| 研究生: |
陳彥伯 Chen, Yen-Po |
|---|---|
| 論文名稱: |
正丁醇蒸氣在帶高電量SiO2及TiO2奈米微粒上之非均勻相核凝現象 Heterogeneous nucleation of n-butanol vapor on highly charged nanoparticles of SiO2 and TiO2 |
| 指導教授: |
陳進成
Chen, Chin-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 非均勻相核凝 、過飽和度 、流動型雲霧室 、帶高電量微粒 、凝結電荷放大系統 、正丁醇 、二氧化矽 、二氧化鈦 |
| 外文關鍵詞: | heterogeneous nucleation, supersaturation, flow cloud chamber, highly charged nanoparticles, condensation charge magnification system, n-butanol, SiO2, TiO2 |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米微粒因為粒徑很小有著和巨觀材料性質不同的差異。在大氣中因為天然及人為因素而產生相當多的奈米微粒,並且因為大氣中的自然輻射種種因素使微粒帶電,使微粒因為電荷影響改變蒸氣凝結的能力。
本研究以電噴霧法製備二氧化矽(SiO2)及二氧化鈦(TiO2)奈米微粒,配合凝結電荷放大系統,讓單一粒徑的15nm、20nm、25nm的奈米微粒,帶1-3個單位負電量,並以流動型雲霧室來探討帶高負電量SiO2及TiO2微粒在正丁醇蒸氣中所引起之非均勻相核凝機構。
粒徑效應方面二氧化矽(SiO2)及二氧化鈦(TiO2)微粒無論在過飽和水蒸氣或是正丁醇蒸氣中,臨界過飽和度的值皆隨著粒徑減小而提升,定性上與理論相符合,定量上則有一定的差距。
電荷電量效應方面,SiO2及TiO2微粒因為帶電量的提升,所需之臨界過飽和度降低,粒徑越小帶電量的影響越趨於明顯,其中本實驗以15nm的微粒所需的臨界過飽和度因為電荷量改變最為明顯。至於兩種不同微粒的臨界過飽和度值比較,實驗結果和先前論文相符合,TiO2微粒所需的臨界過飽和度值皆小於SiO2微粒。
實驗值和理論值的差距,推測可能原因為負離子附著在微粒表面之上,成為核凝程序發生之中心位置(site),降低所需之臨界過飽和度。
Nanoparticles may have properties different from the bulk due to their small size. In the atmosphere, there are ions generated as a result of cosmic ray and natural radiolysis, and aerosol particles become charged due to the attachment of these ions. Charge on particle can affect the condensation of vapor .
In this study, an electrospray aerosol generator was used to generate SiO2 and TiO2 nanoparticles and highly charged nanoparticles were prepared by condensation charge magnification system. A flow cloud chamber(FCC) was employed to examine the effects of amount of charges each particle carried on the critical supersaturation requried for the condensation of the supersaturated n-butanol vapor on SiO2 and TiO2 nanoparticles with a diameter ranging from 15 nm to 25 nm, and each carrying 1 up to 3 unit negative charges.
The results show that the experimental critical supersaturation(Scr) decreases with increasing particle size, at a rate in reasonable agreement with that predicted by Fletcher’s version of Volmer’s theory of heterogeneous nucleation.
For SiO2 and TiO2 particles, the experiment results show that Scr decreases because of the charge effect. For 15 nm SiO2 particles, an obvious charge effect on Scr is observed, and the effect is much stronger than the prediction. This phenomenon may be caused by negative ion attached on particles surface to reduce the barrier of nucleation.
1. V. Abdelsayed and M. S. El-Shall, “Vapor phase nucleation on neutral and charged nanoparticles: Condensation of supersaturated trifluoroethanol on Mg nanoparticles”, J. Chem. Phys., v.126, p.265(2007)
2. M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V. -M. Kerminen, W. Birmili and P. H. McMurry, “Formation and growth rates of ultrafine atmospheric particles: a review of observations”, J. Aerosol Sci, v.35(2), p.143-176(2004)
3. V.V. Smirnov, A.F. Smirnov.V. V V., “Nature and evolution of ultrafine aerosol particles in the atmosphere,’’Atmospheric and Oceanic Physics, v.42 (6),p. 663- 687(2006)
4. V.Y. Smorodin and P.K. Hopke “Condensation activation and nucleation on heterogeneous aerosol nanoparticles’’ J. Chem. Phys.108(26), p. 9147- 9157 (1995)
5. M. Vana, E. Tamm, U. Hõrrak, A. Mirme, H. Tammet, L. Laakso, P.P. Aalto and M. Kulmala, “Charging state of atmospheric nanoparticles during the nucleation burst events,’’ Atmospheric Research, 82(3-4), p. 536- 546 (2006)
6. A.C. Zettlemoyer, “NUCLEATION”, Chap.4, p.151, (Marcel Dekker, Inc.)
7. Fletcher, N.H., “Physics of Rainclouds”, 1st Ed., Cambridge University Press, p.390(1962)
8. Chin-Cheng Chen and Chun-Ju Tao, J.Chem. Phys.112,15(2000)
9. W.C. Hinds, “Aerosol Technology”, (Wiley, New York)(1982)
10. Sir J. J. Thomson, “Electricity study through gases,” 3rd. Ed., v.320-333 pp.
11. P. Wette and H. J. Schöpe, “Nucleation kinetics in deionized charged colloidal model systems: A quantitative studyby means of classical nucleation theory,” PhysRevE.75(2007)
12. Z. G. Kusaka, Wang and J. H. Senjeld, “Ion-induced nucleation II. polarizable multipolar molecules,” J. Chem. Phys.103(20), 899(1995)
13. C. T. R. Wilson, “Condensation of water vapor in the presence of dustfree air and other gases,” Phil. Trans. 189(A), 265 (1897)
14. 陶君儒, “水蒸氣在SiO2、TiO2、葡萄糖與麩胺酸鈉次微米微粒上之非均勻相核凝” 博士論文, 國立成功大學化工系 (2000)
15. J. Suh, B. Han, K. Okuyama and M. Choi,“Highly charging of nanoparticles through electrospray of nanoparticle suspension,” Journal of Colloid and Interface Science, v.287(1), p.135-140(2005)
16. J. Suh, B. Han, K. Okuyama and M. Choi,“A method for enhanced charging of nanoparticles via condensation magnification,” J. Aerosol Sci, v.36(10), p.1183-1193(2005)
17. D.S. Kim, D.S. Lee, C.G. Woo, M. Choi and A.F. Kim, , “Control of nanoparticle charge via condensation magnificatio,” J. Aerosol Sci, v.37(12), p.1876-1882(2006)
18. C. T. R. Wilson, Philos. Trans. R. Soc. London, Ser. A189, 265 (1897);193, 289 (1899)
19. L.B. Loeb, A.F. Kip and A.W. Einarsson, “On the nature of ion sign preference in C. T. R. Wilson cloud chamber condensation experimen,” J. Chem. Phys., v.6, p.265(1938)
20. K.C. Russell, “Nucleation on gaseous ions,”, J.Chem.Phys., v.50, p.1809(1969)
21. R.J. Good, “Surface entropy and surface orientation of polar liquids,” J. Phys. Chem., v.61,p.810(1957)
22. J.J. Thomson, “Conduction of Electricity Through Gases,” 3rd. Ed.,v.1 (Cambridge University, Cambridge),pp.320-333.(1928)
23. C.L. Briant and J.JJ. Burton, “Molecular dynamics study of the effects of ions on water microclusters,” J. Chem. Phys., v.64, p.2888(1946)
24. S.H. H. Suck, “Change of free energy in heteromolecular nucleation:Electrostatic energy contribution,” J. Chem. Phys., v.75, p.5090(1981)
25. I. Kusaka, Z.G. Wang and J.H. Seinfeld, “Ion-induced nucleation:A density function approach,” J. Chem. Phys., v.102, p.913(1995)
26. I. Kusaka, Z.G. Wang and J.H. Seinfeld, “Ion-induced nucleation nucleationⅡ:Polarizable multipolar molecul,” J. Chem. Phys., v.103, p.8993(1995)
27. V.K. LaMer and R. Gruen, “A direct test of Kelvin’s equation connecting vapour pressure and radius of curvature,” Trans. Faraday Soc. 48, p.410(1952)
28. M. Volmer and A. Weber, “Keimbildung in ubersattigten Gebilden,” Z. Physik. Chem. (Leipzig) 119, p.227, (1926)
29. S. Twomey, “Experiment test of the Volmer Theory of heterogeneous nucleation,” J. Chem. Phys. ,v.30, p.941(1959)
30. J.A. Koutsky, A.G. Walton and E. Baer, “Heterogeneous nucleation of water vapor on high and low energy surface,” Surface Sci. ,v.3, p.165,(1965)
31. N.H. Fletcher, “Size Effect in Heterogeneous Nucleation,”, J. Chem. Phys., v.29, p.572-576(1958)
32. N.H. Fletcher, “The Physics of Rainclouds,’’, 1st Ed., Cambridge University Press, p.390(1969)
33. M. Lazaridis, “The effects of surface diffusion and line tension on the mechanism of heterogeneous nucleation,” , J. Colloid Interface Sci. 155, p.386(1993)
34. Smorodin, V. Ye., “Mixed aerosol particles as effective ice nucleating systems”, Atoms. Res. 31(1-3), 199-233(1994)
35. Smorodin, V. Ye., “On thermohydrodynamic instablities in aerosol hazes (fogs)”, Atoms. Environ. 31(8), 1239-1247(1997)
36. Smorodin, V. Ye. and Hopke, P. H., “Condensation activation and nucleation on heterogeneous aerosol nanoparticles”, J. Phys. Chem., B 108(26), 9147-9157(2004)
37. Smorodin, V. Ye. and Hopke, P. H., “Relationship of heterogeneous nucleation and condensational growth on aerosol nanoparticles”, Atom. Res. 82, 591-604(2006)
38. 陳泓旭, “正丁醇與水在帶電奈米微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2002)
39. 鄭秀津, “水蒸氣在帶電與中性SiO2不可溶奈米微粒上之非均勻相核凝” , 碩士論文, 國立成功大學化工系(2002)
40. 陳彥宇, “電噴霧法製備SiO2奈米微粒及正丁醇蒸氣在微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2003)
41. 林佳德, “正丁醇蒸氣在無機TiO2與有機甘露糖奈米微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2004)
42. 沈于安, “正丁醇蒸氣在SiO2(10nm-6nm)與鼠李糖(25nm-8nm)微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2005)
43. 劉旂甫, “水及正丁醇蒸氣在TiO2與甘露糖帶電與中性微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2006)
44. 李傳傑, “電噴霧法製備SiO2(6-10nm)、葡萄糖(8-30nm)、味精(8-30nm)奈米微粒及水蒸氣在帶電與中性微粒上非均勻相核凝之研究”, 碩士論文, 國立成功大學化工系(2007)
45. 李先偉, “正壬烷蒸氣在帶電及中性SiO2(6nm~30nm)及甘露糖(8nm~30nm)奈米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系(2008)
46. 黃崇銓, “正丁醇蒸氣在不溶性無機次微米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系(1997)
47. 蔡聞庭, “正丁醇蒸氣在可溶性D-Mannose與L-Rhamnose次微米微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2000)
48. 蔡宜哲, “水蒸氣在不溶性次微米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系(1996)
49. C. C. Chen and H. C. Cheng “Effects of charge and size on condensation of supersaturated water vapor on nanoparticles of SiO2,”, J. Chem. Phys. 126, 034701(2007)
50. 周明翰, “水蒸氣在帶高電量SiO2奈米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系(2009)
51. J. R. Llompart and J. Fernandez De La Mora, “Generation of Monodisperse droplets 0.3 to 4μm in Diameter from Electrified Cone-jets of Highly Conducting and Viscous Liquids”, J. Aerosol Sci. v.25, p.1093(1994)
52. M. Cloupeau and B. Prunet-Foch, “Electrohydrodynamic Spraying Functioning Modes: a Critical Review”, J. Aerosol Sci. v.25, p.1021(1994)
53. L. Stanley, J. Kaufman, Analytical Chemistry News and Features, 4, 6, 386 A.
54. Y. Osamu, K. Tomonori, M. Akira, “Properties of droplet formation made by cone jet using a novel capillary with an external electrode” J. Electorstatics, 64 p.634-638(2006)
55. W. Franklin Smyth, Trends in analytical chemistry, 1999, V.18, n.5, p.335
56. A. Jaworek and A. Krupa, “Classification of the modes of EHD spraying”, J. Aerosol Sci., Vol.30, No7, pp873~893, (1999)
57. R. P. A. Hartman, D. J. Brunner, D. M. A. Camelot, J. C. M. Marijinissen and B. Scarlett, “Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet”, J. Aerosol Sci. , Vol.30 , No.7, pp. 823~849(1999)
58. S. L. Kaufman, “Electrospray diagnostics performed by using sucrose and proteins in the gas-phase electrophoretic mobility molecular”, Special Issue on Ion Formation Mechanisms in Electrospray, ed. S. Rutan and J. Fenn(1999)
59. R. P. A. Hartman, D. J. Brunner, D. M. A. Camelot, J. C. M. Marijnissen and B. Scarlett, “Jet Break-up in Electrohydrodynamic Atomization in the Cone-jet Mode”, J. Aerosol Sci., 31, v.1, p.65-95(2000)
60. P. I. a, N. Tippayawong,“Progress in unipolar corona discharger designs for airborne particlecharging: A literature review ,” J. Eletro., p.1-11(2009)
61. 黃政德, “以EHD技術增加LED散熱效率之研究”, 碩士論文, 國立清華大學動力機械工程學系(2005)
62. W. D. Marra Jr., M. V. Rodrigues, R. G.A. Miranda , M. A.S. Barrozo, J. R. Coury, “The effect of the generation and handling in the acquired electrostatic charge airborne particles,” Powder Technology.,v.191,p.299–308 (2009)
63. N. H. Fletcher, “The Physics of Rainclouds”, 1st Ed., (Cambridge University Press), p.390(1969)
64. W. J. Dunning, “Chemistry of the Solid State”, (Academic Press), NY.(2002)
65. J. J. Thomson, “Conductionof Electricity Through Gases”, 3rd Ed., v.1(Cambridge University, Cambridge), p.320(1928)
66. M. Volmer, “Kinetic der Phasenbildung”, Verlag Th. Steinkopff, Dresden(1939)
67. K. C. Russell, “Nucleation on gaseous ions”, J. Chem. Phys., v.50 p.1809(1969)
68. C. C. Chen, L. C. Hung and H. K. Hsu, “Heterogeneous nucleation of water vapor on particles of SiO2, Al2O3, TiO2 and carbon black”, J. Colloid. Interface Sci., v.157 p.465(1993)
69. J. L. Katz and B. J. Ostermier, “Diffusion cloud chamber investigation of homogeneous nucleation”, J. Chem. Phys., v.47 p.478(1967)
70. 許豪仁, “正丁醇蒸氣在味精與乳糖次微米上之非均勻核凝現象”, 碩士論文, 國立成功大學化工系(1997)
71. Model 3077 Aerosol Neutralizer, TSI company
72. Model 3071A Electrostatic Classifier, TSI company
73. Model 3080 Electrostatic Classifier Instruction Manual, TSI Inc.(2002)
74. C. C. Chen,’Han-Kuan Shu, and Yeun-Kwei Yang,“Nucleation-Assisted Process for the Removal of Fine Aerosol Particles,” Ind. Eng. Chem. Res. ,v.32,p. 1509-1519(1993)
75. J. L. Katz, “Condensation of a Supersaturated Vapor, I. The homogeneous Nucleation of the n-Alkanes”, J. Chem. Phys., v.52 p.4733(1970)
76. Model 3025A, Ultrafine Condensation particle Counter Instruction Manual, TSI Inc.(2002)
77. Model 3934 SMPS (Scanning Mobility Particle Sizer) Instrucion Manual, TSI Inc.
78. C. C. Chen, M. S. Guo, Y. J. Tsai and C. C. Huang, “Heterogeneous Nucleation of Water Vapor on Submicrometer Particles of SiC, SiO2 and Naphthalene”, J. Colloid Interface Sci., v198, p354(1998)
79. Smorodin, V. Ye. and Hopke, P. H., “Relationship of heterogeneous nucleation and condensational growth on aerosol nanoparticles”, Atom. Res. 82, 591-604(2006)