| 研究生: |
洪永慶 Hung, Yung-Ching |
|---|---|
| 論文名稱: |
混沌系統控制與同步之設計:適應性可變結構控制法及適應性觀測器控制法 Design of Control and Synchronization for Chaotic Systems: Adaptive Variable Structure Control and Adaptive Observer-based Approach |
| 指導教授: |
廖德祿
Liao, Teh-Lu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 適應性 、可變結構控制 、非線性輸入 、混沌系統 、投影同步 |
| 外文關鍵詞: | Adaptive, Variable Structure Control, Nonlinear Input, Chaotic System, Projective Synchronization |
| 相關次數: | 點閱:145 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討運用適應性控制對於統合型混沌系統之混沌行為抑制與蔡氏混沌系統之投影同步問題。所討論的統合型混沌系統及蔡氏混沌系統均考慮未知截止區之非線性輸入。本論文可以分成以下三大部分:
第一部分探討主-僕蔡氏混沌系統在受到截止區非線性輸入之混沌同步問題。並藉由滑動模式控制技術,建立了一個適應性可變結構控制法則來確保系統本身受到非線性截止區影響之下達成投影同步。
第二部分探討統合混沌系統受到系統不確定性和未知截止區非線性輸入控制之混沌抑制問題。並利用可變結構控制技術,建立一強健適應性控制法則於統合型混沌系統之混沌抑制。特別的是,本論文提出ㄧ新轉換面來簡化任務並確保閉迴路系統於滑動模式中之穩定性。
第三部分探討了尺度耦合信號於主-僕混沌系統同步問題。透過使用從主混沌系統之尺度耦合傳輸信號,設計出具有截止區非線性輸入之基於觀測器僕混沌系統。而輸出反饋控制方法則是用來實現主-僕系統廣義投影同步。此外,建立一個適應性觀測器控制法則,對於在未知的系統非線性以及截止區非線性參數影響下,確保廣義投影同步的達成。
每部分的理論均有嚴謹的理論定理及證明,並透過數值例子及電腦模擬以印證所提出的混沌系統控制與同步理論之正確性。
This dissertation investigates the chaos suppression problem of a class of unified chaotic systems and the projective synchronization problem of drive-response Chua’s chaotic systems using the adaptive control schemes with variable structure control and observer-based techniques. All considered unified chaotic systems and drive-response Chua’s chaotic systems are subjected to dead-zone nonlinear in input. This dissertation can be divided into the following three parts:
Firstly, the chaos synchronization problem of drive-response Chua’s systems with dead-zone nonlinear input is investigated. By using the sliding mode control technique, an adaptive control law is established which guarantees projective synchronization even when the dead-zone nonlinearity in the input is present.
Secondly, the chaos suppression problem of a class of unified chaotic systems subject to the system’s uncertainties and dead-zone nonlinearity in control input is investigated. A robust adaptive control law by employing the variable structure control technique is established to suppress chaos for a class of unified chaotic systems. In particular, a switching surface is newly proposed to simplify the task of ensuring the stability of the closed-loop system in the sliding mode.
Thirdly, the synchronization problem of drive-response chaotic systems with a scalar coupling signal is studied. By using the scalar transmitted signal from the drive chaotic system, an observer-based response chaotic system with dead-zone nonlinear in the input is designed. An output feedback control technique is derived to achieve the generalized projective synchronization between the drive system and the response system. Furthermore, an adaptive control law is derived that the generalized projective synchronization without the knowledge of system nonlinearity, and/or system parameters as well as that of parameters in dead-zone nonlinearity in input is ensured.
All theoretical developments in the dissertation are stated in Theorems and rigorously proved. Furthermore, several illustrative examples are given to demonstrate the effectiveness of the proposed control and synchronization schemes.
[1]E.N Lorenz, “Deterministic non-periodic flow,” J. Atmos. Sci, Vol. 20, pp. 130-141, 1963.
[2]G. Chen, T. Ueta, “Yet another chaotic attractor,” Int J. Bifurcat Chaos, Vol. 9, pp. 1465–1446, 1999.
[3]E. Ott, C. Grebogi, and J.A. Yorke, “Controlling chaos,” Physics Review Letters, Vol. 64, pp. 1196-1199, 1990.
[4]J.H. Park, O.M. Kwon, and S.M. Lee, “LMI optimization approach to stabilization of Genesio-Tesi chaotic system via dynamic controller,” Applied Mathematics and Computation, Vol. 196, pp. 200-206, 2008.
[5]R. Li, W. Xu, and S. Li, “Chaos controlling of extended nonlinear Lienard system based on the Melnikov theory,” Applied Mathematics and Computation, Vol. 178, pp. 405-414, 2006.
[6]M.T. Yassen, “The optimal control of Chen chaotic dynamical system,” Applied Mathematics and Computation, Vol. 131, pp. 171-180, 2002.
[7]K. Konishi, M. Hirai, and H. Kokame, “Sliding mode control for a class of chaotic systems,” Physics Letters A, Vol. 245, pp. 511-517, 1998.
[8]H. Guo, S. Lin, and J. Liu, “A radial basis function sliding mode controller for chaotic Lorenz system,” Physics Letters A, Vol. 351, pp. 257-261, 2006.
[9]T.Y. Chiang, M.L. Hung, J.J. Yan, Y.S. Yang, and J.F. Chang, “Sliding mode control for uncertain unified chaotic systems with input nonlinearity,” Chaos, Solitons & Fractals, Vol. 34, pp. 437-442, 2007.
[10]S.K. Yang, C.L. Chen, and H.T. Yau, “Control of chaos in Lorenz system,” Chaos Soltions Fractals, Vol. 13, pp. 767-780, 2002.
[11]W. Jiang, G.G. Qiao, and D. Bin, “ variable universe adaptive fuzzy control for chaotic system,” Chaos Soltions Fractals, Vol. 24, pp. 1075-1086, 2005.
[12]J.A.K. Suykens, P.F. Curran, J. Vanderwalle, and L.O. Chua, “Nonlinear synchronization of Lur’e systems: dynamic output feedback case,” IEEE Transactions on Circuits and Systems I, Vol. 44, pp. 976-988, 1997.
[13]J.H. Park, D.H.J. Won, and S.M. Lee, “ synchronization of time-delayed chaotic systems,” Applied Mathematics and Computation, Vol. 204, pp. 170-177, 2008.
[14]G. Chen, and X. Dong, “On feedback control of chaotic dynamic systems,” International Journal of Bifurcation Chaos, Vol. 2, pp. 407-411, 1992.
[15]J. Lu, and J. Lu, “Controlling uncertain Lu system using linear feedback,” Chaos Soltions Fractals, Vol. 17, pp. 127-133, 2003.
[16]T. Yang, L.B. Yang, and C.M. Yang, “Impulsive control of Lorenz system,” Physica D, Vol. 110, pp. 18-24, 1997.
[17]T. Yang, and L.O. Chua, “Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication,” IEEE Transactions on Circuits and Systems I, Vol. 44, pp. 976-988, 1997.
[18]Y. Yu, and S. Zhang, “Controlling uncertain Lu system using backstepping design,” Chaos Soltions Fractals, Vol. 15, pp. 897-902, 2003.
[19]H.T. Yau, and J.J. Yan, “Chaos synchronization of different chaotic systems subjected to input nonlinearity,” Applied Mathematics and Computation, Vol. 197, pp. 775-788, 2008.
[20]F. Chen, L. Chen, and W. Zhang, “Stabilization of parameters perturbation chaotic system via adaptive backstepping technique,” Applied Mathematics and Computation, Vol. 200, pp. 101-109, 2008.
[21]Z.M. Ge, S.C. Li, S.Y. Li, and C.M. Chang, “Pragmatical adaptive control from a new double van der Pol system to a new double Duffing system,” Applied Mathematics and Computation, Vol. 203, pp. 513-522, 2008.
[22]M.F. Danca, W.K.S. Tang, and G. Chen, “A switching scheme for synthesizing attractors of dissipative chaotic system,” Applied Mathematics and Computation, Vol. 201, pp. 650-667, 2008.
[23]Y.C. Hung, C.C. Hwang, T.L. Liao, and J.J. Yan, “Generalized projective synchronization of chaotic systems with unknown dead-zone input: observer-based approach,” Chaos, Vol. 16, pp. 0331251-0331259, 2006.
[24]J. Lu, X. Wu, X. Han, and J. Lu, “Adaptive feedback synchronization of a unified chaotic system,” Physics Letters A, Vol. 329, pp. 327-333, 2004.
[25]U. Itkis, Control System of Variable Structure, Wiley, New York, 1976.
[26]V.I. Utkin, “Sliding Mode and their Application in Variable Structure System,” Mir Editors, Moscow, 1978.
[27]V.M. Popov, Hyperstability of Control System, Springer-Verlag, Berlin, 1973.
[28]S. Bowonga, M. Kakmenib, and R. Koinac, “Chaos synchronization and duration time of a class of uncertain chaotic systems,” Math. Comput. Simulat, Vol. 71, pp. 212–228, 2006.
[29]C. Cailian, F. Gang, and G. Xinping, “An adaptive lag-synchronization method for time-delay chaotic systems,” Proceedings of the American Control Conference, pp. 4277-4382, 2005.
[30]T.L. Carroll, J.F. Heagy, and L.M. Pecora, “Transforming signals with chaotic synchronization,” Phys. Rev. E, Vol. 54, pp. 4676-4680, 1996.
[31]M. Feki, “An adaptive chaos synchronization scheme applied to secure communication,” Chaos, Solitons & Fractals, Vol. 18, pp. 141-148, 2003.
[32]K.C. Hsu, “Adaptive variable structure control design for uncertain time-delay systems with nonlinear input,” Dynam. Contr., Vol. 8, pp. 341-354, 1998.
[33]Y. Jianping, and L. Changpin, “Generalized projective synchronization of a unified chaotic system,” Chaos, Solitons & Fractals, Vol. 26, pp. 1119-1124, 2005.
[34]H.K. Khalil, Nonlinear Systems, Macmillan Publishing Company, New York, 1992.
[35]G. Li, “Projective synchronization of chaotic system using backstepping control,” Chaos, Solitons & Fractals, Vol, 29. pp. 490–498, 2006.
[36]Z. Li, and D. Xu, “A secure communication scheme using projective chaos synchronization,” Chaos, Solitons & Fractals, Vol. 22, pp. 477–484, 2004.
[37]T.L. Liao, “Observer-based approach for controlling chaotic systems,” Phys. Rev. E, Vol. 57, pp. 1604–1610, 1998.
[38]T.L. Liao, and S.H. Tsai, “Adaptive synchronization of chaotic systems and its application to secure communications,” Chaos, Solitons & Fractals, Vol. 11, pp. 1387–1396, 2000.
[39]O. Morgul, and E. Solak, “Observer based synchronization of chaotic systems,” Phys. Rev. E, Vol. 54, pp. 4803–4811, 1996.
[40]O. Morgul, and E. Solak, “On the synchronization of chaotic systems by using state observers,” Int. J. Bifurcat. Chaos, Vol. 7, pp. 1307–1322, 1997.
[41]H. Nijmeijer, and I.M.Y. Mareels, “An observer looks at synchronization,” IEEE Trans. Circuits Syst. I, pp. 882–890, 1997.
[42]L.M. Pecora, and T.L. “Carroll, Synchronization in chaotic systems,” Phys. Rev. Lett, Vol. 64, pp. 821–824, 1990.
[43]L.M. Pecora, T.L. Carroll, G.A. Johnson, and D.J. Mar, “Fundamentals of synchronization in chaotic systems, concepts, and applications,” Chaos, Vol. 7, pp. 520–543, 1997.
[44]A.S. Pikovsky, M.G. Rosenblum, G.V. Osipov, and J. Kurths, “Phase synchronization of chaotic oscillators by external driving,” Physica D, Vol. 104, pp. 219–238, 1997.
[45]M. Rosenblum, A. Pikovsky, and J. Kurtz, “Phase synchronization of chaotic oscillators,” Phys. Rev. Lett., Vol. 76, pp. 1804–1807, 1996.
[46]J. Sun, and Y. Zhang, “Impulsive control and synchronization of Chua’s oscillators,” Math. Comput. Simulat, Vol. 66, pp. 499–508, 2004.
[47]D. Xu, W.L. Ong, and Z. Li, “Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension,” Phys. Lett. A, Vol. 305, pp. 167–174, 2002.
[48]T. Yang, and L.O. Chua, “Control of chaos using sampled-data feedback control,” Int. J. Bifurcat. Chaos, Vol. 9, pp. 215–219, 1999.
[49]Z. Li, and D. Xu, “Stability criterion for projective synchronization in three-dimensional chaotic systems,” Phys. Lett. A, Vol. 282, pp. 175-179, 2001.
[50]D. Xu, Z. Li, and S. R. Bishop, “Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems,”Chaos, Vol. 11, pp. 439, 2001.
[51]D. Xu, C. Y. Chee, and C. Li, “A necessary condition of projective synchronization in discrete-time systems of arbitrary dimensions,” Chaos, Solitons & Fractals, Vol. 22, pp. 175-180, 2004.
[52]G. Wen and D. Xu, “Observer-based control for full-state projective synchronization of a general class of chaotic maps in any dimension,” Phys. Lett. A, Vol. 333, pp.420-425, 2004.
[53]X. S. Wang, C. Y. Su, and H. Hong, “Robust adaptive control of a class of nonlinear systems with unknown dead-zone,” Automatica, Vol. 40, pp. 407-413, 2004.
[54]G. Wen, and D. Xu, “Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems,” Chaos, Solitons & Fractals, Vol. 26, pp.71-77, 2005.
[55]J. Yan, and C. Li, “Generalized projective synchronization of a unified chaotic system,” Chaos, Solitons & Fractals, Vol. 26, pp. 1119-1124, 2005.
[56]G. H. Li, “Generalized projective synchronization of two chaotic systems by using active control,” Chaos, Solitons & Fractals, Vol. 30, pp. 77-82, 2006.
[57]C. Li, and J. Yan, “Generalized projective synchronization of chaos: The cascade synchronization approach,” Chaos, Solitons & Fractals, Vol. 30, pp. 140-146, 2006.
[58]T. L. Liao and N. S. Huang, ”An observer-based approach for chaotic synchronization with applications to secure communications,” IEEE Circuits Syst. Mag, Vol. 46, pp. 1144-1150, 1999.
[59]M. Vidyasagar, Nonlinear Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1993.
[60]H. Fotsin, S. Bowong, and J.Daafouz, “Adaptive synchronization of two chaotic systems consisting of modified Van der Pol–Duffing and Chua oscillators,” Chaos, Solitons & Fractals, Vol. 26, pp. 215-229, 2005.
[61]H. B. Fotsin and P. Woafo, “Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification,” Chaos, Solitons & Fractals, Vol. 24, pp. 1363-1371, 2005.
[62]J. C. Ji and C. H. Hansen, “Stability and dynamics of a controlled van der Pol–Duffing oscillator,” Chaos, Solitons & Fractals, Vol. 28, pp. 555-570, 2006.