| 研究生: |
楊聖回 Yang, Sheng-Hwei |
|---|---|
| 論文名稱: |
以氮氣霧化高矽鋁合金粉末與碳化矽製備發泡鋁合金性質之研究 The Study of Properties of Foam Fabricated by High Silicon Aluminum Powder and Silicon Carbide |
| 指導教授: |
曹紀元
Tsao, Chi-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | AC9A 、高矽 、壓縮強度 、阻尼 、發泡材料 、吸音 |
| 外文關鍵詞: | sound absorption, AC9A, high silicon, damping, compressive collapse strength |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬發泡材料以其輕量化、高剛性、高比表面積、與特殊之吸音、吸震、防火效能,在1950年代之後興起大量研究的風潮。
本研究以高矽鋁合金AC9A進行發泡材料製程與成品性質之研究。將粉末霧化後以半固態緻密化之方法,將AC9A粉末、空隙填充物與添加相在模具內成型。所得之AC9A與添加SiC之複合發泡材在孔洞率約為76 %時,壓縮強度達到3.87~6.48MPa之間。其阻尼特性因為合金內矽含量過多而隨著SiC添加量增加而下降。吸音係數上則隨著SiC添加量增加,吸音峰值之頻率往高頻移動。
Metal foam attracted much research after 1950’s by its light-weight, high stiffness, high surface to volume ratio, sound absorption ability, energy absorption and flame resistance.
In this research, we studied in how to fabricate high silicon content AC9A/0~15 vol.% SiC foam and the properties of AC9A/0~15 vol.% SiC foam. AC9A was atomized into powders and compacted with space-holder and SiC in mold at semisolid temperature. Compressive collapse strength of AC9A/0~15 vol.% SiC foam which porosity was about 76% was ranged from 3.87 MPa to 6.48 MPa. The damping capacity of this high Si alloy/composite foam descended with SiC content increasing because of excess Si content. Peak sound absorption coefficient moved to higher frequency when SiC content increasing.
參考文獻
1. United States, Pantent No. 3773098, Method of static mixing to produce metal foam.
2. L. J. Gibson and M. F. Ashby, Cellular Solids: Strcture and Properties. 1 ed. 1988, Pergamon.
3. S. Esmaeelzadeh, A. Simchi, and D. Lehmhus, Effect of ceramic particle addition on the foaming behavior, cell structure and mechanical properties of P/M AlSi7 foam. Materials Science and Engineering: A, 2006. 424(1-2): p. 290-299.
4. J. Banhart, J. Baumeister, and M. Weber, Damping properties of aluminium foams. Materials Science and Engineering A, 1996. 205(1-2): p. 221-228.
5. V. Shapovalov and L. Boyko, Gasar-A new Class of Porous Materials. Advanced Engineering Materials, 2004. 6(6): p. 407-410.
6. United States, Pantent No. 5266099, Method for Producing Closed Cell Spherial Porosity in Spray Foamed Metals.
7. P. Kelley, C. R. Wong, and A. L. Moran, Controlled Porosity in Spray Formed Phosphor Bronze. The Inernational Journal of Powder Metallurgy, 1993. 29(2): p. 161-170.
8. E. J. Lavernia and Y. Wu, Spray Atomization and Deposition. 1996, New York, Wiley.
9. Y. H. F. Su, Y. C. Chen, and C. Y. A. Tsao, Workability of spray-formed 7075 Al alloy reinforced with SiCp at elevated temperatures. Materials Science and Engineering A, 2004. 364(1-2): p. 296-304.
10. Y. Y. Zhao and D. X. Sun, A novel sintering-dissolution process for manufacturing Al foams. Scripta Materialia, 2001. 44(1): p. 105-110.
11. M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal foams: a design guide. Materials & Design. Vol. 23. 2000, Oxford, UK, Butterworth-Heinemann.
12. J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 2001. 46(6): p. 559-632.
13. S. Ozbilen, A. Unal, and T. Sheppard, Influence of liquid metal properties on particle size of inert gas atomized powders. Powder Metallurgy, 1996. 39(1): p. 44-52.
14. R. M. German, Powder Metallurgy Science. 2nd ed. 1994, Princeton, NJ, Metal Powder Industries Federation.
15. A. H. Lefebvre, Atomization and Sprays. 1989, New York, Hemisphere Publishing Corporation.
16. S. Markus, U. Fritsching, and K. Bauckhage, Jet break up of liquid metal in twin fluid atomisation. Materials Science and Engineering A, 2002. 326(1): p. 122-133.
17. I. E. Anderson and R. L. Terpstra, Progress toward gas atomization processing with increased uniformity and control. Materials Science and Engineering A, 2002. 326(1): p. 101-109.
18. A. V. Krajnikov, M. Gastel, H. M. Ortner, and V. V. Likutin, Surface chemistry of water atomised aluminium alloy powders. Applied Surface Science, 2002. 191(1-4): p. 26-43.
19. 國立成功大學 引擎活塞環用自潤性鋁/碳化矽/固體潤滑劑複合材料之半固態製程及其組織與性質間之關係. 1995.
20. R. M. German, Sintering Theory and Practice. 1996, New York, Wiley.
21. B. Jiang, N. Q. Zhao, C. S. Shi, and J. J. Li, Processing of open cell aluminum foams with tailored porous morphology. Scripta Materialia, 2005. 53(6): p. 781-785.
22. B. Jiang, N. Q. Zhao, C. S. Shi, X. W. Du, J. J. Li, and H. C. Man, A novel method for making open cell aluminum foams by powder sintering process. Materials Letters, 2005. 59(26): p. 3333-3336.
23. C. Kdr, F. Chmelkb, J. Lendvaia, G. Vrsa, and Z. Rajkovits, Acoustic emission of metal foams during tension. Materials Science and Engineering: A, 2007. 462(1-2): p. 316-319.
24. K. C. Chan and L. S. Xie, Dependency of densification properties on cell topology of metal foams. Scripta Materialia, 2003. 48(8): p. 1147-1152.
25. J. Zhang, R. J. Perez, C. R. Wong, and E. J. Lavernia, Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites Materials Science and engineering R, 1994. 13(8): p. 325-390.
26. E. Lavernia, R. Perez, and J. Zhang, Damping behavior of discontinuously reinforced ai alloy metal-matrix composites. Metallurgical and Materials Transactions A, 1995. 26(11): p. 2803-2818.
27. I. S. Golovin and H. R. Sinning, Damping in some cellular metallic materials. Journal of Alloys and Compounds, 2003. 355(1-2): p. 2-9.
28. C. S. Liu, Z. G. Zhu, F. S. Han, and J. Banhart, Low-frequency internal friction of foamed Al. Philosophical Magazine A, 1998. 78(6): p. 1329 - 1337.
29. I. S. Golovin and H. R. Sinning, Internal friction in metallic foams and some related cellular structures. Materials Science and Engineering A, 2004. 370(1-2): p. 504-511.
30. R. Schaller, Metal matrix composites, a smart choice for high damping materials. Journal of Alloys and Compounds, 2003. 355(1-2): p. 131-135.
31. T. J. Lu, A. Hess, and M. F. Ashby, Sound absorption in metallic foams. Journal of Applied Physics, 1999. 85(11): p. 7528-7539.
32. J. F. Allard, Propagation of sound in porous media: modelling sound absobing materials. 1993, Elsevier applied science.
33. ASTM Standard E1050-98, Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system.
34. T. J. Lu, F. Chen, and D. He Sound absorption of cellular metals with semiopen cells. The Journal of the Acoustical Society of America, 2000. 108(4): p. 1697-1709.
35. D.-Y. Maa, Microperforated-Panel Wideband Absorbers. Noise Control Engineering Journal, 1987. 29(3): p. 77-84.
36. A. Urea, M. D. Escalera, P. Rodrigo, J. L. Baldonedo, and L. Gil, Active coatings for SiC particles to reduce the degradation by liquid aluminium during processing of aluminium matrix composites: study of interfacial reactions. Journal of Microscopy, 2001. 201(2): p. 122-136.
37. M. Eslamian, J. Rak, and N. Ashgriz, Preparation of aluminum/silicon carbide metal matrix composites using centrifugal atomization. Powder Technology, 2008. 184(1): p. 11-20.
38. L. Backerud, G. Chai, and J. Tamminen, Solidification characteristics of aluminium alloys : Vol. 2 Foundary alloys. Vol. 1. 1990, Oslo, Norway, AFS/SKANALUMINIUM.
39. L. Backerud, E. Krol, and J. Tamminen, Solidification characteristics of aluminium alloys : Vol. 1 Wrought alloys. Vol. 1. 1986, Oslo, Norway, AFS/SKANALUMINIUM.
40. ASTM Standard C423-02, Standard test method for sound absorption and sound absorption coefficients by the reverberation room method.
41. ASTM Standard C384-98, Strandard test method for impedance and absorption of acoustical materials by the impedance tube method.
42. J. Y. Chung and D. A. Blaser, Transfer function method of measuring in-duct acoustic properties. I. Theory. Journal of the Acoustical Society of America, 1980. 68(3): p. 907-913.
43. J. Y. Chung and D. A. Blaser, Transfer function method of measuring in-duct acoustic properties. II. Experiment. Journal of the Acoustical Society of America, 1980. 68(3): p. 914-921.
44. G. H. Geiger and P. Poirier, Transport phenomena in metallurgy. 1973, Addison-Wesley.
45. D. L. Zalensas, Aluminum casting technology. 1993, American Foundrymen's Society.
46. Y. Liu, Z. Liu, S. Guo, Y. Du, B. Huang, J. Huang, S. Chen, and F. Liu, Amorphous and nanocrystalline Al82Ni10Y8 alloy powder prepared by gas atomization. Intermetallics, 2005. 13(3-4): p. 393-398.
47. R. German, Supersolidus liquid-phase sintering of prealloyed powders. Metallurgical and Materials Transactions A, 1997. 28(7): p. 1553-1567.
48. W.-J. Kim, J. H. Yeon, and J. C. Lee, Superplastic deformation behavior of spray-deposited hyper-eutectic Al-25Si alloy. Journal of Alloys and Compounds, 2000. 308(1-2): p. 237-243.
49. 國立成功大學 噴覆成型、半固態電磁攪拌及鑄造高矽鋁合金磨耗性質之研究. 2002.
50. S. C. Hogg, P. Kapranos, and H. V. Atkinson. Silicon networks in aluminium-high silicon alloys and their effect on semi-solid processing. in Proc. 6th Int. Conf. Semi-Solid Processing of Alloys and Composites. 2000. Turin, Italy: Publ. Edimet Spa.
51. C. M. Chen, C. C. Yang, and C. G. Chao, Thixocasting of hypereutectic Al-25Si-2.5Cu-1Mg-0.5Mn alloys using densified powder compacts. Materials Science and Engineering A, 2004. 366(1): p. 183-194.
52. 成功大學 噴覆成型與傳統鑄造AC9A鋁合金之微結構及性質探討. 2000.
53. Z.-k. Xie, Y. Yamada, and T. Banno, Mechanical properties of microporous aluminum fabricated by powder metallurgy. Japanese Journal of Applied Physics, 2006. 45(32): p. L864–L865.
54. A. F. Bastawros, H. Bart-Smith, and A. G. Evans, Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. Journal of the Mechanics and Physics of Solids, 2000. 48(2): p. 301-322.
55. H.-W. Song, Q.-J. He, J.-J. Xie, and A. Tobota, Fracture mechanisms and size effects of brittle metallic foams: In situ compression tests inside SEM. Composites Science and Technology, 2008. 68(12): p. 2441-2450.
56. Y. Yamada, K. Shimojima, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, and K. Higashi, Compressive deformation behavior of Al2O3 foam. Materials Science and Engineering A, 2000. 277(1-2): p. 213-217.
57. A. Granato and K. Lcke, Theory of Mechanical Damping Due to Dislocations. Journal of Applied Physics, 1956. 27(6): p. 583-593.
58. A. Vincent, C. Girard, G. Lormand, X. Zhou, and R. Fougres., Dislocation model for internal damping due to the thermal expansion mismatch between matrix and particles in microheterogeneous materials. Materials Science and Engineering A, 1993. 164: p. 327-331.
59. R. J. Arsenault and N. Shi, Dislocation generation due to differences between the coefficients of thermal expansion. Materials Science and Engineering, 1986. 81: p. 175-187.
60. J. Gu, X. Zhang, M. Gu, M. Gu, and X. Wang, Internal friction peak and damping mechanism in high damping 6061Al/SiCp/Gr hybrid metal matrix composite. Journal of Alloys and Compounds, 2004. 372(1-2): p. 304-308.
61. K. Kondoh and Y. Takeda, Effects of content and particle size of Si crystal on damping property of powder forged Al–Si alloy Powder Metallurgy, 2000. 43(3): p. 275-280.
62. T. Pritz, Frequency power law of material damping. Applied Acoustics, 2004. 65(11): p. 1027-1036.
63. T. Pritz, Verification of local Kramers-Kronig relations for complex modulus by means of fractional derivative model. Journal of Sound and Vibration, 1999. 228(5): p. 1145-1165.
64. J. Gu, X. Zhang, Y. Qiu, and M. Gu, Damping behaviors of magnesium matrix composites reinforced with Cu-coated and uncoated SiC particulates. Composites Science and Technology, 2005. 65(11-12): p. 1736-1742.
65. H. Zhang and M. Gu, Study on the damping behavior of Al/SiCp composite in thermal cycling. Journal of Materials Science, 2007. 42(15): p. 6260-6266.
66. J. Wu, C. Li, D. Wang, and M. Gui, Damping and sound absorption properties of particle reinforced Al matrix composite foams. Composites Science and Technology, 2003. 63(3-4): p. 569-574.
67. Y. J. Yang, F. S. Han, C. E. Wen, and Y. F. Shu, Damping properties of open cell microcellular pure Al foams. Matreials Science and Technology, 2007. 23(11): p. 1336-1340.
68. F. Han, Z. Zhu, C. Liu, and J. Gao, Damping behavior of foamed aluminum. Metallurgical and Materials Transactions A, 1999. 30(13): p. 771-776.
69. P. Asholt. Metal Foams and Porous Metal Structures. in Verlag Metall Innovation Technologie MIT. 1999. Bremen.
70. T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara. Porous and cellular materials for structural applications. in MRS Symp. Proc. 1998. United States: Materials Research Society, Warrendale, PA (United States).
71. R. M. German, Particle packing characteristics. 1989, Princeton, New Jersey, Metal Powder Inustries Federation.
72. U.S. Bureau of Mines, North Central Experiment Station The relations between specific volume, voids and size composition in systems of broken solids of mixed sizes. 1928, Minneapolis, MN.
73. J. L. Murray and A. J. McAlister, Bull. Alloy Phase Diagrams. 1 ed. Vol. 5. 1984.