簡易檢索 / 詳目顯示

研究生: 蘇榆芳
Su, Yu-Fang
論文名稱: 探討與RPA2有交互作用之蛋白的研究
Study on the Proteins that Interact with RPA2
指導教授: 張敏政
Chang, Ming-Chung
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 78
中文關鍵詞: 交互作用蛋白
外文關鍵詞: Interact, RPA2
相關次數: 點閱:54下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • RPA (replication protein A)為一單股DNA結合蛋白,普遍存於真核細胞之細胞核中,主要是由RPA1、RPA2及RPA3三個次體組成一穩定複合物。目前所知,RPA對於單股及受損之DNA有高度親和性,且其功能牽涉到DNA複製、修補以及基因重組等生理反應。此外,RPA2的磷酸化也扮演著重要的角色。當細胞進入S phase時,RPA2會有磷酸化的現象產生,直到M phase的晚期才去磷酸;而當細胞遭受到紫外光(UV)、游離輻射(IR)的照射,或是施以DNA複製抑制劑而對細胞造成損傷時,RPA2被觀察到有高度磷酸化現象的發生。而磷酸化態的RPA2可能會將DNA損傷的訊息傳遞並連結至S-phase check point機制,使p53從RPA-p53複合物中釋出。由以上這些現象可看出RPA2及其磷酸化現象在DNA代謝過程或是調控細胞週期上扮演著重要的角色。然而直至目前為止RPA2的生理角色仍未清楚的被了解。因此,為了探討RPA2在細胞中及其在生理上可能角色之扮演,本實驗室試著利用Yeast-two hybrid之方法,企圖找出其他會與RPA2有交互結合作用之蛋白,希望從而更能了解RPA2磷酸化與其他結合蛋白之交互作用的生理意義。篩選之結果成功地從人類乳腺細胞基因庫中篩選出二個與RPA2有較為顯著交互作用之蛋白: Tyro 3 (又稱為Sky、Rse、Tif、Dtk、Brk、Etk2) 和4E-BP3 (eIF4E-binding protein 3)。研究指出,Tyro 3是屬於Axl/Sky/Mer RTK (Receptor Tyrosin kinase)家族之一員,已知在細胞生長、分化及代謝上扮演著相當重要的調控角色。因此本實驗利用Yeast-two Hybrid以及免疫沈澱之方法,二者皆證實了RPA2及Tyro 3之間確實存在著直接交互結合作用。此結果或許意味著RPA2參與到Tyro 3所調控之細胞生長、分化和代謝之生理反應中;又或者是Tyro 3亦存在著其他的生理意義。而在另一個利用Yeast-two Hybrid方法被篩選出疑似與RPA2有交互作用之蛋白4E-BP3,已知屬於4E-BPs家族之一員,其磷酸化的型態會與eIF4G競爭eIF4E的結合位置,使得cap-mRNA無法帶入43S pre-initiation complex,進而抑制轉譯的速率,對於細胞生長有負向調節的功能。我們初步的實驗證實RPA2與4E-BP3兩者有交互作用,顯示4E-BP3亦可能在細胞中參與調控RPA2的功能。因此,本實驗利用免疫沈澱法再次證實了RPA2和4E-BP3之間的交互結合作用。而為了更進一步縮小範圍了解其間的交互作用之位置,因此將RPA2之三大特殊功能區分別截短(deletion)並構築於帶有T7啟動子(promoter)之載體上,由TnT quick coupled transcription/translation system於in vitro情形下表現出蛋白質,接著經由免疫沈澱法分析,結果發現4E-BP3會與全長以及截斷C端(170-270胺基酸)之RPA2有交互結合作用。因此推論RPA2和4E-BP3之交互結合位置應位於RPA2之N端磷酸化區和中段DNA結合區之間。此外,實驗室之前發現利用細胞受曝曬高劑量(50 J/m2)紫外光之刺激模式,會造成原本在正常情況下具有交互結合作用之RPA2、4E-BP3複合體分開。為更進一步探討可能影響其結合作用消失之因素為何?因此將經過紫外光曝曬處理過後之HEK293細胞,依不同時間點收集細胞萃取液,並進一步將細胞質和細胞核之蛋白分離,經由西方點漬法(Western Blot)分析RPA2之蛋白變化量,發現在照射後二個小時內RPA2蛋白沒有明顯的變化。綜合言之,本論文的實驗結可証明RPA2和Tyro 3、4E-BP3皆有交互作用。而RPA2和4E-BP3之結合作用在細胞受紫外光照射後即會消失,而此現象並非是RPA2蛋白被裂解(degradation)或移轉(translocation)造成的。進一步探討其結合區域,結果發現是位於RPA2胺基酸1-170之內,這中間包含了RPA2磷酸化區及DNA結合區。

    RPA (replication protein A), a ubiquitous eukaryotic single-stranded DNA binding protein complex, which is composed of RPA1, RPA2 and RPA3 subunits. The heterotrimeric complex has a high affinity for single stranded and damage DNA, and plays essential roles in DNA replication, repair and recombination. Furthermore, RPA function is mediated by its phosphorylation and protein-protein interactions. RPA2 is phosphorylated in a cell cycle-dependent manner and in response to DNA damage, such as UV or ionizing irradiation, and treated with replication inhibitors. The phosphorylation of RPA2 may elicit the signaling transduction during DNA damage and links to the S-phase checkpoint mechanism. The purpose of our study is to identify the RPA2 binding proteins and elucidate the biochemical and functional characteristics of RPA2 phosphorylation. In our previous studies, two RPA2-binding proteins, Tyro 3 (also named Rse, Sky, Brt, Tif, Dtk, Etk-2) and 4E-BP3 (eIF4E-binding protein 3) have been selected from the cDNA library of human mammalian cell line by a Yeast-two Hybrid method. Tyro 3, a member of Axl/Sky/Mer RTKs (Receptor Tyrosin kinase) family, plays an important role in cell growth, differentiation, and metabolism. In this study, RPA2 interacts with Tyro 3 were demonstrated by the Yeast-two Hybrid and immunoprecipitation methods, indicating that RPA2 may participate in Tyro 3-dependent cell growth, differentiation or metabolism. Another putative RPA2-binding protein, 4E-BP3, is a member of 4E-BPs family. It is a 14.6 kDa protein that is able to compete with eIF4G for binding to eIF4E (eukaryotic initiation factor 4E), thereby stifling eIF4F complex-directed translation. In this study, RPA2 interacts with 4E-BP3 was confirmed by immunoprecipitation assay. The truncated form of RPA2 lacking N-terminal, middle domain, or C-terminal was construced and expressed by TnT quick coupled transcription/translation kit. The result of immunoprecipitation assay indicated that 4E-BP3 interacted with full-length RPA2 and with RPA2 lacking c-terminal domain (amino acid 170-270) suggesting that the binding area of RPA2 with 4E-BP3 located within phosphorylation domain and DNA-binding domain of RPA2. Our previous studies found that RPA2-4E-BP3 complex may dissociate in the UV-stimulated cells. In the study, cell lysates of HEK293 were prepared at different times after UV irradiation with 50J/m2, separated into nuclear and cytoplasmic fractions, and the amounts of RPA2 protein in cellular fractions were determined by western blot analysis. The results of this experiment revealed that protein levels of RPA2 in both nuclear and cytoplasmic fractions remain constent after UV irradiation. In summary, results of this study demonstrated RPA2 interacted with 4E-BP3 or Tyro 3. After UV damage, the interaction of RPA2 and 4E-BP3 disappeared. This situation is not aroused from the change of protein level of RPA2. In addition, this study also showed that the binding region of RPA2 with 4E-BP3 located within phosphorylation domain and DNA-binding domain of RPA2.

    中文摘要…………………………………………………………………………I 英文摘要…………………………………………………………………………..III 致謝………………………………………………………………...………….……V 目錄………………………………………………………………………………..VI 圖目錄…………………………………………………………..…….……….....VIII 縮寫檢索表……………………………………………………………………......IX 緒論…………………………………………………………………….…………...1 材料與方法……………………………………………………….……………….10 一、使用之菌株、載體及培養基…………………………….………………10 二、大腸桿菌之形質轉換 (Transformation)…………………..………….…11 三、製備少量質體DNA……………………….…………………….………12 四、酵母菌之共同形質轉換(Yeast co-transformation)……….…...………13 五、酵母菌雙雜交系統(Yeast-two hybrid system)………….……………14 六、�-galactosidase filter assay…………………………………………….15 七、細胞解凍………………………………………………………………..16 八、細胞繼代培養 (附著型細胞adherent cell)…………………………17 九、細胞數目測定…………………………………………………………..18 十、細胞保存………………………………………………………………..18 十一、轉染(transfection)質體至細胞中…………………………………19 十二、蛋白質濃度的定量 (Bradford, 1976) ………………………………19 十三、SDS-PAGE之蛋白質分子量分析……………………………….….20 十四、西方點漬法…………………………………………………………..21 十五、共同免疫沉澱 (co-immunoprecipitation) …………………………23 十六、免疫染色法…………………………………………………………..24 十七、UV照射………………………………………………………………25 十八、RPA2全長及其截短片段和Tyro 3細胞內片段重組蛋白之構築...25 十九、試管內( in vitro )表現放射線標定之重組蛋白 (TnT Quick Coupled Transcription/Translation System)………………..…………….30 二十、以試管表現重組蛋白為來源之免疫沈澱法………………………31 結果…………………………………………………………………………..……33 討論…………………………………………………………………….…….……41 圖表……………………………………………………………………..……44 參考文獻……..………………………………………………………………….59 自述………………………………………………………………………….……..66

    Abramova NA, Russell J, Botchan M, Li R. Interaction between replication protein A and p53 is disrupted after UV damage in a DNA repair-dependent manner. Proc. Natl. Acad. Sci. USA 94, 7186-7191, 1997
    Adachi Y, Laemmli UK. Identification of nuclear pre-replication centers poised for DNA synthesis in Xenopus egg extracts: immunolocalization study of replication protein. A. J. Cell Biol. 119, 1-15, 1992
    Blackwell LJ, Borowiec JA, Masrangelo IA. Single-stranded DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. Mol. Cell. Biol. 16, 4798-4806, 1996
    Bochkarev A, Bochkareva E, Frappier L, Edwards AM. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J. 18, 4498-4504, 1999
    Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC Jr, Abraham RT. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J. 15, 5256-5267, 1996
    Brush GS, Anderson CW, Kelly TJ. The DNA-activated protein kinase is required for the phosphorylation of replication protein A during simian virus 40 DNA replication. Proc. Natl. Acad. Sci. USA 91, 12520-12524, 1994
    Cardoso MC, Leonhardt H, Nadal-Ginard B. Reversal of terminal differentiation and control of DNA replication: cyclin A and Cdk2 specifically localize at subnuclear sites of DNA replication. Cell 74, 979-792, 1993
    Carty MP, Levine AS, Dixon K. HeLa cell single-stranded DNA-binding protein increases the accuracy of DNA synthesis by DNA polymerase alpha in vitro. Mutat. Res. 274, 29-43, 1992
    Crosier KE, Crosier PS. New insights into the control of cell growth; the role of the AxI family. Pathology 29, 131-5, 1997
    De Benedetti A, Harris AL. eIF4E expression in tumors: its possible role in progression of malignancies. Int. J. Biochem. Cell Biol. 31, 59-72, 1999
    Din S, Brill SJ, Fairman MP, Stillman B. Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev. 4, 968-977, 1990
    Dutta A, Stillman B. Cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J. 11, 2189-2199, 1992
    Fleurent M, Gingras AC, Sonenberg N, Meloche S. Angiotensin II stimulates phosphorylation of the translational repressor 4E-binding protein 1 by a mitogen-activated protein kinase-independent mechanism. J. Biol. Chem. 272, 4006-4012, 1997
    Funakoshi H, Yonemasu T, Nakano T, Matumoto K, Nakamura T. Identification of Gas6, a putative ligand for Sky and Axl receptor tyrosine kinases, as a novel neurotrophic factor for hippocampal neurons. J. Neurosc.i Res. 68, 150-60, 2002
    Georgaki A, Hubscher U. DNA unwinding by replication protein A is a property of the 70 kDa subunit and is facilitated by phosphorylation of the 32 kDa subunit. Nucleic Acids Res. 21, 3659-3665, 1993
    Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13, 1422-1437, 1999
    Gingras AC. Raught B. Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913-963, 1999
    Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA, Lawrence JC Jr. cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc. Natl. Acad. Sci. USA 92, 7222-7226, 1995
    Godowski PJ, Mark MR, Chen J, Sadick MD, Raab H, Hammonds RG. Reevaluation of the roles of protein S and Gas6 as ligands for the receptor tyrosine kinase Rse/Tyro 3. Cell 82, 355-8, 1995
    Gomes XV, Wold MS. Structural analysis of human replication protein A. Mapping functional domains of the 70 kDa subunit. J. Biol. Chem. 270, 4534-4543, 1995
    Gomes XV, Henricksen LA, Wold MS. Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA. Biochemistry 35, 5586-5595, 1996
    Haghighat A, Mader S, Pause A, Sonenberg N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 14, 5701-5709, 1995
    Hahm B, Kim YK, Kim JH, Kim TY, Hahm B SK. Heterogeneous nuclear ribonucleoprotein L interacts with the 3' border of the internal ribosomal entry site of hepatitis C virus. J. Virol. 72, 8782-8788, 1998
    Heesom KJ, Gampel A, Mellor H, Denton RM. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr. Biol. 11, 1374-1397, 2001
    Henricksen LA, Wold MS. Replication protein A mutants lacking phosphorylation sites for p34cdc2 kinase support DNA replication. J. Biol. Chem. 269, 1121-1132, 1994
    Henricksen LA, Carter T, Dutta A, Wold MS. Phosphorylation of human replication protein A by the DNA dependent protein kinase DNA dependent protein kinase is involved in the modulation of DNA replication. Nucleic Acids Res. 24, 433-440, 1996
    Kerekatte V, Smiley K, Hu B, Smith A, Gelder F, De Benedetti A. The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int. J. Cancer 64, 27-31, 1995
    Kenny MK, Lee SH, Hurwitz J. Multiple functions of human single-stranded-DNA binding protein in simian virus 40 DNA replication: single-strand stabilization and stimulation of DNA polymerases alpha and delta. Proc. Natl. Acad. Sci. USA 86, 9757-9761, 1989
    Kirchgessner CU, Patil CK, Evans JW, Cuomo CA, Fried LM, Carter T, Oettinger MA, Brown JM. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 267, 1178-1183, 1995
    Kleijn M, Scheper GC, Wilson ML, Tee AR, Proud CG. Localisation and regulation of the eIF4E-binding protein 4E-BP3. FEBS Lett. 532, 319-23, 2002
    Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115, 887-903, 1991
    Lan Z, Wu H, Li W, Wu S, Lu L, Xu M, Dai W. Transforming activity of receptor tyrosine kinase tyro3 is mediated, at least in part, by the PI3 kinase-signaling pathway. Blood 95, 633-8, 2000
    Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic translation initiation factor subunit that binds to mRNA cap. Nature 345, 544-547, 1990
    Lee SH, Kim DK, Drissi R. Human xeroderma pigmentosum group A protein interacts with human replication protein A and inhibits DNA replication. J. Biol. Chem. 270, 12801-12807, 1995
    Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY, Bourguignon L, Hung MC. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat. Cell. Biol. 3, 802-8, 2001
    Lin TA, Kong X, Saltiel AR, Blackshear PJ, Lawrence JC Jr. Control of PHAS-I by insulin in 3T3-L1 adipocytes synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J. Biol. Chem. 270, 18531-18538, 1995
    Lin YL, Chen C, Keshav KF, Winchester E, Dutta A. Dissection of functional domains of the human DNA replication protein complex replication protein A. J. Biol. Chem. 271, 17190-17198, 1996
    Liu VF, Weaver DT. The ionizing radiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cell. Mol. Cell. Biol. 13, 7222-7231, 1993
    Lu Q, Gore M, Zhang Q, Camenisch T, Boast S, Casagranda F, Lai C, Skinner MK, Klein R, Matsushima GK, Earp HS, Goff SP, Lemke G. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398, 723-8, 1999
    Mader S, Lee H, Pause A, Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990-4997, 1995
    Maher PA. Nuclear Translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J. Cell. Biol. 134, 529-36, 1996
    Mark MR, Scadden DT, Wang Z, Gu Q, Goddard A, Godowski PJ. rse, a novel receptor-type tyrosine kinase with homology to Axl/Ufo, is expressed at high levels in the brain. J. Biol. Chem. 269, 10720-10728, 1994
    Mer G, Bochkarev A, Gupta R, Bochkareva E, Frappier L, Ingles CJ, Edwards AM, Chazin WJ. Structural Basis for the Recognition of DNA Repair Protein UNG2, XPA, and RAD52 by Replication Factor RPA. Cell 103, 449-456, 2000
    Miyagi Y, Sugiyama A, Asai A, Okazaki T, Kuchino Y, Kerr SJ. Elevated levels of eukaryotic translation initiation factor eIF-4E, mRNA in a broad spectrum of transformed cell lines. Cancer Lett 91, 247-252, 1995
    Sonenberg N, Gingras AC. The mRNA 5’-cap-binding protein eIF4E and control of cell growth. Curr. Opin. Cell. Biol. 10, 268-275, 1998
    Ni CY, Murphy MP, Golde TE, Carpenter G. gamma -Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294, 2179-81, 2001
    Niu H, Erdjument-Bromage H, Pan ZQ, Lee SH, Tempst P, Hurwitz J. Mapping of amino acid residues in the p34 subunit of human single-stranded DNA-binding protein phosphorylated by DNA-dependent protein kinase and Cdc2 kinase in vitro. J. Biol. Chem. 272: 12634-12641, 1997
    Ohashi, K., Mizuno, K., Kuma, K., Miyata, T., and Nakamura, T. Cloning of the cDNA for a novel receptor tyrosine kinase, Sky, predominantly expressed in brain. Oncogene 9, 699-705, 1994
    Pan ZQ, Amin AA, Gibbs E, Niu H, Hurwitz J. Phosphorylation of p34 subunit of human single-stranded-DNA-binding protein in cyclin A-activated G1 extracts is catalyzed by cdk-cyclin A complex and DNA-dependent-protein kinase. Proc. Natl. Acad. Sci. USA 91, 8343-8347, 1994
    Pain VM. Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem. 236, 747-771, 1996
    Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, Sonenberg N. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 371, 762-767, 1994
    Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325, 1988
    Pfuetzner RA, Bochkarev A, Frappier L, Edwards AM. Replication protein A. Characterization and crystallization of the DNA binding domain. J. Biol. Chem. 272, 430-434, 1997
    Philipova D, Mullen JR, Maniar HS, Lu J, Gu C, Brill SJ. A hierarchy of SSB protomers in replication protein A. Genes Dev. 10, 2222-2233, 1996
    Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N. 4E-BP3, a new member of the Eukaryotic initation factor 4E-binding protein family. J. Biol. Chem. 273, 14002-14007, 1998
    Rousseau D, Gingras AC, Pause A, Sonenberg N. The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 13, 2415-2420, 1996
    Seo YS, Lee SH, Hurwitz J. Isolation of a DNA helicase from HeLa cells requiring the multisubunit human single-stranded DNA-binding protein for activity. J. Biol Chem. 266, 13161-13170, 1991
    Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA: DNA-PK complexes. EMBO J. 18, 1397-1406, 1999
    Sukhodolets KE, Hickman AB, Agarwal SK, Sukhodolets MV, Obungu VH, Novotny EA, Crabtree JS, Chandrasekharappa SC, Collins FS, Spiegel AM, Burns AL, Marx SJ. The 32-Kilodalton Subunit of Replication Protein A Interacts with Menin, the Product of the MEN1 Tumor Suppressor Gene. Mol. Cell. Biol. 23, 493-509, 2003
    Taylor IC, Roy S, Yaswen P, Stampfer MR, Varmus HE. Mouse mammary tumors express elevated levels of RNA encoding the murine homology of SKY, a putative receptor tyrosine kinase. J. Biol. Chem. 270, 6872-80, 1995
    Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet. 9, 138-141, 1993
    von Manteuffel SR, Gingras AC, Ming XF, Sonenberg N, Thomas G. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc. Natl. Acad. Sci. USA 93, 4076-4080, 1996
    Wang H, Guan J, Wang H, Perrault AR, Wang Y, Iliakis G. Replication Protein A2 Phosphorylation after DNA Damage by the Coordinated Action of Ataxia Telangiectasia-Mutated and DNA-dependent Protein Kinase. Cancer Res. 61, 8554-8563, 2001
    Wobbe CR, Weissbach L, Borowiec JA, Dean FB, Murakami Y, Bullock P, Hurwitz J. Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc. Natl. Acad. Sci. USA 84, 1834-1838, 1987
    Wold MS. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61-92, 1997
    陳嘉玲, 2002. 探討RPA2與4E-BP3的交互作用及其可能的生理角色。國立成功大學醫學院生物化學研究所碩士論文。

    下載圖示 校內:2004-08-05公開
    校外:2004-08-05公開
    QR CODE