries Federation.
    15. A. H. Lefebvre, Atomization and Sprays. 1989, New York, Hemisphere Publishing Corporation.
    16. S. Markus, U. Fritsching, and K. Bauckhage, Jet break up of liquid metal in twin fluid atomisation. Materials Science and Engineering A, 2002. 326(1): p. 122-133.
    17. I. E. Anderson and R. L. Terpstra, Progress toward gas atomization processing with increased uniformity and control. Materials Science and Engineering A, 2002. 326(1): p. 101-109.
    18. A. V. Krajnikov, M. Gastel, H. M. Ortner, and V. V. Likutin, Surface chemistry of water atomised aluminium alloy powders. Applied Surface Science, 2002. 191(1-4): p. 26-43.
    19. 國立成功大學 引擎活塞環用自潤性鋁/碳化矽/固體潤滑劑複合材料之半固態製程及其組織與性質間之關係. 1995.
    20. R. M. German, Sintering Theory and Practice. 1996, New York, Wiley.
    21. B. Jiang, N. Q. Zhao, C. S. Shi, and J. J. Li, Processing of open cell aluminum foams with tailored porous morphology. Scripta Materialia, 2005. 53(6): p. 781-785.
    22. B. Jiang, N. Q. Zhao, C. S. Shi, X. W. Du, J. J. Li, and H. C. Man, A novel method for making open cell aluminum foams by powder sintering process. Materials Letters, 2005. 59(26): p. 3333-3336.
    23. C. Kdr, F. Chmelkb, J. Lendvaia, G. Vrsa, and Z. Rajkovits, Acoustic emission of metal foams during tension. Materials Science and Engineering: A, 2007. 462(1-2): p. 316-319.
    24. K. C. Chan and L. S. Xie, Dependency of densification properties on cell topology of metal foams. Scripta Materialia, 2003. 48(8): p. 1147-1152.
    25. J. Zhang, R. J. Perez, C. R. Wong, and E. J. Lavernia, Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites Materials Science and engineering R, 1994. 13(8): p. 325-390.
    26. E. Lavernia, R. Perez, and J. Zhang, Damping behavior of discontinuously reinforced ai alloy metal-matrix composites. Metallurgical and Materials Transactions A, 1995. 26(11): p. 2803-2818.
    27. I. S. Golovin and H. R. Sinning, Damping in some cellular metallic materials. Journal of Alloys and Compounds, 2003. 355(1-2): p. 2-9.
    28. C. S. Liu, Z. G. Zhu, F. S. Han, and J. Banhart, Low-frequency internal friction of foamed Al. Philosophical Magazine A, 1998. 78(6): p. 1329 - 1337.
    29. I. S. Golovin and H. R. Sinning, Internal friction in metallic foams and some related cellular structures. Materials Science and Engineering A, 2004. 370(1-2): p. 504-511.
    30. R. Schaller, Metal matrix composites, a smart choice for high damping materials. Journal of Alloys and Compounds, 2003. 355(1-2): p. 131-135.
    31. T. J. Lu, A. Hess, and M. F. Ashby, Sound absorption in metallic foams. Journal of Applied Physics, 1999. 85(11): p. 7528-7539.
    32. J. F. Allard, Propagation of sound in porous media: modelling sound absobing materials. 1993, Elsevier applied science.
    33. ASTM Standard E1050-98, Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system.
    34. T. J. Lu, F. Chen, and D. He Sound absorption of cellular metals with semiopen cells. The Journal of the Acoustical Society of America, 2000. 108(4): p. 1697-1709.
    35. D.-Y. Maa, Microperforated-Panel Wideband Absorbers. Noise Control Engineering Journal, 1987. 29(3): p. 77-84.
    36. A. Urea, M. D. Escalera, P. Rodrigo, J. L. Baldonedo, and L. Gil, Active coatings for SiC particles to reduce the degradation by liquid aluminium during processing of aluminium matrix composites: study of interfacial reactions. Journal of Microscopy, 2001. 201(2): p. 122-136.
    37. M. Eslamian, J. Rak, and N. Ashgriz, Preparation of aluminum/silicon carbide metal matrix composites using centrifugal atomization. Powder Technology, 2008. 184(1): p. 11-20.
    38. L. Backerud, G. Chai, and J. Tamminen, Solidification characteristics of aluminium alloys : Vol. 2 Foundary alloys. Vol. 1. 1990, Oslo, Norway, AFS/SKANALUMINIUM.
    39. L. Backerud, E. Krol, and J. Tamminen, Solidification characteristics of aluminium alloys : Vol. 1 Wrought alloys. Vol. 1. 1986, Oslo, Norway, AFS/SKANALUMINIUM.
    40. ASTM Standard C423-02, Standard test method for sound absorption and sound absorption coefficients by the reverberation room method.
    41. ASTM Standard C384-98, Strandard test method for impedance and absorption of acoustical materials by the impedance tube method.
    42. J. Y. Chung and D. A. Blaser, Transfer function method of measuring in-duct acoustic properties. I. Theory. Journal of the Acoustical Society of America, 1980. 68(3): p. 907-913.
    43. J. Y. Chung and D. A. Blaser, Transfer function method of measuring in-duct acoustic properties. II. Experiment. Journal of the Acoustical Society of America, 1980. 68(3): p. 914-921.
    44. G. H. Geiger and P. Poirier, Transport phenomena in metallurgy. 1973, Addison-Wesley.
    45. D. L. Zalensas, Aluminum casting technology. 1993, American Foundrymen's Society.
    46. Y. Liu, Z. Liu, S. Guo, Y. Du, B. Huang, J. Huang, S. Chen, and F. Liu, Amorphous and nanocrystalline Al82Ni10Y8 alloy powder prepared by gas atomization. Intermetallics, 2005. 13(3-4): p. 393-398.
    47. R. German, Supersolidus liquid-phase sintering of prealloyed powders. Metallurgical and Materials Transactions A, 1997. 28(7): p. 1553-1567.
    48. W.-J. Kim, J. H. Yeon, and J. C. Lee, Superplastic deformation behavior of spray-deposited hyper-eutectic Al-25Si alloy. Journal of Alloys and Compounds, 2000. 308(1-2): p. 237-243.
    49. 國立成功大學 噴覆成型、半固態電磁攪拌及鑄造高矽鋁合金磨耗性質之研究. 2002.
    50. S. C. Hogg, P. Kapranos, and H. V. Atkinson. Silicon networks in aluminium-high silicon alloys and their effect on semi-solid processing. in Proc. 6th Int. Conf. Semi-Solid Processing of Alloys and Composites. 2000. Turin, Italy: Publ. Edimet Spa.
    51. C. M. Chen, C. C. Yang, and C. G. Chao, Thixocasting of hypereutectic Al-25Si-2.5Cu-1Mg-0.5Mn alloys using densified powder compacts. Materials Science and Engineering A, 2004. 366(1): p. 183-194.
    52. 成功大學 噴覆成型與傳統鑄造AC9A鋁合金之微結構及性質探討. 2000.
    53. Z.-k. Xie, Y. Yamada, and T. Banno, Mechanical properties of microporous aluminum fabricated by powder metallurgy. Japanese Journal of Applied Physics, 2006. 45(32): p. L864–L865.
    54. A. F. Bastawros, H. Bart-Smith, and A. G. Evans, Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. Journal of the Mechanics and Physics of Solids, 2000. 48(2): p. 301-322.
    55. H.-W. Song, Q.-J. He, J.-J. Xie, and A. Tobota, Fracture mechanisms and size effects of brittle metallic foams: In situ compression tests inside SEM. Composites Science and Technology, 2008. 68(12): p. 2441-2450.
    56. Y. Yamada, K. Shimojima, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, and K. Higashi, Compressive deformation behavior of Al2O3 foam. Materials Science and Engineering A, 2000. 277(1-2): p. 213-217.
    57. A. Granato and K. Lcke, Theory of Mechanical Damping Due to Dislocations. Journal of Applied Physics, 1956. 27(6): p. 583-593.
    58. A. Vincent, C. Girard, G. Lormand, X. Zhou, and R. Fougres., Dislocation model for internal damping due to the thermal expansion mismatch between matrix and particles in microheterogeneous materials. Materials Science and Engineering A, 1993. 164: p. 327-331.
    59. R. J. Arsenault and N. Shi, Dislocation generation due to differences between the coefficients of thermal expansion. Materials Science and Engineering, 1986. 81: p. 175-187.
    60. J. Gu, X. Zhang, M. Gu, M. Gu, and X. Wang, Internal friction peak and damping mechanism in high damping 6061Al/SiCp/Gr hybrid metal matrix composite. Journal of Alloys and Compounds, 2004. 372(1-2): p. 304-308.
    61. K. Kondoh and Y. Takeda, Effects of content and particle size of Si crystal on damping property of powder forged Al–Si alloy Powder Metallurgy, 2000. 43(3): p. 275-280.
    62. T. Pritz, Frequency power law of material damping. Applied Acoustics, 2004. 65(11): p. 1027-1036.
    63. T. Pritz, Verification of local Kramers-Kronig relations for complex modulus by means of fractional derivative model. Journal of Sound and Vibration, 1999. 228(5): p. 1145-1165.
    64. J. Gu, X. Zhang, Y. Qiu, and M. Gu, Damping behaviors of magnesium matrix composites reinforced with Cu-coated and uncoated SiC particulates. Composites Science and Technology, 2005. 65(11-12): p. 1736-1742.
    65. H. Zhang and M. Gu, Study on the damping behavior of Al/SiCp composite in thermal cycling. Journal of Materials Science, 2007. 42(15): p. 6260-6266.
    66. J. Wu, C. Li, D. Wang, and M. Gui, Damping and sound absorption properties of particle reinforced Al matrix composite foams. Composites Science and Technology, 2003. 63(3-4): p. 569-574.
    67. Y. J. Yang, F. S. Han, C. E. Wen, and Y. F. Shu, Damping properties of open cell microcellular pure Al foams. Matreials Science and Technology, 2007. 23(11): p. 1336-1340.
    68. F. Han, Z. Zhu, C. Liu, and J. Gao, Damping behavior of foamed aluminum. Metallurgical and Materials Transactions A, 1999. 30(13): p. 771-776.
    69. P. Asholt. Metal Foams and Porous Metal Structures. in Verlag Metall Innovation Technologie MIT. 1999. Bremen.
    70. T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara. Porous and cellular materials for structural applications. in MRS Symp. Proc. 1998. United States: Materials Research Society, Warrendale, PA (United States).
    71. R. M. German, Particle packing characteristics. 1989, Princeton, New Jersey, Metal Powder Inustries Federation.
    72. U.S. Bureau of Mines, North Central Experiment Station The relations between specific volume, voids and size composition in systems of broken solids of mixed sizes. 1928, Minneapolis, MN.
    73. J. L. Murray and A. J. McAlister, Bull. Alloy Phase Diagrams. 1 ed. Vol. 5. 1984.

    下載圖示 校內:2012-01-23公開
    校外:2012-01-23公開
    QR CODE