簡易檢索 / 詳目顯示

研究生: 鄭喨瓊
Cheng, Liang-Chiung
論文名稱: 生命週期評估於結合微藻處理豬隻廢水之養豬場
Life cycle assessment of microalgae-based treatment for piggery wastewater in pig farming systems
指導教授: 吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 89
中文關鍵詞: 高效率養藻池微藻廢水處理生命週期評估
外文關鍵詞: high rate algae pond, microalgae, wastewater treatment, life cycle assessment
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 集約養豬場已知對於環境有極大的衝擊,原因在於豬廢水中的氮和磷若沒有經過適當的處理,將會汙染土壤及水源,然而,這些被視為汙染物的物質卻可以是培養微藻極好的營養源。本研究的目標為評估結合微藻處理豬隻廢水之養豬場的環境衝擊,利用質量平衡、能量平衡以及環境衝擊評估的方法,考慮的系統包括利用微藻處理豬隻廢水的高效率養藻池、豬隻廢水與微藻的共消化、厭氧消化產生沼氣之汽電共生以及利用微藻取代豬隻飼料。而厭氧消化後剩餘的沼渣可作為堆肥使用。本研究比較了四種情境所產生的環境衝擊,分別為 (1)傳統情境;(2)厭氧消化;(3)厭氧消化與高效率養藻池;(4)厭氧共消化與高效率養藻池。結果顯示出在所有情境當中,豬飼料生產都為環境衝擊最大的部分,而以整個系統的觀點而言,比起情境1,本研究所提出的系統(情境3與情境4)有效降低ReCiPe方法當中,中端指標大多數的環境衝擊類別,亦分別降低了終端指標40% 和29% 的環境衝擊。雖然情境2產生最多的淨能量,但營養足跡分析顯示出本研究提出之系統能有效提高營養回收率。
    此外,本研究針對飼料、厭氧消化以及高效率養藻池三個面向執行靈敏度分析,結果顯示出飼料取代的比率,為最有效改善環境衝擊之變因。總結而言,結合微藻處理豬隻廢水擁有產生淨能量、提高營養回收率以及降低環境衝擊的優點。

    The pig manure generated from intensive pig farming is known to have significant impacts on the environment. The nitrogen and phosphorus compounds in the piggery wastewater contaminate the soil and bodies of water. However, these nutrients can also become a good source to cultivate microalgae. The present work aimed to evaluate the environmental impact of microalgae-based pig production system using high-rate algal pond (HRAP) through mass balances, energy balances and life cycle assessment. The system involved simultaneous treatment of piggery wastewater using microalgae, co-anaerobic digestion of pig manure and microalgal biomass, biogas cogeneration, and substitution of pig feed. The organic residues after the anaerobic digestion could be applied as fertilizers to farmland and replace mineral fertilizers. The environmental performances of four scenarios including (1) conventional application; (2) anaerobic digestion (AD) only; (3) AD and HRAP; and (4) co-AD and HRAP were compared. As shown in the results, pig feed production contributed to the most environmental impact in all scenarios. For the overall system, the ReCiPe midpoint indicators of proposed systems (scenario 3 and 4) decreased in most of the categories and ReCiPe endpoint indicators were also saved by 40%, and 29% respectively compared to scenario 1. Although scenario 2 generated the most net energy, the nutrient footprint revealed that proposed systems significantly improved the nutrient recovery.
    Additionally, the sensitivity analysis was implemented in three aspects: feedstuff, anaerobic digestion, and HRAP for proposed systems. The results indicated that the feed conversion rate was the main factor in improving environmental performance. In summary, combining microalgae-based wastewater treatment into pig farming system has advantages of net energy production, better nutrient recovery and better performance concerning environmental impacts.

    摘要 I Abstract III 誌謝 V Contents VII List of Table X List of figures XIII Chapter 1 Introduction 1 1.1 Pig supply chain 1 1.1.1 Background 1 1.1.2 Pig production 3 1.1.3 Pig feed 4 1.1.4 Manure management system 5 1.2 Role of microalgae in wastewater treatment 7 1.2.1 Overview of microalgae 7 1.2.2 Microalgae grown in liquid digestate 8 1.2.3 Mechanisms of nitrogen removal 10 1.2.4 Mechanisms of phosphorus removal 11 1.2.5 Wastewater treatment in high rate algae ponds (HRAPs) 11 1.2.6 Background of microalgae as animal feed 13 1.2.7 Feasibility of microalgae as animal feed 13 1.2.8 Feasibility of microalgae as pig feed 15 1.3 Life cycle assessment 16 Chapter 2 Materials and methods 18 2.1 LCA goal and scope 18 2.2 Pig production 24 2.2.1 Information about pig feed 24 2.2.2 Pig housing 25 2.2.3 Characteristics of the raw pig manure 25 2.2.4 Emissions 27 2.3 Waste management and utilization 31 2.3.1 Anaerobic digestion and combined heat and power (CHP) 31 2.3.2 Composting 33 2.4 High rate algae pond 34 2.5 Background process 36 Chapter 3 Life cycle inventory 38 3.1 Scenario 1 40 3.2 Scenario 2 44 3.3 Scenario 3 48 3.4 Scenario 4 54 Chapter 4 Results 60 4.1 Life cycle impact assessment 60 4.1.1 Assessment at midpoint level 60 4.1.2 Assessment at endpoint level 72 4.2 Sensitivity analysis 77 4.3 Comparison of four scenarios 83 Chapter 5 Conclusion 85 Reference 87

    Birkmose, A. (2007). Digested Manure Is a Valuable Fertilizer. Danish Agricultural Advisory Service. National Centre, Denmark.
    Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360-369.
    Clarens, A. F., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental science & technology, 44(5), 1813-1819.
    Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R.-A., & Steyer, J.-P. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource technology, 102(1), 207-214.
    Craggs, R. (2005). Advanced integrated wastewater ponds. Pond treatment technology, 282-310.
    De Meester, S. (2013). Life Cycle Assessment in Biorefineries: Case Studies and Methodological Development. PhD Thesis. University of Gent.
    Durlinger, B., Tyszler, M., Scholten, J., Broekema, R., Blonk, H., & Beatrixstraat, G. (2014). Agri-Footprint; a Life Cycle Inventory database covering food and feed production and processing. Paper presented at the Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector.
    EC, 2006. Prospects for Agricultural Markets and Income in the EU 2006-2013.European Commission, Directorate General for Agriculture.
    FAO. 2018. Environmental performance of pig supply chains: Guidelines for assessment (Version 1). Livestock Environmental Assessment and Performance Partnership. Rome, FAO. 172 pp.
    Gatrell, S., Lum, K., Kim, J., & Lei, X. (2014). Potential of defatted microalgae from the biofuel industry as an ingredient to replace corn and soybean meal in swine and poultry diets. Journal of Animal Science, 92(4), 1306-1314.
    Hamelin, L., Naroznova, I., & Wenzel, H. (2014). Environmental consequences of different carbon alternatives for increased manure-based biogas. Applied Energy, 114, 774-782.
    Hansen, M. N., Sommer, S. G., Hutchings, N., & Sørensen, P. (2008). Emissionsfaktorer til beregning af ammoniakfordampning ved lagring og udbringning af husdyrgødning.
    Hauschild, M. Z., Goedkoop, M., Guinée, J., Heijungs, R., Huijbregts, M., Jolliet, O., . . . Laurent, A. (2013). Identifying best existing practice for characterization modeling in life cycle impact assessment. The International Journal of Life Cycle Assessment, 18(3), 683-697.
    Hintz, H., & Heitman, H. (1967). Sewage-grown algae as a protein supplement for swine. Animal Science, 9(2), 135-140.
    Hjorth, M., Christensen, K. V., Christensen, M. L., & Sommer, S. G. (2011). Solid–liquid separation of animal slurry in theory and practice. In Sustainable Agriculture Volume 2 (pp. 953-986): Springer.
    IPCC, 2006. Guidelines for National Greenhouse Gas Inventories. Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.), Prepared by the National Greenhouse Gas Inventories Programme, Published: IGES, Japan. 〈http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htm〉.
    Jahn, S., Sparborth, D., & Thieme, H. (1995). Investigation of economic efficiency from Chlorella biomass in the piglet production. Paper presented at the 2nd European Workshop Biotechnology of Microalgae, September.
    Kadam, K. L. (2002). Environmental implications of power generation via coal-microalgae cofiring. Energy, 27(10), 905-922.
    Lum, K. K., Kim, J., & Lei, X. G. (2013). Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology, 4(1), 53. doi:10.1186/2049-1891-4-53
    Møller, H. B., Sommer, S. G., & Ahring, B. K. (2002). Separation efficiency and particle size distribution in relation to manure type and storage conditions. Bioresource technology, 85(2), 189-196.
    Møller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Methane productivity of manure, straw and solid fractions of manure. Biomass and bioenergy, 26(5), 485-495.
    Madeira, M. S., Cardoso, C., Lopes, P. A., Coelho, D., Afonso, C., Bandarra, N. M., & Prates, J. A. (2017). Microalgae as feed ingredients for livestock production and meat quality: A review. Livestock Science, 205, 111-121.
    McAuliffe, G. A., Chapman, D. V., & Sage, C. L. (2016). A thematic review of life cycle assessment (LCA) applied to pig production. Environmental Impact Assessment Review, 56, 12-22.
    Nguyen, T. L. T., Hermansen, J. E., & Mogensen, L. (2010). Fossil energy and GHG saving potentials of pig farming in the EU. Energy Policy, 38(5), 2561-2571.
    Noya, I., Villanueva-Rey, P., González-García, S., Fernandez, M., Rodriguez, M., & Moreira, M. (2017). Life Cycle Assessment of pig production: A case study in Galicia. Journal of cleaner production, 142, 4327-4338.
    Park, J., Craggs, R., & Shilton, A. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource technology, 102(1), 35-42.
    Posadas, E., Alcántara, C., García-Encina, P., Gouveia, L., Guieysse, B., Norvill, Z., . . . Koreiviene, J. (2017). Microalgae cultivation in wastewater. In Microalgae-Based Biofuels and Bioproducts (pp. 67-91): Elsevier.
    Ramírez-Arpide, F. R., Demirer, G. N., Gallegos-Vázquez, C., Hernández-Eugenio, G., Santoyo-Cortés, V. H., & Espinosa-Solares, T. (2018). Life cycle assessment of biogas production through anaerobic co-digestion of nopal cladodes and dairy cow manure. Journal of cleaner production, 172, 2313-2322.
    Ras, M., Lardon, L., Bruno, S., Bernet, N., & Steyer, J.-P. (2011). Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresource technology, 102(1), 200-206.
    Rasmussen, J., 2004. Production costs in international pig production—spring 2004 (adapted from Manitoba Swine Seminar January, 2004). Alberta Pork.
    Rogers, J. N., Rosenberg, J. N., Guzman, B. J., Oh, V. H., Mimbela, L. E., Ghassemi, A., . . . Donohue, M. D. (2014). A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal research, 4, 76-88.
    Šimkus, A., Šimkienė, A., Černauskienė, J., Kvietkutė, N., Černauskas, A., Paleckaitis, M., & Kerzienė, S. (2013). The effect of blue algae Spirulina platensis on pig growth performance and carcass and meat quality. Veterinarija ir zootechnika, 61(83), 70-74.
    Sonesson, U., Berlin, J., & Ziegler, F. (2010). Environmental assessment and management in the food industry: Life Cycle Assessment and related approaches: Elsevier.
    Steubing, B., Wernet, G., Reinhard, J., Bauer, C., & Moreno-Ruiz, E. (2016). The ecoinvent database version 3 (part II): analyzing LCA results and comparison to version 2. The International Journal of Life Cycle Assessment, 21(9), 1269-1281.
    Wang, J., Yang, H., & Wang, F. (2014). Mixotrophic cultivation of microalgae for biodiesel production: status and prospects. Applied biochemistry and biotechnology, 172(7), 3307-3329.
    Wang, M., Lee, E., Zhang, Q., & Ergas, S. J. (2016). Anaerobic co-digestion of swine manure and microalgae Chlorella sp.: experimental studies and energy analysis. BioEnergy Research, 9(4), 1204-1215.
    Xia, A., & Murphy, J. D. (2016). Microalgal cultivation in treating liquid digestate from biogas systems. Trends in Biotechnology, 34(4), 264-275.

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE