簡易檢索 / 詳目顯示

研究生: 盧信智
Lu, Hsin-Chih
論文名稱: 空心管共振效應對哈特曼超聲波霧化器之性能研究
Effects of Hollow Pipe Resonator on Hartman Ultrasonic Atomizer
指導教授: 王覺寬
Wang, Mu-Rung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 106
中文關鍵詞: 噴霧平均粒徑霧化器超音波
外文關鍵詞: ultrasonic, SMD, atomizer
相關次數: 點閱:145下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究探討氣助式超音波霧化器在空心管共振腔及對衝噴流共振腔中之噴霧特性。研究所採用之霧化器是以哈特曼聲音產生器產生超音波之高頻率震動,利用此震動的能量來對液體產生霧化作用,噴霧粒度以INSITEC粒徑分析儀量測。由流場觀測結果顯示,在適當的共振腔高度下,則噴霧錐角小於180 o,不會形成逆噴之噴霧,為穩定之操作條件,反之,若共振腔高度太小,則會形成逆噴之噴霧,落入不穩定之操作範圍。這是因為反向氣體動量與正向氣體及液體之正向動量產生不平衡,故會產生噴霧逆噴之不穩定情形。研究結果亦顯示,空心管型共振腔能改善噴霧平均粒徑,若共振腔再加上對衝噴流更能進一步改善其霧化特性,包括降低噴霧平均粒徑、Dv90、Dv10、噴霧粒度比(SR)。例如,CK-5型氣助式超音波霧化器配合A型共振腔,在共振腔高度為4mm,水壓5kg/cm2,氣壓6 kg/cm2下,所量測得之噴霧平均粒徑為27.78μm,而加了空心管型共振腔之後其噴霧平均粒徑則降為22.16μm,故其霧化效果顯著提昇。若再加上對衝噴流,其噴霧平均粒徑更進一步降到20.4μm。比較以上空心管型共振腔及對衝噴流共振腔所產生噴霧之Dv90、Dv10、噴霧粒度比(SR)顯示,對衝噴流共振腔噴霧之Dv90=51.03μm比空心管型共振腔噴霧之Dv90=64.9μm來的細小、對衝噴流共振腔噴霧之Dv10=10.73μm,比空心管型共振腔噴霧之Dv10=11.34μm更細,對衝噴流共振腔的噴霧粒度比為4.75,比空心管型共振腔的噴霧粒度比5.72還小,代表粒子範圍更窄。另外,研究結果亦顯示對衝噴流亦為氣液質量比之控制機制,若氣液質量比從0.84增加至1.09,其噴霧錐角會變小,霧化效果則大幅提昇,即其噴霧平均粒徑從20.40μm降低至13.65μm,Dv10及Dv90也分別降為8.14μm到32.87μm,噴霧粒度比則進一步降至4.04,故知對衝噴流具有效控制噴霧細微化之作用,對粒度分布範圍之窄化亦具有顯著之效果,
    故為甚佳之霧化控制機構。

    Abstract

    Atomization performance of a Hartmann ultrasonic atomizer with hollow pipe resonator and impinging jet resonator is investigated in this research program. The high frequency vibration in the resonator provides energy for atomization of the liquid spray. The particle size of the spray is measured by INSITEC particle analyzer. Observation of the flow field shows that the spray cone angles are less than 180° with the proper resonator height. However, the spray cone angles may be larger than 180° when the resonator height is too low, a condition called the unstable operation. The unstable operation happens when the momentum of the reversal flow in the resonator can not be balanced by the momentum of the incoming air and liquid flow. SMD of the spray is found to be improved by hollow pipe resonator. Further improvement of the spray characteristics is also found in the case of impinging jet resonator. As a typical example, the mean particle size is SMD=27.78μm for CK-5 type ultrasonic atomizer with A-type resonator under h=4mm、Pw=5kg/cm2 and Pa=6kg/cm2 ,while SMD=22.16μm if the hollow pipe resonator is used. If the impinging jet resonator is used, particle size is further reduced to SMD=20.4μm. Comparison of Dv90、Dv10 and size ratio(SR) for the case of hollow pipe resonator and the impinging jet resonator shows the same trend. Dv90=51.03μm and 64.9μm for the impinging jet resonator and hollow pipe resonator, respectively. Dv10=10.73μm and 11.34μm for the impinging jet resonator and hollow pipe resonator, respectively. It turns out that the size ratio reduced to SR=4.75 of the impinging jet resonator, while the size ratio SR=5.72 in the case of the hollow pipe resonator. This implies that the impinging jet resonator has better atomization performance than other cases. Furthermore, the air to liquid mass ratio, ALR, is easily to adjust in the impinging jet case. Result shows that the particle reduces from SMD=20.4μm to 13.65μm as ALR increases from 0.84 to 1.09. The size ratio drops to SR=4.04 as well. Hence eighty percent of the particles are collected within 3 folds of particle size range. It is concluded that the impinging jet can be regarded as the useful mechanism to control the fine particle atomization and it can be used to narrow down the range of the
    particle size distribution.

    目 錄 摘要 英文摘要 誌謝 目錄 Ⅰ 表目錄 Ⅲ 圖目錄 Ⅳ 符號說明 VⅢ 第一章 緒論 1 1-1 簡介 1 1-2 文獻回顧 2 1-2-1 霧化之原理 2 1-2-2 霧化器之相關研究-雙流式霧化器 4 1-2-3 霧化器之相關研究-噴霧流場中之空氣動力現象 7 1-2-4霧化器之相關研究-聲波式霧化器 8 1-3研究動機 11 第二章 實驗設備及儀器 13 2-1實驗設備 13 2-1-1測試台架 13 2-1-2高壓氣、液體供應系統、對衝氣體供應系統 13 2-1-3抽氣整流系統 14 2-1-4霧化裝置 14 2-2量測儀器 15 2-2-1Insitec粒徑分析儀 15 2-2-2攝影器材及影像處理系統 16 2-3主要參數 16 第三章 實驗步驟及條件 17 3-1 實驗量測條件 17 3-2 流量的量測 17 3-3 視流場的觀察與噴霧錐角的量測 18 3-4 Insitec雷射粒徑分析儀的量測 19 3-5 數據取樣與分析 19 3-6 實驗誤差 20 第四章 結果與討論 21 4-1 噴霧流場觀測 21 4-2 噴霧粒徑隨軸向(r)的分布 23 4-3 噴霧粒徑隨共振腔高度(h)的分布 24 4-4 原噴嘴加空心管的霧化效應 25 4-5 原噴嘴加對衝噴流下之霧化效應 28 4-6 外加空心管和對衝噴流下之霧化特性 31 4-7 各式噴嘴霧化粒度之比較 35 4-7-1霧化粒度Dv90與Dv10之比較 35 4-7-2各式共振腔霧化粒度比(SR)之比較 39 第五章 結論 46 參考文獻 48

    參考文獻

    【1】 古晉光,翰寧股份有限公司,加濕工程應用手冊,pp10-28,2000。

    【2】Lefebvre, A. H.,” Atomization and Sprays,” Hemisphere Publishing Corporation,
    New York, 1989.

    【3】Lefebvre, A. H., “Gas Turbine Combustion ,”Chapter 10, Hemisphere Publishing
    Corporation, New York, 1983.

    【4】A.A. Rizkalla ana A.H. Lefebvre,"Influence of Liquid Properties on Airblast
    Atomizer Spray Characteristices,J.Eng.Power,pp. 173-179,April 1975.

    【5】A.A Rizkalla and A.H. Lefebvre,”The Influence of Air and Liquid Properties on Airblast Atomization”, J. Fluids Eng.,vol. 97, pp. 316-320, 1975

    【6】Rizk, N. K. and Lefebvre, A. H., “Influence of Atomizer Design Feature on
    Mean Drop Size, ”AIAA Journal, Vol. 21, No. 8, pp. 1139-1142, 1983.

    【7】Beck, J., Lefebvre, A. H., and Koblish, T., “Air Blast Atomization at Conditions of Low Air Velocity, ”Paper No, AIAA, 89-0217, 1989.

    【8】J. E. Beck, A. H. Lefebvre and T. R. Koblish, “Liquid Sheet Disintegration by
    Impinging Air Streams, ”Atomization and Sprays, Vol. 1, No. 2, pp. 155-170,
    1991.

    【9】J. E. Beck and A.H. Lefebvre ,"Airblast Atomization at Conditions of Low Air Volcity,"J.Propulsion, vol. 7,NO.2, March-April 1991.

    【10】M. Aligner and S. Wittig ," Swirl and Counterswirl Efferts in Prefilming Airblast Atomization" , Trans. ASME, J. Eng. Power,vol. 102, pp.706-710, 1980.

    【11】許耀仁,"氣衝式平面噴嘴液膜霧化特行之研究,"國立成功大學碩士論文,1993

    【12】Sattelmayer, T. and Witting, S. ,“Internal Flow Effects in Prefilming Airblast
    Atomizers Mechanisms of Atomization and Droplet Spectra , ”ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp. 465-472, 1986.

    【13】C.Press,A.K.Gupta ,and H.G. Semerjian,"Aerodynamic Effects on Fuel Spray
    Characteristics:Air-assist Atomizer , " HTD-vol. 104 , pp. 111-119 , 1988.

    【14】楊坤和,“研究型氣助式噴嘴之噴霧特性研究,”國立成功大學碩士論文,1992.

    【15】 J. D. Whitlow and A. H. Levebvre, “Effervescent Atomizer Operation and Spray Charateristics,” Vol 13, pp. 137-155, 1993

    【16】徐明生,“雙流體式平面噴嘴霧化特性之研究,”國立成功大學碩士論文,1995.

    【17】王承光,“氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究,”國立成功大學碩士論文,1996.
    【18】蔡清洲,”漩渦噴流中氣液兩相交互作用實驗分析,”國立成功大學碩士論文,1989

    【19】洪嘉宏,“中空錐形噴霧中連續相及離散相之動力特性研究,” 國立成功大學博士論文, 1991

    【20】楊坤和,“研究型氣助式噴霧特性研究,” 國立成功大學碩士論文,1992

    【21】賴維祥,”噴霧發展過程中粒子之輸送現象及其紊流條調制之研究,” 國立成功大學博士論文, 1995

    【22】徐明生,”雙流體式平面噴嘴霧化特性之研究,” 國立成功大學碩士論文, 1995.

    【23】Bayvel, and Orzechowski, ”Liquid Atomization,” Taylor & Francis publisher, 1993

    【24】Pope,” Achieving the Right Granulometry,”科學技術資料中心 (STIC), Journal of Food, pp 42-43,1985

    【25】Chiba, Suzuki, and Kusano, ” On the pneumo-acoustic liquid atomization,”
    Bulletin of the Yamagata University (Engineering) Vol 21,no.1 pp 1-10,1990

    【26】 Mansour, and Chigier, Tom I-P. Shih,” The effects of the Hartman cavity on the performance of the USGA nozzle used for Aluminum spray forming,” Atomization and Spray, Vol 8,pp1-24, 1998

    【27】Chigier, and Kihm, ”Effects of the shock wave on liquid atomization of a two–dimensional airblast atomizer,” Atomization and Spray, Vol. 1,pp113-136, 1991

    【28】張永照,” 煙氣脫硫超聲波霧化器研究,” 化工技術第八卷第九期, pp234-239, 2000

    【29】Tsai,” Ultrasonic-Modulated Twin-Fluid Atomization of a Liquid Jet” IEEE TRANSACTIONS ON ULTRASONICS, FERROLELECTRICS. AND FREQUENCY CONTROL. VOL. 46, NO. 1 JANUARY 1999

    【30】郭振展, ”渦旋作用在哈特曼共振腔中之霧化效應”大專學生參與專題研究計劃研究成果報告,NSC 89-2815-C-006-140-R-E,2001

    【31】賴春維,” 氣助式霧化器在哈特曼共振腔中之霧化特性” 國立成功大學碩士論文,2001

    下載圖示 校內:立即公開
    校外:2002-07-08公開
    QR CODE