簡易檢索 / 詳目顯示

研究生: 吳宗道
Wu, Zong-Dao
論文名稱: 台灣市售香菸所排放PAH之成份及基因毒性研究
A Study on the Composition of PAHs and Genotoxicity of the Smoke from Selected Popular Taiwanese Cigarettes
指導教授: 林達昌
Lin, Ta-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 113
中文關鍵詞: 氣相層析質譜儀安姆氏測試多環芳香烴主流菸側流菸
外文關鍵詞: PAHs, mainstream smoke, GC/MS, sidestream smoke, Ames test
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多環芳香烴PAHs來源為有機物的不完全燃燒,環境中有機污染物充斥於各處,PAHs為其評估室內環境品質之重要依據,且部分已被證實對人體具有致癌與致突變性,是環境中重要致癌物質之一。本研究選取台灣地區主要市售六種不同配方、不同焦油含量之捲菸,針對香菸煙霧中之主流菸煙霧和側流菸煙霧中的微粒相污染物,利用氣相層析質譜儀分析其中USEPA優先列管的16種多環芳烴之含量, 最後以安姆氏測試之沙門桿菌(salmonella)變異菌種TA98測試其致突變性的強弱。
    研究結果顯示,六種捲煙中主流菸煙霧之Total PAHs在180~780 ng/cig之間,其中小於4環以下之PAHs佔多數;而側流菸煙霧中之Total PAHs在3980~6790 ng/cig之間,以4環以上之PAHs佔多數。側流菸煙霧中,焦油數較低之薄荷淡菸所排放4環以上的PAHs則無明顯較少。就降低抽吸主流菸煙霧量而言,此舉雖能使主流菸煙霧中之PAHs排放量降低,但對側流菸煙霧而言,Total PAHs之排放量反而升高,反而增加其暴露在高致癌性環境之風險。Ames test之結果顯示,淡菸在主流菸或是側流菸煙霧中基因毒性表現均為焦油數較高之捲菸有較低的致突變性濃度。而在香菸濃縮萃取物致突變菌落數與懸浮微粒均有明顯的劑量反應關係。

    Polycyclic Aromatic Hydrocarbons(PAHs)are formed during incomplete combustion of organic materals. PAHs are the potent authority to estimate the quality of indoor air, and have been proven as genotoxictity to human in environment. This study selected six popular Taiwanese cigarettes with different manufacturing processes and tar levels.
    The concentrations of the sixteen USEPA priority pollutants PAHs in the particulate phase of mainstream and the sideatream cigarette smoke were measured by GC/MS. In addition, the genotoxicity of the particulate phase in cigarette smoke was assessed with the Ames Salmonella Test with strains TA98.
    The results show that total concentrations of 16 PAHs in these six different brands mainstream smoke range between 180 and 780 ng per cigarette. Two- or three-ringed PAHs accounted for 59.10 % of total PAHs, and were found mainly in the particulate phase. Four- to six-ringed PAHs existed mainly in the particulate phase. They accounted for 61.53% of the total PAHs. 16 PAHs in sidestream smoke are between 3990~6790 ng/cig. There was no clear correlation between PAHs and the tar content. While reducing the inhale volume in the mainstream could lower the total PAHs entering the lungs, this practice causes more incomplete combustion of the ciagarette and hance increases the concentration of 16 PAHs in sidestream.
    The Ames Test results show that both sidestream and mainstream smoke from the low-tar cigarettes exhibited lower genotoxicity than did the full-tar cigarettes. The cigarette smoke condensates from all test cigarettes diaplayed significant dose-response relationships for all smoking regimens used in this study. It is clear that both smoking and second-hand smoking imposes potential carcinogenic risk to human health.

    第一章 前言...........................1 1-1 研究動機..............................1 1-2 研究目的..............................2 第二章 文獻回顧.......................3 2-1 香菸燃燒所生成的有害物質..............4 2-2 PAHs的特性...........................13 2-3安姆氏試驗在微量空氣污染物中致突變性之測試...24 第三章 實驗方法與步驟................27 3-1 實驗設計與規劃.......................27 3-2 採樣.................................30 3-3 採樣前之準備.........................31 3-4樣品分析..............................32 3-5 Ames Test 毒性測試...................36 第四章 數據分析之品質保證與品質控制......47 4-1 PAHs空白試驗.........................47 4-2 毒性空白試驗.........................47 4-3 標準品回收率測試.....................50 4-4 PAHs標準品檢量線之建立...............51 4-5 PAHs重複分析.........................52 第五章 結果與討論.......................55 5-1 不同捲菸燃燒之排放係數...............55 5-2 不同捲菸之香菸煙霧中PAHs的含量.......58 5-3 不同吸煙頻率所排放PAHs之含量.........73 5-4 Ames test............................77 第六章 結論與建議........................83 6-1 結論.................................83 6-2 建議.................................84 Reference-參考文獻.......................85 Appendix A 16種PAHs之檢量線(GC/MS)......97 自述....................................113 表目錄 Table 2.1 sidestream/mainstream yield ratio for selected compoments in the smoke of plain cigarettes 5 Table 2.2 Constituents of mainstream cigarette smoke condensate from non-filter cigarette 6 Table 2.3 Major hazardous materials in cigarette smoke 7 Table 2.4 16種PAHs之分子量與毒性 16 Table 2-5 Toxic equivalent factors(TEFs) of PAHs 22 Table 2-6安姆氏試驗各突變菌系及其基因特性 25 Table 3.1 Physical characteristics of six kinds of cigarettes 27 Table 3.2 Different smoking regimens in Mainstream smoke31 Table 4.1程序空白試驗 49 Table 4.2 The recovery (%) of PAHs standard (n=3) 50 Table 4.3 Retention Time in 16 PAHs for 6 sequential injections 53 Table 4.4 Abundance in 16 PAHs for 6 sequential injections 54 Table 5.1 Emission factors of cigarette smoke (n=15) 57 Table 5.2 Emission factors of burning material per microgram 57 Table 5-3 Concentration (ng/cig) and distributions (%) of individual PAHs in sidestream smoke 59 Table 5-4 Toxic equivalency factors of PAHs in sidestream smoke (ng/cig) 62 Table 5-5 Concentration (ng/cig) and distributions (%) of individual PAHs in maintream smoke 64 Table 5-6 Toxic equivalency factors of PAHs in mainstream smoke (ng/cig) 67 Table 5-7 Mainstream and Sidestream smoke yields of PAHs (ng/cig) and Total BaPeq (ng/cig) from 6 cigarette brands 69 Table 5-8 Cigarette smoke yield of PAHs (ng/cig) and Total BaPeq (ng/cig) from 6 cigarette brands 72 Table 5-9 Distribution (%) of PAHs with different rings for each smoking regimen in sidestream smoke 73 Table 5-10 Distribution (%) of PAHs with different rings for each smoking regimen in mainstream smoke 74 Table 5-11 PAHs (ng per cigarette) for each smoking regimen in sidestream and mainstream smoke 75 圖目錄 Fig 2-1 Formation of TSNAs 11 Fig 2-2 Bay-region示意圖 21 Fig 3-1 實驗研究流程圖 29 Fig 3-2 Ames試驗流程圖 36 Fig 5-1 Distribution of 16 PAHs in sidestream smoke 60 Fig 5-2 Distribution of PAHs with different rings in sidestream smoke 60 Fig 5-3 Distribution of 16 PAHs in mainstream smoke 65 Fig 5-4 Distribution of PAHs with different rings in mainstream smoke 65 Fig 5-6 Total, HMW and Carcinogenic PAH levels (ng per cigarette) in mainstream cigarette smoke from different cigarette brands 70 Fig 5-7 Mutagenicity of mainstream smoke condensates (expressed as revertants/per plate per μg TPM) for 6 cigarette brands. Evalution was performed in Bacterial Strain TA98 in the presence of S9 solution (5%) 77 Fig 5-8 Mutagenicity of sidestream smoke condensate (expressed as revertants/per plate per μg TPM) for 6 cigarette brands. Evalution was performed in Bacterial Strain TA98 in the presence of S9 solution (5%) 79 Fig 5-9 Mutagenicity of mainstream smoke condensates (expressed as revertants/per plate per μg TPM) for each smoking regimen. Evalution was performed in Bacterial Strain TA98 in the presence of S9 solution (5%) 80 Fig 5-10 Mutagenicity of sidestream smoke condensates (expressed as revertants/per plate per μg TPM) for each smoking regimen. Evalution was performed in Bacterial Strain TA98 in the presence of S9 solution (5%) 81

    Ames, B. N., 1983. Dietary carcinogens and anticarcinogens oxygen radicals and degenerative diseases Science. 221:1256-1264
    Ames, B.N., Gold, L.S. and Willett, W.C. (1995) The causes and prevention of cancer. Proc. Natl. Acad. Sci. USA, 92,
    5258-5265.
    Ames, B. N., McCann, J., and Yamasaki, E. 1975. Methods for detecting carcinogens and mutagens with the Salmonella/ mammalian microsome mutagenicity test. Mutat. Res. 31:347-364.
    Ames, B.N., Shigenaga, M.K. and Gold, L.S. (1993) DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ. Health Perspec., 101 [Suppl 5], 35-44.
    Baker, R.R., 1987. A review of pyrolysis studies to unravel reaction steps in burning tobacco. J. Anal. Appl. Pyrol. 11, 555–573, and references therein.
    Baker, R.R., Kilburn, K.D., 1976. The kinetics of tobacco pyrolysis. Thermochim. Acta 17, 29–63.
    Baker, R., Proctor, C., ”Where there’s smoke” Chemistry in Britain, v 37, p 38-41, 2001.
    Baker, R.R., Proctor, C.J., 2001b. A smoke odyssey. Smoke and
    Technology Groups’ Meeting, CORESTA.
    Baliga, V., Sharma, R., Miser, D., McGrath, T., Hajaligol, M., 2003. Physical characterization of pyrolyzed tobacco and tobacco components. J. Anal. Appl. Pyrol. 66, 191–215.
    Banyasz, J.L., Li, S., Lyons-Hart, J.L., Shafer, K.H., 2001. Gas evolution and the mechanism of cellulose pyrolysis. J. Anal. Appl. Pyrol. 57, 223–248.
    BjΦrseth, A., “ Handbook of polycyclic aromatic hydrocarbons” Marcel Dekker, Inc., New York, pp.727 ,1993.
    Britt, P.F., Buchanan, A.C., Kidder, M.M., Owens, C.V., 2003. Influence of steroid structure on the pyrolytic formation of polycyclic aromatic hydrocarbons. J. Anal. Appl. Pyrol. 66, 71–95.
    Chao, M. R., Lin, T.C., and Chao, H.R., “ Assessing the influence of methanol-containing additive on biological characteristics of diesel exhaust emissions using microtox and mutatox assays” Sci. Total Environ., v284, pp.61-74, 2002
    Chortyk, O.T., Schlotzhauer, W.S., 1973. Studies on the pyrogenesis of tobacco smoke constituents (a review). Beitr. Tabakforsch. 7 (3), 165–178.
    Counts, M.E., Morton, M.J., La.oon, S.W., Cox, R.H., Lipowicz, P.J., 2005. Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions. Regulatory Toxicolo. Pharmacol. 41 (3), 185–227.
    Desbene, P.L., Essayegh, Desmazieres, M.B., Basselier, J.J., 1991. In: Bridgwater, A.V., Grassi, G. (Eds.), Biomass Pyrolysis Liquids Upgrading and Utilization. Elsevier Applied Science, London.
    Dikun, P.P. et al., 1975. Difference in the mechanisms of low- and hightemperature processes of 3,4-benzpyrene formation during wood pyrolysis. Voprosy Onkologil 21, 101–106.
    Ding, Y.S., Trommel, J.S., Yan, X.J., Ashley, D., Watson, C.H., 2005. Determination of 14 polycyclic aromatic hydrocarbons in mainstream smoke from domestic cigarettes. Environ. Sci. Technol. 39, 471–478.
    Elliott, D.C., 1988. In: Soltes, J., Milne, T.A. (Eds.), Pyrolysis Oils from Biomass: Producing, Analyzing and Upgrading. Symposium Series 376. American Chemical Society, Washington, DC.
    Gil-Av, E., Shabtai, J., 1963. Precursors of carcinogenic hydrocarbons in tobacco smoke. Nature 197, 1065–1066.
    Gilbert, J.A.S., Lindsey, A.J., 1957. The thermal decomposition of some tobacco constituents. Brit. J. Cancer 11, 398–402.
    Grimmer, G., “ Environmental Carcinogens : Polycyclic Aromatic Hydrocarbons.” Environ. Sci. Technol., v24, pp.1581-1585, 1983.
    Grimmer, G., Naujack, K., and Dettbarn, G.,Gaschromatographic
    Determination of Polycyclic Aromatic Hydrocarbons,
    Aza-Arenes, Aromatic amines in the Particle and Vapor Phase of Mainstream and Sidestream Smoke of Cigarette.” Toxicology
    Letter, v35, pp:117-124, 1987.
    Grimmer, von G., Glaser, A., Wilhelm, G., 1966. The formation of benzo[a]pyrene and benzo[e]pyrene during the heating of
    tobacco in correlation to temperature and .ow rate in nitrogen and air atmospheres. Beitr. Tabakforsch. 3 (6), 415–421.
    Gundel, L.A., Mahanama, K.R.R., and Daisey, J.M., ”Semivolatile and Particulate Polycyclic Aromatic Hydrocarbons in Environmental Tobacco Smoke: Cleanup, Speciation, and Emission Factors” Environ. Sci. Technol., v29, pp.1607-1614, 1995.
    Herring, A.M., McKinnon, J.T., Petrick, D.E., Gneshin, K.W., Filley, J.,
    McCloskey, B.D., 2003. Detection of reactive intermediates during laser pyrolysis of cellulose char by molecular beam mass spectroscopy, implications for the formation of polycyclic aromatic hydrocarbons. J. Anal. Appl. Pyrol. 66, 165–182.
    Higman, E.B., Severson, R.F., Arrendale, R.F., Chortyk, O.T., 1977. Simulation of smoking conditions by pyrolysis. J. Agric. Food Chem. 25, 1201–1207.
    Hoffman, D., Wynder, E.L., “ Chemical Constituents and Bioactivity of Tobacco Smoke.” Tobacco a major international health hazard (Zaridze, D. and Peto R., eds.). IARC Scientific, v74, Lyon, France, 1986.
    Hoffman, D., Hoffman, I., Karam, E.B., “ The Less Harmful Cigarette: A controversial issue” Chem.Res.Toxic., v14, n7, 2001.
    Hoffmann, D., Djordjevic, M.V., and Hoffmann, I., ”The Changing Cigarette” Preventive Medicine, v26, pp. 427–434, 1997.
    Holcomb, L.C., “ Indoor air quality and environmental tobacco smoke.Concentration and exposure” Environment International, v19, p9-40, 1993.
    Horne, P.A., Williams, P.T., 1996. Influence of temperature on the products from the .ash pyrolysis of biomass. Fuel 75,
    1051–1059. Kellogg, D.S., Waymack, B.E., 2001. Aromatic hydrocarbon formation from biomass pyrolysis. Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem. 46, 194–197.
    Kalaitzoglou, M.; Samara, C.,”Gas/particle partitioning and yield levels of polycyclic aromatic hydrocarbons and n-alkanes in the mainstream cigarette smoke of commercial cigarette brands”Food and Chemical Toxicology, 2006, pp. 1432-1442
    Kataoka, H., Shindoh, S., and Makita, M., ”Selective Determination of Volatile N-nitrosamines by Derivatization with Diethyl Chlorothiophosphate and Gas Chromatography with Flame Photometric Detection” Journal of Chromatography A,V723, pp-93-99, 1996.
    Lam, J., 1955. 3:4-Benzpyrene as a product of the pyrolysis of aliphatic tobacco hydrocarbons. Acta Path. Microbiol. Scan. 37, 421–428.
    Lam, J., Pedersen, B.O., Thomasen, T., 1985. Pyrolytic disintegration of selected tobacco constituents and pyrosynthetic formation of aromatic hydrocarbons from cleavage products formed by pyrolysis. Beitr. Tabakforsch. 13 (1), 1–9.
    Lavrov, N.V., 1974. Mechanism of the low temperature formation of benzo[a]pyrene. Dokl. Akad. Nauk UzSSR 7, 45–47.
    Li, S., Olegario, R.M., Banyasz, J.L., Shafer, K.H., 2003. Gas chromatography–mass spectrometry analysis of polycyclic
    aromatic hydrocarbons in single puff of cigarette smoke. J. Anal. Appl. Pyrol. 66, 155–165.
    Maron, D. M., Ames, B.N., ”Revise method for Salmonella mutagenicity test.” Mutat. Res., v113, pp.173-215., 1983.
    McGrath, T.E., Brown, A., Bezjak, Y., Haut, S., Chan, W.J., 2005. Low temperature benzo(a)pyrene yields from tobacco components. Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem. 50, 158–160.
    McGrath, T.E., Chan, W.G., Hajaligol, H.R., 2003. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. J. Anal. Appl. Pyrol. 66, 51–70.
    McGrath, T.E., Waymack, B.E., Wooten, J.B., Chan, W.G., Hajaligol,
    M.R. Low temperature oxidation of biomass chars (manuscript in preparation).
    McGrath, T., Sharma, R., Hajaligol, M., 2001. An experimental
    investigation into the formation of polycyclic-aromatic
    hydrocarbons (PAH) from pyrolysis of biomass materials. Fuel
    80, 1787–1797.
    Mizusaki, S., Okamoto, H., Akiyama, A., and Fukuhara, Y., ”Relation Between Chemical Constituents of Tobacco and Mutagenic Activity of Cigarette Smoke Condensate” Mutation Research, v48, pp319-326, 1977.
    Moore, G.E., and Bock, F.G., “ Tar and nicotine levels of American cigarettes” Cancer Inst. Monogr., v28, pp.89–94, 1968.
    Muramatsu, M., Umemura, S., Ohta, K., Okado, T., Netsusokutei
    Pakdel, H., Roy, C., 1991. Hydrocarbon content of liquid products and tar from pyrolysis and gasi.cation of wood. Energy Fuels 5 (3), 427–436.
    National Standard of Canada. “CORESTA draft method. Determination of Benzo[a]pyrene in Total Particulate Matter of Tobacco Smoke”, similar to method CAN/CGSB-176.2 No.1-96, March 1996 of the Canadian General Standards Board
    Nazaroff, W.W., Hung, W-Y, Gadgil, A.J., Sasse, A.G.B.M., “ Predicting regional lung deposition of environmental tobacco smoke particles” Aerosol Science & Technology, v19, pp.243-254, 1993.
    Nazaroff, W.W., Singer, B.C., “ Inhalation of hazardous air pollutants from environmental tobacco smoke in US residences”Proceedings of the Indoor Air 2002 Conference, Monterey, CA, v2, pp.477-482, 2002.
    Nelson, P.R., Kelly, S.P., Conrad, F.W., ”Studies of Environmental Tobacco Smoke Generated by Different Cigarettes” Journal of the Air & Waste Management Association (1995), v48, p336-44, 1998
    Pavia, D.L., Lampman, G.M., Kriz, G.S., 1996. Introduction to
    Spectroscopy, second ed. Harcourt Brace College Publishers,
    New York.
    Rayburn, C.H., Wartman, W.B., Pedersen, P.M., 1958. In.uence of hexane solubles in tobacco on the polycyclic fraction of
    cigarette smoke. Science 128, 1344–1345.
    Sato, S., Seino, Y., Ohka, T., Yahagi, T., Nagao, M., Matsushima, T., and Sugimura, T., ”Mutagenicity of Smoke Condensates from Cigarettes, Cigars and Pipe Tobacco” Cancer Letters, v3, pp1-8, 1977.
    Schur, M.O., and Rickards, K.D., ”Design and Operation of a Multiple Smoking Machine” Tob.Sci., v1, pp.13-20, 1957.
    Sha.zadeh et al., 1985. In: Overend, R.P., Milne, T.A., Mudge, L.K. (Eds.), Fundamentals of Thermochemical Biomass Conversion. Elsevier Applied Science Publishers, London and New York, pp. 207–213 (Chapter 11).
    Sha.zadeh, F., Chin, P.P.S., 1976. Pyrolytic production and decomposition of 1,6-anhydro-3, 4-dideoxy-beta-D-glycero-hex-3-enopyranos-2 ulose. Carbohydrate Res. 46, 149–154.
    Sha.zadeh, F., Sekiguchi, Y., 1983. Development of aromaticity in cellulosic chars. Carbon 21, 511–516.
    Sha.zadeh, F., Sekiguchi, Y., 1994. Oxidation of chars during smoldering combustion of cellulosic materials. Combust. Flame 55, 171–179.
    Sharma, R.K., Hajaligol, M.R., 2003. E.ect of pyrolysis conditions on the Formation of polycyclic aromatic hydrocarbons (PAHs) from polyphenolic compounds. J. Anal. Appl. Pyrol. 66, 123–144.
    Sharma, R.K., Wooten, J.B., Baliga, V.L., Hajaligol, M.R., 2001. Characterization of chars from biomass-derived materials: pectin chars. Fuel 80, 1825–1836.
    Sharma, R.K., Wooten, J.B., Baliga, V.L., Martoglio-Smith, P.A.,
    Hajaligol, M.R., 2002. Characterization of char from the pyrolysis of tobacco. J. Agric. Food Chem. 50, 771–783.
    Sharma, R.K., Chan, W.G., Seeman, J.I., Hajaligol, M.R., 2003. Formation of low molecular weight heterocycles and polycyclic aromatic compounds (PACs) in the pyrolysis of a-amino acids. J. Anal. Appl. Pyrol. 66, 97–123.
    Smith, C.J., Perfetti, T.A., Rumple, M.A., Rodgman, A., Doolittle, D.J.,2000. IARC Group 2A Carcinogens reported in cigarette mainstream smoke. Food Chem. Toxicol. 38 (4), 371–383.
    Thomas E. McGrath *, Jan B. Wooten, W. Geo.rey Chan, Mohammad R. Hajaligol” Formation of polycyclic aromatic hydrocarbons from tobacco: The link between low temperature residual solid (char) and PAH formation” Philip Morris USA, Research Center, 4201 Commerce Road, Richmond, VA 23234, USA
    Tiller, C.O., Gentry, E.M., 1977. Di.erential thermal analysis of tobacco as a function of heating rate. Beitr. Tabakforsch. 9, 7–12.
    Torikaiu, K., Yoshida, S., Takahashi, H., 2004. E.ects of temperature, atmosphere and pH on the generation of smoke compounds during tobacco pyrolysis. Food Chem. Toxicol. 42, 1409–1417.
    Torikaiu, K., Uwano, Y., Nakamori, T., Tarora, W., Takahashi, H., 2005.Study on tobacco components involved in the pyrolytic generation of selected smoke constituents. Food Chem. Toxicol. 43, 559–568.
    Tso, T.C., Rathkamp, G., Ho.man, D., 1973. Chemical studies on tobacco smoke: XXI: correlation and multiple regression among selected cigarette-smoke constituents and leaf characteristics of bright tobacco. Beitr. Tabakforsch. 7, 190–194.
    Waymack, B.E., Kellogg, D.S., 2001. E.ect of additives on aromatic hydrocarbon evolution from biomass char. Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem. 46, 198–200.
    Williams, P.T., Horne, P.A., 1995. Analysis of aromatic hydrocarbons in pyrolytic oil derived from biomass. J. Anal. Appl. Pyrol. 31, 15–37.
    Williams, P.T., Nugranad, N., 2000. Comparison of products from‘the pyrolysis and catalytic pyrolysis of rice husks. Energy 25, 493–513.

    呂佳玲,大氣中半揮發性有機物之混合毒性研究,成功大學環境工程研
    究所碩士論文,2001。
    李俊璋,空氣污染物致突變性測試方法改良之研究,台灣大學環境工
    程研究所,博士論文,1992。
    李文智,多環芳香烴化合物之排放特徵研究III:以抗氧化酵素減少醫
    療廢棄物焚化爐PAHs之排放,國科會計畫,2000。
    林達昌,拜香原料燃煙中多環芳香化合物之探討,國科會計劃報告,
    1996。
    林達昌,螢光菌基因毒性測試與安姆氏試驗運用於大氣中半揮發性有機
    物之致突變性測試比對,國科會計劃報告,2002。
    周忠義,室外空氣中揮發性有機物之毒性探討,成功大學環境工程研究
    所碩士論文,2001。
    許又文,多種污染源多環芳香烴化合物之特性及其曝露評估,中山醫學
    院毒理學研究所,博士論文,1998。
    簡妙凌,香菸萃取物對人類臍靜脈內皮細胞的氧化傷害,中山醫學大學
    營養科學研究所,碩士論文,2002
    涂瑋真,香菸和二手菸暴露與血中環氧乙烷鍵結物濃度之相關研究,高
    雄醫學大學職業安全衛生研究所,碩士論文,2005
    楊宛靜,不同酸鹼值對於香菸致癌物NNK在活體內暴露情形之研究,國
    立陽明大學藥理學研究所,碩士論文,2004
    陳沛蓉,拜香、香菸及稻草燃燒產生微粒之細胞毒性研究,國立陽明大
    學環境衛生研究所,碩士論文,2004
    吳蕙如,利用彗星分析法評估檳榔與香菸中的成分在活體外及活體內的
    交互作用,國立陽明大學藥理學研究所,碩士論文,2004
    沈桓毅,影響辦公室內空氣中各種粒徑微粒濃度之相關因素,中國醫藥
    大學環境醫學研究所,碩士論文,2003
    林君璇,機油和引擎轉速對二行程機車排放物基因毒性之影響,中山醫
    學院化學學系,碩士論文,1997
    陳碧秋,吸煙者及煙霧中大白鼠致肺病變之研究中山醫學院生物化學研
    究所,碩士論文,2001
    楊奇儒,低污染拜香研發:拜香主要成分對拜香燃煙特徵之影響,國立
    成功大學環境工程學系,博士論文,2006
    吳家驊,不同捲煙配方產生之二手毒性比較,國立成功大學環境工程學
    系,碩士論文,2004
    黃漢昇,添加金屬鹽類與抗氧化酵素對於拜香燃燒所排放污染物之影
    響,國立成功大學環境工程學系,碩士論文,2006
    翁志勇,應用安姆氏試驗於空氣中半揮發性有機物之毒性研究,國立成
    功大學環境工程學系,碩士論文,2002,
    郭慧如,利用人體肝腫瘤細胞株建立戴奧辛生物偵測法與應用,國立成
    功大學環境工程學系,碩士論文,2006
    蔡政男,拜香燃煙中PAHs與Nitro-PAHs之基因毒性探討,國立成功大學
    環境工程學系,碩士論文,2005
    劉夢麟,香環燃煙中PAHs成份特徵與急毒性研究,國立成功大學環境
    工程學系,碩士論文,2005

    下載圖示 校內:2010-08-28公開
    校外:2010-08-28公開
    QR CODE