| 研究生: |
陳文彬 Chen, Wen-Bin |
|---|---|
| 論文名稱: |
碳摻雜異質接面雙載子電晶體暫態效應之研究及研製
無暫態效應之氧化侷限、集極在上異質接面雙載子電晶體 Investigation of Transient Effect in Carbon-doped HBTs and Fabrication of Transient-free Oxide-confined Collector-up HBTs |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 氧化侷限 、暫態效應 、異質接面雙載子電晶體 |
| 外文關鍵詞: | heterojunction bipolar transistor, oxide-confined, transient effect |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來在無線通訊市場的蓬勃發展下,以砷化鎵為基礎之三五族異質接面雙載子電晶體(HBT)的研究也日趨重要並吸引愈來愈多的研究人員投入。其中,使用磷化銦鎵(InGaP)做為射極的材料並利用碳(carbon)來做為基極的摻雜而製成之電晶體,因其擁有較佳的熱穩定性可應用於較嚴苛之環境,同時碳的移動率較小,可有效改善元件的可靠度,目前已成為市場應用之主流產品。然而在磊晶片的磊晶成長過程中,氫原子會大量的進入基極層中並和碳結合。在射極電流注入的情況下,在基極層中的氫會造成元件電流增益的暫態效應(transient effect),並影響到元件長期操作的可靠度。
在本論文中,我們對於碳參雜異質接面雙載子電晶體所發生的暫態效應作一有系統且完整之研究。首先我們對所觀察到的暫態效應現象作一些特性分析,包括其發生的地點及機制、對電流密度、射極尺寸,射極與基極金屬電極之間的距離及量測溫度的相依性。然後我們嘗試使用熱處理的方法來將單層的碳摻雜砷化鎵層中之氫原子移除,並經由磊晶成長條件的調整及熱處理來減少元件電流增益的暫態效益。我們發現在單層的碳摻雜砷化鎵層中,溫度攝氏440度的熱處理已足以有效地移除氫原子,而在集極在上(Collector-up)的結構中,氫原子擴散至外界需經過一基-集同質接面(homojunction),要將氫原子由基極層移除則需要攝氏520度的熱處理,而在一般傳統的射極在上(Emitter-up)的結構中,則需經過一基-射異質接面(heterojunction),因其位能障較大所以需要六、七百度以上的高溫,此溫度已遠遠高於各磊晶層的成長溫度。同時,調整磊晶成長條件及熱處理並不能完全徹底地消除暫態效應,因此我們提出了氧化侷限、集極(oxide-confined C-up)在上之異質接面雙載子電晶體結構。此種集極在上的結構,可在較低的溫度來消除暫態效應,同時經由特殊的氧化侷限設計,可大幅提高電晶體的電流增益。
我們在射極及基極間加入了一層厚度相當薄且鋁含量極高之砷化鋁鎵層(AlGaAs),並經由一簡單的水氧化製程將部分砷化鋁鎵層轉換成氧化鋁(Al-oxide),以阻擋在一般集極在上結構所必須克服之基極漏電流。經由二維數值模擬分析,我們獲得了最佳之元件設計,並應用於實際元件之結構。我們使用簡單的電流-電壓特性量測來驗證氧化結構之電流侷限的效果,並成功製作出第一顆氧化侷限、集極在上之異質接面雙載子電晶體元件,其電流增益為16。我們經由調整氧化製程參數來改善元件特性。我們發現氧化製程的溫度會嚴重地影響元件的電流增益,在氧化溫度為375度時,電流增益可高達81,而氧化溫度升高到475度時,電流增益衰減至小於5。而氧化的溫度也會大幅地影響氧化製程所需的時間,在同樣氧化深度的情況之下,溫度由475度降到375度,氧化時間約需延長為18倍。在元件特性及製程時間的權衡下,我們認為最佳氧化製程溫度為400度,在此氧化條件之下,我們製作出氧化侷限、集極在上之異質接面雙載子電晶體元件,且其擁有低達203Ω/sq.之基極片電阻及高達79之最大電流增益。
在成功地完成氧化結構電晶體的製作之後,我們在元件製程前加入了一個熱處理的步驟,經由520度30分鐘的前製程熱處理,即可輕易地消除元件電增益的暫態效應。因為氫原子已被移除(被氫披覆之碳摻雜重新活化),所以基極片電阻減少至160Ω/sq.而電流增益也因為基極電洞濃度升高而下降至50。我們在本研究論文中所提出之氧化侷限、集極(oxide-confined C-up)在上之異質接面雙載子電晶體結構,除了可完全消除暫態效應外,和與傳統之射極在上電晶體相比較之下,還有較佳的熱穩定性及較佳的頻率響應等優點並可適用於高頻、高電流增益之微波通訊應用。
Due to the rapid growth of the wireless communication markets, GaAs-based heterojunction bipolar transistors (HBTs) are getting more and more attractive. Carbon-doped InGaP/GaAs HBTs are reported to have a superior thermal stability and a high reliability compared with the Be-doped HBTs. Nevertheless, the incorporated hydrogen atoms in the base layer will cause the transient effect of the current gain and affect the HBTs’ long-term reliability as an external electrical stress is applied to the HBTs.
In this dissertation, a systematical and detailed study about the transient effect in carbon-doped HBTs and the methods to eliminate the effect is reported. First, the observed current gain transient effect is basically investigated including the mechanism, the region where the effect takes place, the dependence of the stress current densities, the emitter sizes, the spaces between the base and emitter electrodes and the ambient temperatures on the transient effect. Post-growth thermal annealing and epitaxial growth parameters adjustment are used to remove the hydrogen atoms and eliminate the transient effect. It is found that a thermal annealing conducted at 440 oC is sufficient to remove the incorporated hydrogen atoms in bulk carbon-doped GaAs layers. To remove the hydrogen in the base layer of a C-up HBT structure, the annealing temperature must be elevated to about 520 oC because the hydrogen atoms have to overcome the potential barrier existing at the base-collector homojunction before they can diffuse out to the ambient. For the conventional E-up HBTs, the annealing temperature must be further elevated to above 600 oC to 700 oC because the base-emitter junction has a larger potential barrier. Besides, we found that the transient effect cannot be completely eliminated through the post-growth annealing and the growth parameters optimization without damaging the device performance. Hence we have proposed a GaAs/AlGaAs/InGaP oxide-confined C-up HBT structure in which the transient effect can be eliminated more easily.
In the proposed oxide-confined C-up HBT, a thin and partially oxidized Al0.98Ga0.02As layer is introduced between the base and emitter layer to suppress the extrinsic base-emitter junction leakage current. Two-dimensional numerical simulator named Atlas is used to demonstrate the electrical characteristics of the new HBT and optimize the structure design. We have confirmed the carrier confinement in the oxidized structure with a simple on-wafer current-voltage measurement and successfully fabricated a first oxide-confined C-up HBT with an oxidation temperature of 450 oC and its current gain is 16. It is found that the oxidation temperatures affect the HBT current gains very much. As the oxidation temperatures are increased from 375oC to 475oC, the current gains are decreased from 81 to less than 5. However, the necessary duration of the oxidation process is drastically increased as the oxidation temperature is decreased. A temperature of 400 oC is supposed to be the most suitable temperature in the oxidation process. The current gain and base sheet resistance of the C-up HBT oxidized at 400 oC for 70 min are 79 and 203 ohm/sq., respectively.
Based on the successful fabrication of the high current gain oxide-confined C-up HBT, a pre-process thermal annealing conducted at 520 oC for 30 min is used to eliminate the current gain transient effect. Through the pre-process thermal annealing, the current gain variation can be reduced to less than 1% indicating that the transient effect is totally eliminated. The base sheet resistance of the C-up HBT is reduced to 160 ohm/sq. due to the reactivation of the acceptors in the base layer. The current gain of the C-up HBT is also reduced to 50 due to increase of the base bulk recombination current, accordingly. Except for the absence of the transient effect, superior thermal stability and high frequency performance are also the advantages of the proposed GaAs/AlGaAs/InGaP oxide-confined C-up HBTs over the conventional InGaP/GaAs E-up HBTs.
[1.1] C. C. Meng, S. S. Lu, M. H. Chiang, and H. C. Chen, “DC to 8 GHz 11 dB gain Gilbert micromixer using GaInP/GaAs HBT technology, “ Electron. Lett., vol. 39, pp. 637-638, 2003.
[1.2] J. I. Song, C. Caneau, K. B. Chough and W. P. Hong, “GaInP/GaAs Double Heterojunction Bipolar Transistor with high, fT, fmax and breakdown voltage, “IEEE Electron Device Lett., vol. 15, pp. 10-12, 1994.
[1.3] H. Kroemer, “Theory of a wide-gap emitter for transistors, “ Proc. IRE., pp. 1535-1537, 1957.
[1.4] H. Kroemer, ”Heterostructure bipolar transistors and integrated circuits, “ Proc. IEEE, vol. 70, pp. 13-25, 1982.
[1.5] P. M. Asbeck, M. F. Chang, K. C. Wang, D. L. Miller, G. J. Sullivan, N. H. Sheng, E. Sovero, and J. A. Higgins, “Heterojunction bipolar transistors for microwave and millimeter-wave integrated circuits, “IEEE Trans. Microwave Theory Tech.., vol. 35, pp. 1462-1468, 1987.
[1.6] F. Ali and A. Gupta, eds., HEMTs and HBTs: Devices, Fabrication, and Circuits, Artech House, Norwood, MA, 1991.
[1.7] M. E. Hafizi, L. M. Pawlowicz, L. T. Tran, D. K Umemoto, D. C. Streit, A. K. Oki, M. E. Kim ME, and K. H. Yen, “Reliability analysis of GaAs/AlGaAs HBTs under forward current/temperature stress,” IEEE GaAs IC Symp., pp. 329-332, 1990.
[1.8] O. Nakajima, H. Ito, T. Nittono, and K. Nagata, “Current induced degradation of Be-doped AlGaAs/GaAs HBTs and its suppression by Zn diffusion into extrinsic base layer, “ Int Electron Dev Meeting Dig, pp. 673-676, 1990.
[1.9] F. Ren, T. R. Fullowan, J. Lothian, P. W. Wisk, C. R. Abernathy, R. F. Kopf, A. B. Emerson, S. W. Downey, and S. J. Pearton, “Stability of carbon and beryllium-doped base GaAs/AlGaAs heterojunction bipolar transistors, “ Appl Phys Lett , vol. 59, pp. 3613-3615, 1991.
[1.10] B. T. Cunningham, L. J. Guido, J.E. Baker, J.S. Major, N. Holonyak, Jr., and G.E. Stillman, “Carbon diffusion in undoped, n-type, and p-type GaAs, “ Appl. Phys. Lett., vol. 55, pp. 687-690, 1989.
[1.11] M. Konagai, T. Yamada, T. Akatsuka, K. Saito, E. Tokumitsu, and K. Takahashi, “METALLIC p-TYPE GaAs AND GaAlAs GROWN BY METALORGANIC MOLECULAR BEAM EPITAXY, “ J. Cryst. Growth, vol. 98, pp. 167-173, 1989.
[1.12] P. M. Enquist, “p-type doping limit of carbon in organometallic vapor phase epitaxial growth of GaAs using carbon tetrachloride, “ Appl. Phys. Lett., vol. 57, pp. 2348-2350, 1990.
[1.13] J. Shirakashi, T. Yamada, M. Qi, S. Nozaki, K. Takahashi, E. Tokumitsu and M. Konagai, “P-Type Carbon-Doped InGaAs Grown by Metalorganic Molecular Beam Epitaxy, “ Jpn. J. Appl. Phys., vol. 30, pp. 1609-1611, 1991.
[1.14] T. Takahashi, S. Sasa, A. Kawano, T. Iwai, T. Fujii, “High-reliability InGaP/GaAs HBTs fabricated by self-aligned process, “ Int. Electron Dev Meeting Dig., pp. 191-194, 1994.
[1.15] T. Henderson, V. Ley, T. Kim, T. Moise, and D. Hill, ”Hydrogen-related burn-in in GaAs/AlGaAs HBTs and implications for reliability, ” Proc. IEEE IEDM Conference, pp. 203-206, 1996.
[1.16] P. Kurpas, E. Richter, M. Sato, F. Brunner, D. Gutsche, M. Weyers, “MOVPE growth of GaInP/GaAs hetero-bipolar-transistors using CBr4 as carbon dopant source, “ J. Crystal Growth, vol. 170, pp. 442-446 ,1997.
[1.17] O. Ueda, A. Wawando, T. Takahashi, T. Tomioka, T. Fujii, and S. Sasa, “Current status of reliability of InGaP/GaAs HBTs, “ Solid-State Electron, vol. 41, pp. 1605-1609, 1997.
[1.18] S. A. Stockman, A. W. Hanson, S. M. Lichtenthal, M. T. Fresina, G. E. Hofler, C. K. Hsieh, and G. E. Stillman, “Passivation of Carbon Acceptors during Growth of Carbon-Doped GaAs, InGaAs, and HBTs by MOCVD, “ J. Electron Mater., vol. 21, pp. 1111-1118, 1992.
[1.19] A. J. Tavendale, S. J. Pearton, A. A. Williams, and D. Alexiev, “Injection and drift of a positively charged hydrogen species in p-type GaAs,” Appl. Phys. Lett., vol. 56, pp. 1457-1459, 1990.
[1.20] J. Y. Chi, K. Lu, “A Mechanism for Hydrogen-Related Transient Effect in Carbon-Doped AlGaAs/GaAs Heterostructure Bipolar Transistors, “ IEEE Electron Device Letters, vol. 19, pp. 408-410,1998.
[1.21] M. Borgarino, R. Plana, “Influence of Surface Recombination on the Burn-in Effect in Microwave GaInP/GaAs HBT’s, “ IEEE Trans. Electron Device, vol. 46, pp. 10-16, 1999.
[1.22] A. Rusani, J. Kuchenbecker, M. Borgarino, R. Plana, J. Graffeuil and M. Vanzi, “Investigation of the burn-in effect in microwave GaInP/GaAs HBTs by means of numerical simulations,” Symp. High Performance Electron Devices for Microwave and Optoelectronic Applications, pp. 260- 265, 1999.
[1.23] A. Kawano, K. Imanishi, T. Tomioka, T. Iwai, K. Ishii and Y. Yamaguchi, “Electron injection effect on formation and decomposition of C-H complexes in c-doped GaAs base of H+-implanted InGaP/GaAs HBTs,” Solid State Electronics, vol. 42, pp. 2057-2061, 1998.
[1.24] S. Cassette, S. L. Delage, E. Chartier, D. Floriot, M. A. Poisson, J. C. Garcia, C. Grattepain, J. Mimila Arroyo, R. Plana and S. W. Bland, “ Hydrogen-related effects in GaInP/GaAs HBTs: incorporation, removal and influence on device reliability,” Materials Science and Engineering, vol. 80 pp. 279-283, 2001.
[1.25] Q. J. Hartmann, H. Hwangbo, A. Yung, d. A. Ahmari and M. T. Fresina, “Removal of hydrogen from the base of carbon-doped InGaP/GaAs heterojunction bipolar transistors by ex situ anneaing and the effect on device characteristics, “ Appl. Phys. Lett., vol. 68, pp. 982-984, 1996.
[1.26] W. L. Chen, H. F. Chau, M. Tutt, M. C. Ho, T. S. Kim, and T. Henderson, “High-speed InGaP/GaAs HBTs using a simple collector undercut technique to reduce base-collector capacitance,” IEEE Electron Device Lett., vol.18, pp.355-357, 1997.
[1.27] P. M. Asbeck, D. L. Miller, R. J. Anderson, and F. H. Eisen, “GaAs/AlGaAs heterojunction bipolar transistors with buried oxygen-implanted isolation layers,” IEEE Electron Device Lett., vol. EDL-5, pp. 310–312, 1984.
[1.28] S. Luryi, “How to make an ideal HBT and sell it too,” IEEE Trans. Electron Devices, vol. 41, pp. 2241-2247, Dec. 1994.
[1.29] N. Matine, M. W. Dvorak, J. L. Pelouard, F. Pardo, and C. R. Bolognesi, “InP in HBTs by vertical and lateral wet etching,” 1998 International Conference on Indium Phosphide and Related Materials, pp.195-198, 1998.
[1.30] A. Girardot, A. Henkel, S. L. Delage, M. A. DiForte-Poisson, E. Chartier, D. Floriot, S. Cassette, and P. A. Rolland, “High-performance collector-up InGaP/GaAs heterojunction bipolar transistor with Schottky contact,” Electron. Lett., vol.35, pp.670-672, 1999.
[1.31] K. Mochizuki, T. Tanoue, T. Oka, K. Ouchi, K. Hirata, and T. Nakamura, “High-Speed InGaP/GaAs Transistors with a Sidewall Base Contact Structure,” IEEE Electron Device Lett., vol.18, pp.562-564, 1997.
[1.32] C. Carlsson, H. Martinsson, J. Vukusic, J. Halonen and A. Larsson, “Nonlinear distortion and dynamic range of red (670 nm) oxide confined VCSELs, “ IEEE Photon. Technol. Lett., vol. 13, pp. 358-360, 2001.
[1.33] K. D. Choquette, R. P. Jr. Schneider, K. L. Lear, and K. M. Geib, “Low threshold voltage vertical-cavity lasers fabricated by selective oxidation, “ Electron. Lett., vol. 30. pp. 2043-2044, 1994.
[1.34] R. Jager, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Wigl and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs, “ Electron. Lett., vol. 33. pp. 330-331, 1997.
[2.1] H. M. Manasevit, Appl. Phys. Lett., vol. 116, pp. 1725, 1969.
[2.2] H. M. Manasevit, “THE USE OF METALORGANICS IN THE PREPARATION OF SEMICONDUCTOR MATERIALS: GROWTH ON INSULATING SUBSTRATES, “J. Cryst. Growth, vol. 13, pp. 306-314, 1972.
[2.3] H. M. Manasevit and W. I. Simpson, J. Electrochem. Soc., vol. 12, pp. 156, 1968.
[2.4] S. Perkowitz, Optical Characterization of semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy, (ACADEMIC PRESS, New York, 50, 1993).
[2.5] V. E. Cosslett, “Fifty Years of Instrumental Development of the Electron Microscope,” in advances in Optical and Electron Microscopy, Academic Press, London, 10, 215-267, 1988.
[3.1] J. Y. Chi, K. Lu, “A Mechanism for Hydrogen-Related Transient Effect in Carbon-Doped AlGaAs/GaAs Heterostructure Bipolar Transistors, “ IEEE Electron Device Letters, vol. 19, pp. 408-410,1998.
[3.2] T. Henderson, V. Ley, T. Kim, T. Moise, and D. Hill, ”Hydrogen-related burn-in in GaAs/AlGaAs HBTs and implications for reliability, ” Proc. IEEE IEDM Conference, pp. 203-206, 1996.
[3.3] M. Borgarino, R. Plana, “Influence of Surface Recombination on the Burn-in Effect in Microwave GaInP/GaAs HBT’s, “ IEEE Trans. Electron Device, vol. 46, pp. 10-16, 1999.
[3.4] N. Bovolon, R. Schultheis, J-E. Muller, P. Zwicknagel, E. Zanoni, “A short-Term High-Current-Density Reliability Investigation of AlGaAs/GaAs Heterojunction Bipolar Transistors, “ IEEE Electron Device Letters, vol. 19, pp. 469-471, 1998.
[3.5] W. Liu and J. S. Harris, “Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunct ion bipolar transistors, “ IEEE Trans. Electron Devices, vol. 39, pp. 2726-2732, Dec. 1992.
[3.6] M. Borgarino, J. G. Tartarin, S. Delage, H. Blanck, F. Fantini and J. Graffeuil, ”Correlation between the burn-in effect and the extrinsic base surface quality in C-doped GaInP/GaAs HBTs, “ 1997 Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications, pp. 43, 1997.
[3.7] W. Liu, S. K. Fan, T. Henderson and D. Davito, “Temperature dependence of current gains in GaInP/GaAs and AlGaAs heterojunction bipolar transistors, “IEEE Trans. Electron Devices, vol. 40, pp. 1351-1353, 1993.
[3.8] N. Bovolon, R. Schultheis, J. Muller, P. Zwicknagl, “Analysis of the short-term DC-current gain variation during high current density-low temperature stress of AlGaAs/GaAs heterojunction bipolar transistors, “ IEEE Trans. Electron Device,vol. 47, pp. 274-281, 2000.
[3.9] A. Kawano, K. Imanishi, T. Tomioka, T. Iwai, K. Ishii and Y. Yamaguchi, “Electron injection effect on formation and decomposition of C-H complexes in c-doped GaAs base of H+-implanted InGaP/GaAs HBTs, ” Solid State electronics, vol. 42. pp. 2057-2061, 1998.
[3.10] A. J. Moll, E. E. Haller, J. W. Ager and W. Walukiewicz, “Direct evidence of carbon precipitates in GaAs and InP, “ Appl. Phys. Lett. Vol. 65, pp. 1145-1147, 1994.
[3.11] P. Kurpas, E. Richter, M. Sato, F. Brunner, D.Gutsche and M. Weyers, “MOVPE growth of GaInP/GaAs hetero-bipolar-transistors using CBr4 as carbon doped source,” Journal of Crystal Growth, vol. 170, pp. 442-446, 1997.
[3.12] E. Richter, P. Kurpas, M. Sato, M. Trapp, U. Zeimer, S. Hahle and M. Weyers, “Hydrogen in carbon-doped GaAs base layer of GaInP/GaAs heterojunction bipolar transistors, “ Material Science and Engineering, vol. B44, pp. 337-340, 1997.
[3.13] S. A. Stockman, A. W. Hanson, S. M. Lichtenthal, M. T. Fresina, G. E. Hofler, C. K. Hsieh, and G. E. Stillman, “Passivation of Carbon Acceptors during Growth of Carbon-Doped GaAs, InGaAs, and HBTs by MOCVD, “ J. Electron Mater., vol. 21, pp. 1111-1118, 1992.
[3.14] A. J. Tavendale, S. J. Pearton, A. A. Williams, and D. Alexiev, “Injection and drift of a positively charged hydrogen species in p-type GaAs,” Appl. Phys. Lett., vol. 56, pp. 1457-1459, 1990.
[3.15] H. Ito, Jpn. J. Appl. Phys., vol. 35, pp. 1155, 1996.
[3.16] D. Biswas, N. Debbar, P. Bhattacharya, M. Razeghi, M. Defour and F. Omnes, “Conduction-and valence-band offsets in GaAs/GaInP single quantum wells grown by metalorganic chemical vapor deposition, ” Appl. Phys. Lett., vol. 56, pp. 833-835, 1990.
[3.17] M. A. Haase, M. J. Hafich and G. Y. Robinson, “Internal photoemission and energy-band offsets in GaAs-GaInP p-I-N heterojunction photodiodes, ” Appl. Phys. Lett., vol. 58, pp. 616-618, 1991.
[3.18] J. Chen, J. R. Sites, I. L. Spain, M. J. Hafich and G. Y. Robinson, “Band offset of GaAs/InGaP measured under hydrostatic pressure, ” Appl. Phys. Lett., vol. 58, pp. 744-746, 1991.
[3.19] Y. H. Cho, K. S. Kim, S. W. Ryu, S. K. Kim, B. D. Choe and H. Lim, “Determination of the conduction-band discontinuities of InGaP/InGaAsP by capacitance-voltage analysis,” Appl. Phys. Lett., vol. 66, pp. 1785-1787, 1995
[3.20] N. Watanabe and H. Ito, “ Mechanism of carbon incorporation from carbon tetrabromide in GaAs grown by metalorganic chemical vapor deposition,” Journal of Crystal Growth, vol. 178, pp. 213-219, 1997.
[3.21] K. Tateno, T. Kohama and C. Amano, “Carbon doping and etch effects of CBr4 during metalorganic chemical vapor deposition of GaAs and AlAs, “ Journal of Crystal Growth, vol. 172, pp. 5-12, 1997.
[3.22] M. R. Frei, C. R. Abernathy, T. Y. chiu, T. R. Fullowan, J. R. Lothian, R. K. Montgomery, S. J. Pearton, F. Ren, P. R. Smith, C. W. Snyder, B. Tseng, J. weiner and P. W. Wisk, “Characterization of degradation mechanisms in GaAs/AlGaAs heterojunction bipoar transistors, “ Paper presented at the Device Res. Conf., 1994.
[3.23] S. R. Bahl, L. H. Camnitz, D. Houng and M. Mierzwinski, “Reliability investigation of InGaP/GaAs heterojunction bipolar transistors, “ IEEE Electron Device Lett., vol. 17, pp. 446-448, 1996.
[3.24] F. Ren, C. R. Abernathy, S. N. G. Chu, J. R. Lothian and S. J. Pearton, “The role of hydrogen in current-induced degradation of carbon-doped heterojunction bipolar transistors, “Solid –State Electron., vol. 38, pp. 1137-1141, 1995.
[3.25] T. F. Kuech, E. Veuhoff and B. S. Meyerson, “SILICON DOPING OF gAaS AND AlGaAs USING DISLANE IN METALORGANIC CHEMICAL VAPOR DEPOSITION, “ J. Cryst. Growth, vol. 68, pp. 48-53, 1984
[3.26] T. Mcalluster and F. P. Lossing, J. Phys. Chem., vol. 73, pp. 2996, 1969
[3.27] G. di Stefano, M. Lenzi, A. Margani, A. Mele and N. X. Chieu, J. Photochem, vol. 7, pp. 335, 1977.
[3.28] J. Berkowitz, L. A. Curtiss, S. T. Gibson, J. P. Greene, G. L. Hillhouse and J. A. Pople, “Photoionization mass spectrometric study and ab initio calculations of ionization and bonding in P-H compounds; heats of formation, bond energies, and the 3B1-1A1 seperation in Ph2+, “ J. Chem. Phys., vol. 84, pp. 375-384, 1986.
[3.29] Y. K. Su, W. B. Chen, C. L. Lin, H. C. Wang, S. M. Chen, K. M. Liang, “Elimination of burn-in effect in carbon-doped InGaP/GaAs HBTs by hydrogen lateral diffusion,” Solid State Electronics, vol. 47, pp. 2011-2014, 2003.
[3.30] P. M. Asbeck, D. L. Miller, R. J. Anderson, and F. H. Eisen, “GaAs/AlGaAs heterojunction bipolar transistors with buried oxygen-implanted isolation layers,” IEEE Electron Device Lett., vol. EDL-5, pp. 310–312, 1984.
[4.1] SILVACO International, Santa Clara (CA): ATLAS User’s Manual: Device Simulation Software (2000).
[4.2] A. Girardot, A. Henkel, S. L. Delage, M. A. DiForte-Poisson, E. Chartier, D. Floriot, S. Cassette, and P. A. Rolland, “High-performance collector-up InGaP/GaAs heterojunction bipolar transistor with Schottky contact,” Electron. Lett., vol.35, pp.670-672, 1999.
[4.3] J. Batey, and S. L. Wright, “Energy band alignment in GaAs: (Al, Ga) As heterostructure: The dependence on alloy composition, “ J. Appl. Phys. vol. 59, pp. 200-209, 1986.
[4.4] J. A. Kash, B. Pezeshki, F. Agahi, and N. A. Bojarczuk, “Interface recombination at the selectively wet-oxidized AlAs-GaAs interface , “ IEEE Lasers and Electro-Optics Society Annual Meeting- 8th Annual Meeting Conference Proceedings, vol. 1, pp. 83, 1995.
[5.1] Wen-Bin Chen, Yan-Kuin Su, Juh-Yuh Su, Meng-Chi Wu, Chun-Liang Lin, Hsin-Chuan Wang, Shi-Ming Chen and Hong-Ren Chen, “Fabrication of Oxide-Confined Collector-Up Heterojunction Bipolar Transistors,” Jpn. J. Appl. Phys. Part 2, vol. 42, No. 4B, pp. L 417–L 418, 2003.
[5.2] Y. K. Su, W. B. Chen, C. L. Lin, H. C. Wang, S. M. Chen, J. Y. Su, M. C. Wu, “Fabrication of InGaP/Al0.98Ga0.02As/GaAs Oxide-Confined Collector-Up Heterojunction Bipolar Transistors,” IEEE Electron Device Lett., vol. 24, pp. 619-621, 2003
[5.3] Henderson T., Ley V., Kim T., Moise T., Hill D., ”Hydrogen-related burn-in in GaAs/AlGaAs HBTs and implications for reliability,” Proc. IEEE IEDM Conference, pp. 203-206, 1996.
[5.4] W. Liu, S. K. Fan, T. Henderson and D. Davito, “ Temperature dependence of current gains in GaInP/GaAs and AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 1351-1353, 1993.
[5.5] H. K. Yow, P. A. Houston, C. C. Button, T. W. Lee and J. S. Roberts, “ Heterojunction bipolar transistors in AlGaInP/GaAs grown by metal organic vapor phase epitaxy, “ J. Appl. Phys., vol. 76, pp. 8135-8142, 1994.