| 研究生: |
王永維 Wang, Yong-Wei |
|---|---|
| 論文名稱: |
四苯基乙烯衍生物之螢光感測共聚高分子:合成、靜電
紡絲奈米纖維製備與鐵離子感測之應用 Tetraphenylethylene-based Fluorescent Sensing Copolymers: Synthesis,Electrospun Nanofibers Fabrication, and Application in iron(lll) ion Detection |
| 指導教授: |
吳文中
Wu, Wen-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 四苯基乙烯 、螢光感測器 、鐵離子 、靜電紡織奈米纖維 |
| 外文關鍵詞: | tetraphenylethylene-based, fluorescent sensor, iron ion, electrospun nanofibers |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成出四苯基乙烯衍生物之螢光單體(E)-3-hydroxy-4-(2-((4'-(1,2,2-triphenylvinyl)-[1,1'-biphenyl]-4-yl)methylene)hydrazine-1-carbonyl)phenylmethacrylate (TPE-CHYM),其對於Fe3+具有感測能力,當schiff base上的氮原子與Fe3+作用後,會將電子傳遞到Fe3+而引發光誘導電子轉移(photoinduced electron transfer, PET)的發生,形成螢光ON-OFF的機制,將螢光單體以自由基聚合法合成出一系列不同螢光單體比例之共聚高分子poly(NIPAAm-co-NMA-co-TPE-CHYM) (PNNTPE),此高分子由三種單體所組成,NIPAAm本身具有溫度敏感性,可以使高分子具備收縮與膨潤的特性,而NMA則具有可交聯性,可以使高分子在感測金屬離子時不溶於待測溶液中,最終將高分子經由靜電紡織的技術(electronspinning technique)製備成固態螢光感測器使用。
PNNTPE高分子對於Fe3+感測具有高度的選擇性,在除了Fe2+與Cu2+環境下保有高的辨識性,並從Job’s plot實驗結果得知PNNTPE與Fe3+離子以1:1的比例形成錯合物,且能夠應用在中性以及偏酸性環境下的檢測。此外從螢光滴定結果可以得知高分子在溶液態、纖維態與薄膜態皆展現出高度線性的關係,且溶液態、纖維態以及薄膜態之平均偵測極限可以達到0.62 μM、0.69 μM、0.90 μM,儘管將PNNTPE製備成固態感測器後,感測能力稍微遜色,但固態感測器具有方便攜帶以及簡易操作等特性,且比傳統高分子薄膜態有更好的感測能力。此外纖維態之高分子可利用添加EDTA移除Fe3+離子恢復螢光強度,因此可作為重複利用之感測器。綜合以上,雖然固態纖維高分子感測能力遜於溶液態高分子,然而其具備方便攜帶操作方便以及可重複使用等優點,故仍具有其應用開發價值。
In this study, a tetraphenylethylene-based fluorescent monomer, TPE-CHYM, was successfully synthesized and demonstrated selective sensing capability toward Fe³⁺ ions. Upon coordination of Fe³⁺ with the nitrogen atom of the Schiff base moiety, electron transfer occurs from the ligand to the metal center, triggering a photoinduced electron transfer (PET) process and resulting in a fluorescence "turn-off" response. This monomer was further copolymerized via free radical polymerization with varying feed ratios to yield a series of copolymers, poly(NIPAAm-co-NMA-co-TPE-CHYM) (PNNTPE). The resulting copolymer consists of three functional monomers: NIPAAm, which imparts temperature-responsive swelling and shrinking behavior; NMA, a crosslinkable unit that enhances the structural integrity and prevents dissolution during sensing; and TPE-CHYM, the fluorescent sensing unit. These copolymers were subsequently processed into solid-state fluorescent sensors using the electrospinning technique.
PNNTPE exhibits high selectivity toward Fe³⁺, retaining strong discrimination even in the presence of competing metal ions, with the exception of Cu²⁺. Furthermore, the sensing performance was effective in both neutral and mildly acidic environments. Although the fluorescence response of the polymer decreased slightly in the solid-state form compared to the solution state, the solid-state sensors offer practical advantages such as portability and ease of handling. Furthermore, the polymer in the form of nanofiber showed superior sensing performance compared to traditional polymer films.
In addition, the sensor exhibits reusability, being capable of restoring its fluorescence signal upon the removal of Fe³⁺ ions using EDTA.
(1) Nandhini, T.; Kaleeswaran, P.; Pitchumani, K. A highly selective, sensitive and “turn-on” fluorescent sensor for the paramagnetic Fe3+ ion. Sensors and Actuators B: Chemical 2016, 230, 199-205.
(2) Manoguerra, A. S.; Erdman, A. R.; Booze, L. L.; Christianson, G.; Wax, P. M.; Scharman, E. J.; Woolf, A. D.; Chyka, P. A.; Keyes, D. C.; Olson, K. R. Iron ingestion: an evidence-based consensus guideline for out-of-hospital management. Clinical Toxicology 2005, 43 (6), 553-570.
(3) Schweizer, T.; Kubach, H.; Koch, T. Investigations to characterize the interactions of light radiation, engine operating media and fluorescence tracers for the use of qualitative light-induced fluorescence in engine systems. Automotive and Engine Technology 2021, 6 (3), 275-287.
(4) Kaewnok, N.; Chailek, N.; Petdum, A.; Chanthana, K.; Thummasoontorn, C.; Panchan, W.; Sirirak, J.; Charoenpanich, A.; Sooksimuang, T.; Sanmanee, N. A large-Stokes-shift fluorescence sensor for sensitive detection of iron ions: Rapid monitoring of Fe3+ in water samples, hydroponic fertilizers, and living cells via fluorescence visualization. Journal of Molecular Liquids 2024, 403, 124785.
(5) Roberts, J. D.; Caserio, M. C. Basic Principles of Organic Chemistry. 1965.
(6) Genovese, D.; Cingolani, M.; Rampazzo, E.; Prodi, L.; Zaccheroni, N. Static quenching upon adduct formation: a treatment without shortcuts and approximations. Chemical Society Reviews 2021, 50 (15), 8414-8427.
(7) Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications 2009, (29), 4332-4353.
(8) Jimenez, E. R.; Rodríguez, H. Aggregation-induced emission: a review of promising cyano-functionalized AIEgens. Journal of Materials Science 2020, 55 (4), 1366-1387.
(9) Tigreros, A.; Portilla, J. Recent progress in chemosensors based on pyrazole derivatives. RSC Advances 2020, 10 (33), 19693-19712.
(10) Sharma, S.; Ghosh, K. S. Recent advances (2017–20) in the detection of copper ion by using fluorescence sensors working through transfer of photo-induced electron (PET), excited-state intramolecular proton (ESIPT) and Förster resonance energy (FRET). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 254, 119610.
(11) Arjunan, S.; Gopalan, S.; Selvaraj, S.; Thangaraj, S.; Krishna, K.; Nanjan, B.; Raju, N.; Subramaniam, M. P. A selective fluorescence chemosensor: pyrene motif Schiff base derivative for detection of Cu2+ ions in living cells. Journal of Photochemistry and Photobiology A: Chemistry 2018, 364, 424-432.
(12) Valeur, B.; Leray, I. Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews 2000, 205 (1), 3-40.
(13) Choi, J. K.; Kim, S. H.; Yoon, J.; Lee, K.-H.; Bartsch, R. A.; Kim, J. S. A PCT-based, pyrene-armed calix [4] crown fluoroionophore. The Journal of Organic Chemistry 2006, 71 (21), 8011-8015.
(14) Karuppannan, S.; Chambron, J. C. Supramolecular chemical sensors based on pyrene monomer–excimer dual luminescence. Chemistry–An Asian Journal 2011, 6 (4), 964-984.
(15) Ma, L.-J.; Liu, Y.-F.; Wu, Y. A tryptophan-containing fluoroionophore sensor with high sensitivity to and selectivity for lead ion in water. Chemical Communications 2006, (25), 2702-2704.
(16) Shen, Y.; Nie, C.; Wei, Y.; Zheng, Z.; Xu, Z.-L.; Xiang, P. FRET-based innovative assays for precise detection of the residual heavy metals in food and agriculture-related matrices. Coordination Chemistry Reviews 2022, 469, 214676.
(17) Bozkurt, E.; Arık, M.; Onganer, Y. A novel system for Fe3+ ion detection based on fluorescence resonance energy transfer. Sensors and Actuators B: Chemical 2015, 221, 136-147.
(18) Han, T.; Ye, S.; Cheng, M.; Zhang, Y.; Dong, L. Highly stable fluorescent probe based on mesoporous silica coated quantum dots for sensitive and selective detection of Cd2+. Nanotechnology 2021, 32 (50), 505508.
(19) La, D. D.; Bhosale, S. V.; Jones, L. A.; Bhosale, S. V. Tetraphenylethylene-based AIE-active probes for sensing applications. ACS Applied Materials & Interfaces 2017, 10 (15), 12189-12216.
(20) Wei, T.-T.; Zhang, J.; Mao, G.-J.; Zhang, X.-B.; Ran, Z.-J.; Tan, W.; Yu, R. An efficient fluorescence turn-on probe for Al3+ based on aggregation-induced emission. Analytical Methods 2013, 5 (16), 3909-3914.
(21) Xu, H.; Wang, H.; Zhou, S.; Xiao, L.; Yan, Y.; Yuan, Q. A protocol of self-assembled monolayers of fluorescent block molecules for trace Zn (II) sensing: Structures and mechanisms. RSC Advances 2015, 5 (128), 106061-106067.
(22) Ruan, Z.; Li, C.; Li, J.-R.; Qin, J.; Li, Z. A relay strategy for the mercury (II) chemodosimeter with ultra-sensitivity as test strips. Scientific Reports 2015, 5 (1), 15987.
(23) Chen, X.; Shen, X. Y.; Guan, E.; Liu, Y.; Qin, A.; Sun, J. Z.; Tang, B. Z. A pyridinyl-functionalized tetraphenylethylene fluorogen for specific sensing of trivalent cations. Chemical Communications 2013, 49 (15), 1503-1505.
(24) Pasparakis, G.; Tsitsilianis, C. LCST polymers: Thermoresponsive nanostructured assemblies towards bioapplications. Polymer 2020, 211, 123146.
(25) Chuang, W.-J.; Chiu, W.-Y.; Tai, H.-J. Temperature-dependent conductive composites: Poly (N-isopropylacrylamide-co-N-methylol acrylamide) and carbon black composite films. Journal of Materials Chemistry 2012, 22 (38), 20311-20318.
(26) Zaarour, B.; Zhu, L.; Jin, X. A review on the secondary surface morphology of electrospun nanofibers: formation mechanisms, characterizations, and applications. ChemistrySelect 2020, 5 (4), 1335-1348.
(27) Chen, J.; Yu, Z.; Li, C.; Lv, Y.; Hong, S.; Hu, P.; Liu, Y. Review of the principles, devices, parameters, and applications for centrifugal electrospinning. Macromolecular Materials and Engineering 2022, 307 (8), 2200057.
(28) Liao, C.-C.; Hou, S.-S.; Wang, C.-C.; Chen, C.-Y. Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: the effects of molecular motion and conformation in solutions. Polymer 2010, 51 (13), 2887-2896.
(29) Müller, F.; Jokisch, S.; Bargel, H.; Scheibel, T. Centrifugal electrospinning enables the production of meshes of ultrathin polymer fibers. ACS Applied Polymer Materials 2020, 2 (11), 4360-4367.
(30) Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43 (16), 4403-4412.
(31) Son, W. K.; Youk, J. H.; Lee, T. S.; Park, W. H. Electrospinning of ultrafine cellulose acetate fibers: Studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. Journal of Polymer Science Part B: Polymer Physics 2004, 42 (1), 5-11.
(32) Jacobs, V.; Anandjiwala, R. D.; Maaza, M. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. Journal of Applied Polymer Science 2010, 115 (5), 3130-3136.
(33) Acik, G.; Cansoy, C. E.; Kamaci, M. Effect of flow rate on wetting and optical properties of electrospun poly (vinyl acetate) micro-fibers. Colloid and Polymer Science 2019, 297, 77-83.
(34) Fakhri, M.; Khan, J.; Mariatti, M.; Hamid, Z. A. A.; Marsilla, K.; Vilay, V.; Todo, M. The influence of working distance, stirring and electrospinning time on fibre forming properties of electrospun polylactic acid for facemask layer application. Materials Today: Proceedings 2022, 66, 2742-2746.
(35) Yang, G.-Z.; Li, H.-P.; Yang, J.-H.; Wan, J.; Yu, D.-G. Influence of working temperature on the formation of electrospun polymer nanofibers. Nanoscale Research Letters 2017, 12, 1-10.
(36) Yan, S.; Yu, Y.; Ma, R.; Fang, J. The formation of ultrafine polyamide 6 nanofiber membranes with needleless electrospinning for air filtration. Polymers for Advanced Technologies 2019, 30 (7), 1635-1643.
(37) Jiang, R.; Liu, M.; Huang, H.; Mao, L.; Huang, Q.; Wen, Y.; Cao, Q.-y.; Tian, J.; Zhang, X.; Wei, Y. Facile fabrication of organic dyed polymer nanoparticles with aggregation-induced emission using an ultrasound-assisted multicomponent reaction and their biological imaging. Journal of Colloid and Interface Science 2018, 519, 137-144.
(38) Yin, P.; Niu, Q.; Liu, J.; Wei, T.; Hu, T.; Li, T.; Qin, X.; Chen, J. A new AIEE-active carbazole based colorimetric/fluorimetric chemosensor for ultra-rapid and nano-level determination of Hg2+ and Al3+ in food/environmental samples and living cells. Sensors and Actuators B: Chemical 2021, 331, 129418.
(39) Bayindir, S.; Akar, S. Synthesis of Phenol-Hydrazide-Appended Tetraphenylethenes as Novel On–Off–On Cascade Sensors of Copper and Glutathione. ACS Omega 2024, 9 (24), 26257-26266.
校內:2027-08-22公開