| 研究生: |
蔡孟璇 Tsai, Meng-Hsuan |
|---|---|
| 論文名稱: |
運用半監督式學習法於小樣本分類 A Semi-supervised Learning for Small Data Set Classifications |
| 指導教授: |
利德江
Li, Der-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 半監督式學習 、Possibilistic CMeans 、可能性隸屬函數 、分群驗證指標 |
| 外文關鍵詞: | semi-supervised learning, Possibilistic CMeans, possibilistic membership degree, cluster validation |
| 相關次數: | 點閱:147 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著資訊傳遞速度的增加,消費者的需求變動頻繁致使許多企業追求較短的產品生命週期;因此,產生了資料量不足的問題而不易對產品進行統計分析。半監督式學習利用少量已標記資料所提供的知識來分析大量的未標記資料。本研究提出的一項半監督式學習法利用已標記資料做為種子來產生初始群心進行未標記資料的分群稱為Seeded-PCM法。研究中使用可能性隸屬函數來代表一個資料點隸屬於某一群集的程度,並藉由可能性隸屬函數的優是找出資料中的離群值將以排除藉以提升結果的可性度。在分群之後,再使用分群驗證指標來決定一個群集是否需要再進行切割。本研究提供一項新的半監督式學習法,並且證明了此方法的分類正確率高於其他半監督式學習法及一般常用的分類方法。本方法不需要設定初始的分群群數,利用分群驗證指標將可以決定最適合的切割狀況。
As the speed of information transferring becomes faster than before, the demand of consumers changes frequently such that many companies are forced to pursue a short product life cycle to enhance competitiveness. However, data collected in the pilot run stage are usually small and raise the so-called problem of insufficient data analysis. Semi-supervised learning provides a way to analyze unlabeled data using the knowledge provided by few labeled data. To further improve this method, before partitioning the unlabeled data, this research provides a method, Seeded-Possibilistic CMeans, to generate initial cluster centroids using the labeled data as seeds, where possibilistic membership degree is employed to represent the possibility level of a data point that belongs to a cluster. By the advantage of possibilistic membership degree, we can find outliers and make the result more reliable by removing it. Furthermore, this research applies cluster validation to decide whether a cluster needs to be divided or not.
This new developed way of semi-supervised learning can improve the classification accuracy than other semi-supervised learning methods with a benefit of no need to pre-determine a number of clusters before clustering.
Basu, S., Banerjee, A., & Mooney, R. J. (2002). Semi-supervised Clustering by Seeding. Paper presented at the Proceedings of the Nineteenth International Conference on Machine Learning.
Basu, S., Bilenko, M., & Mooney, R. J. (2004). A probabilistic framework for semi-supervised clustering. Paper presented at the Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining.
Bezdek, J. (1974). Numerical taxonomy with fuzzy sets. Journal of Mathematical Biology, 1(1), 57-71.
Bezdek, J. C. (1974). Cluster Validity with Fuzzy Sets. Journal of Cybernetics, 3(3), 58-73.
Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum.
Bilenko, M., Basu, S., & Mooney, R. J. (2004). Integrating constraints and metric learning in semi-supervised clustering. Paper presented at the Proceedings of the twenty-first international conference on Machine learning.
Blake, L., & Merz, C. J. (1998). UCI repository of machine learning databases. , Dept. Inform. Comput. Sci., California, Irvine.
Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. Paper presented at the Proceedings of the eleventh annual conference on Computational learning theory.
Chou, C. H., Su, M. C., & Lai, E. (2004). A new cluster validity measure and its application to image compression. Pattern Analysis & Applications, 7(2), 205-220.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1-38.
Denœux, T. (2008). A k-Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory. In R. Yager & L. Liu (Eds.), Classic Works of the Dempster-Shafer Theory of Belief Functions (Vol. 219, pp. 737-760): Springer Berlin / Heidelberg.
Fix, E., & Hodges, J. L., Jr. (1989). Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. International Statistical Review / Revue Internationale de Statistique, 57(3), 238-247.
Frigui, H. (2006). MembershipMap: Data Transformation Based on Granulation and Fuzzy Membership Aggregation. Fuzzy Systems, IEEE Transactions on, 14(6), 885-896.
Ghahramani, Z., & Jordan, M. I. (1994). Supervised learning from incomplete data via an EM approach (1994). Advances in Neural Information Processing Systems 6, 120-127.
Grira, N., Crucianu, M., & Boujemaa, N. (2004). Unsupervised and Semi-supervised Clustering:a Brief Survey. A Review of Machine Learning Techniques for Processing Multimedia Content.
Huang, C., & Moraga, C. (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35(2), 137-161.
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666.
Kim, D.W., Lee, K. H., & Lee, D. (2004). On cluster validity index for estimation of the optimal number of fuzzy clusters. Pattern Recognition, 37(10), 2009-2025.
Kim, M., & Ramakrishna, R. S. (2005). New indices for cluster validity assessment. Pattern Recognition Letters, 26(15), 2353-2363.
Kotsiantis, S., Zaharakis, I., & Pintelas, P. (2006). Machine learning: a review of classification and combining techniques. Artificial Intelligence Review, 26(3), 159-190.
Krishnapuram, R., & Keller, J. M. (1993). A possibilistic approach to clustering. Fuzzy Systems, IEEE Transactions on, 1(2), 98-110.
Krishnapuram, R., & Keller, J. M. (1996). The possibilistic C-means algorithm: insights and recommendations. Fuzzy Systems, IEEE Transactions on, 4(3), 385-393.
Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. Paper presented at the Tenth National Conference on Artificial Intelligence Menlo Park,CA: AAAI Press.
Li, D.C., Chen, L.S., & Lin, Y.S. (2003). Using Functional Virtual Population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research, 41(17), 4011-4024.
Li, D.C., & Lin, Y.S. (2006). Using virtual sample generation to build up management knowledge in the early manufacturing stages. European Journal of Operational Research, 175(1), 413-434.
Li, D.C., Wu, C.S., Tsai, T.I., & Lina, Y.S. (2007). Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge. Computers & Operations Research, 34(4), 966-982.
Li, D.C., Wu, C., & Chang, F. M. (2005). Using data-fuzzification technology in small data set learning to improve FMS scheduling accuracy. The International Journal of Advanced Manufacturing Technology, 27(3), 321-328.
Li, D. C., & Liu, C. W. (2010). A class possibility based kernel to increase classification accuracy for small data sets using support vector machines. Expert Systems with Applications, 37(4), 3104-3110.
Li, D. C., & Liu, C. W. (2011). Extending attribute information for small data set classification. IEEE Transactions on Knowledge and Data Engineering.(Preprint).
Murthy, S. K. (1998). Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4), 345-389.
Neal, R. M., & Hinton, G. E. (1999). A view of the EM algorithm that justifies incremental, sparse, and other variants Learning in graphical models (pp. 355-368): MIT Press.
Niyogi, P., Girosi, F., & Poggio, T. (1998). Incorporating prior information in machine learning by creating virtual examples. Proceedings of the IEEE, 86(11), 2196-2209.
Tan, P. N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining: Pearson Addison Wesley.
Wagstaff, K., Cardie, C., Rogers, S., & Schr, S. (2001). Constrained K-means Clustering with Background Knowledge. Paper presented at the Proceedings of the Eighteenth International Conference on Machine Learning.
Wang, F., Li, T., & Zhang, C. (2008). Semi-Supervised Clustering via Matrix Factorization. Paper presented at the SDM.
Wu, K.L., Yang, M.-S., & Hsieh, J.-N. (2009). Robust cluster validity indexes. Pattern Recognition, 42(11), 2541-2550.
Yang, M.-S., & Wu, K.-L. (2006). Unsupervised possibilistic clustering. Pattern Recognition, 39(1), 5-21.
Žalik, K. R., & Žalik, B. (2011). Validity index for clusters of different sizes and densities. Pattern Recognition Letters, 32(2), 221-234.
校內:2017-07-03公開