簡易檢索 / 詳目顯示

研究生: 鄭晴
Cheng, Ching
論文名稱: 負彎矩RC T型梁以超高性能混凝土疊層補強後受脈衝地震的有限元素分析
Strengthening of RC T-Beams in the Negative Moment with UHPC Overlays: A Finite Element Analysis on the Effect of Pulse-like Ground Motion
指導教授: 胡宣德
Hu, Hsuan-Te
共同指導教授: 蕭輔沛
Hsiao, Fu-Pei
何陽多
Haryanto, Yanuar
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 142
中文關鍵詞: 混凝土T型梁加固超高性能混凝土有限元素Abaqus
外文關鍵詞: RC T-beam, strengthening, UHPC, finite element, Abaqus
相關次數: 點閱:62下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近斷層地震運動中檢測到強烈的能量脈衝,這種脈衝型運動向建物傳播時會產生向破裂前進方向效應。因此,為了承受脈衝型的地震作用,將許多最近設計和建造的建築物加固變得至關重要。超高性能混凝土(UHPC)具有卓越的機械性能和耐久特性,因而成為加固現有鋼筋混凝土結構的熱門選擇。本研究旨在利用數值分析,在脈衝型地震作用的影響下,探討鋼筋混凝土T型梁在負彎矩區域採用鋼棒及UHPC複合材料薄層加強後的行為。同時,對使用UHPC層修復的受損樣本進行評估。本研究使用ABAQUS軟體平台構建了梁的三維有限元模型。通過與實驗數據的比較,對模型進行了驗證,而預測結果和實測結果具有良好的一致性。隨後,利用驗證模型研究了不同參數對加強梁行為的影響。本數值研究的結果表明所應用的加固策略在提高梁性能方面是有效的。

    An intense energy pulse has been detected in near-fault ground motions. This impulsive motion, propagating towards the site, will result in forward-directivity effects. Consequently, it becomes crucial to strengthen many of the recently designed and constructed buildings in order to withstand pulse-like ground motion. The exceptional mechanical and durability characteristics of ultra-high performance concrete (UHPC) have made it a popular choice for strengthening existing reinforced concrete (RC) structures. This study aims to numerically evaluate the response of RC T-beams strengthened with steel rod-thin UHPC composite in the negative moment region, under the influence of pulse-like ground motion. An assessment of the repair work on the damaged specimen using the UHPC layer was also carried out. A three-dimensional finite element (FE) model of the beams was constructed using the ABAQUS software platform. The model was validated through a comparison with experimental data, and the predicted and measured results exhibited good agreement. The verified model was subsequently employed to investigate the impact of different parameters on the behavior of strengthened beams. The findings of this numerical investigation demonstrate the effectiveness of the applied strengthening strategy in enhancing the beams' performance.

    ABSTRACT 2 摘要 3 ACKNOWLEDGEMENTS 4 LIST OF CONTENTS 5 LIST OF TABLES 8 LIST OF FIGURES 9 CHAPTER 1 INTRODUCTION 11 1.1 Overview 11 1.2 Motivation 12 1.3 Objectives 13 1.4 Research Procedure 14 CHAPTER 2 LITERATURE REVIEW 15 2.1 General 15 2.2 Ultra-High Performance Concrete (UHPC) Materials 15 2.3 Steel Behavior 16 2.4 Steel Hysteretic Models 17 2.5 Concrete Behavior 22 2.5.1 Concrete Damage Plasticity Model 22 2.5.2 Uniaxial Tensile Behavior 24 2.5.3 Uniaxial Compressive Behavior 25 2.6 Element Type 26 CHAPTER 3 NUMERICAL SIMULATION METHOD ANALYSIS 29 3.1 Summary of Program 29 3.1.1 SUB strengthening 32 3.1.2 RCB-U Repair 34 3.2 Model Introduction and Geometry 36 3.3 Element Specification 38 3.4 Material Properties 38 3.4.1 Concrete Material 39 3.4.2 Steel Reinforcement Material 43 3.4.3 Ultra-High Performance Concrete Material 47 3.5 Constraints 50 3.5.1 Load and Boundary Conditions 50 3.5.2 Contact Interactions 51 3.6 Loading Protocols 52 CHAPTER 4 FINITE ELEMENT ANALYSIS OF PULSE AND CYCLIC LOADING 54 4.1 General 54 4.2 Pulse-Like Loading 55 4.3 Discussion of Pulse-Like Loading 58 4.4 Cyclic Loading 59 4.5 Discussion of Cyclic-Loading 62 CHAPTER 5 PARAMETRIC STUDIES 65 5.1 General 65 5.2 Effect of CFRP Materials 65 5.2.1 General 65 5.2.2 CFRP Material 66 5.2.3 Results 67 5.3 Effect of Different Height of UHPC Layers 72 5.3.1 General 72 5.3.2 Results 73 5.4 Earthquake Loading Analysis 78 5.4.1 General 78 5.4.2 Near Fault 79 5.4.3 Near Fault Results 80 5.4.4 Far Fault 83 5.4.5 Far Fault Results 84 5.4.6 Time of Ultimate Load 87 5.4.7 Discussion of Earthquake Loading 91 CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 92 6.1 Conclusions 92 6.2 Recommendation 94 REFERENCES 95 APPENDIX 99

    1. Abdelraheem, H., et al., Behavior of RC Columns Strengthened with Steel Jacket Under Static Axial Load. JES. Journal of Engineering Sciences, 2022. 51.
    2. Jumaat, Z. and M. Alam, Strengthening of R.C. beams using externally bonded plates and anchorages. Australian Journal of Basic and Applied Sciences, 2009. 3: p. 2207-2211.
    3. Nuroji, N., et al., The Behavior of Reinforced Concrete Members with Section Enlargement Using Self-Compacting Concrete. International Review of Civil Engineering (IRECE), 2020. 11: p. 121.
    4. Tayeh, B.A., M.A. Abu Maraq, and M.M. Ziara, Flexural performance of reinforced concrete beams strengthened with self-compacting concrete jacketing and steel welded wire mesh. Structures, 2020. 28: p. 2146-2162.
    5. Graybeal, B.A., Material Property Characterization of Ultra-High Performance Concrete. 2006.
    6. Habil, M. and E. Dr.-Ing, Ultra-High-Performance Concrete: Research, Development and Application in Europe. ACI Special Publication, 2005. 228.
    7. Hu, H.T. and W.C. Schnobrich, Nonlinear finite element analysis of reinforced concrete plates and shells under monotonic loading. Computers & Structures, 1991. 38(5): p. 637-651.
    8. Silva, J. and B. Horowitz, Nonlinear finite element analysis of reinforced concrete shear walls. Revista IBRACON de Estruturas e Materiais, 2020. 13.
    9. Zhang, Y.-G., M.-W. Lu, and K.-C. Hwang, Nonlinear finite element analysis of concrete structures. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1993. 44(3): p. 537-555.
    10. Dassault Systèmes Corporation, SIMULIA Abaqus Analysis User's Manuals, Theory Manuals and Example Problems Manuals. 2023.
    11. Aaleti, S., B. Petersen, and S. Sritharan, Design Guide for Precast UHPC Waffle Deck Panel System, including Connections. 2014.
    12. Graybeal, B., Material Property Characterization of Ultra-High Performance Concrete. FHWA-HRT-06-103, 2006: p. 1-176.
    13. Saleem, M., et al., Ultra-High-Performance Concrete Bridge Deck Reinforced with High-Strength Steel. Aci Structural Journal, 2011. 105.
    14. Seibert, P., et al., Performance Evaluation of Field Cast UHPC Connections for Precast Bridge Elements. 2019.
    15. S. Wan, C.-H. Loh, and S.-Y. Peng, Experimental and theoretical study on softening and pinching effects of bridge column. 2001: p. 7.
    16. Zhang Hao, et al., Secondary Development on Constitutive Model of Concrete and Steel for Beam Element in ABAQUS. 2018: p. 10.
    17. Fang Zihu, Zhen Yi, and L. Xiangpeng, Steel hysteric model of reinforced concrete structures. 2018.
    18. Qu, Z., Predicting Nonlinear Response of an Rc Bridge Pier Subject to Shake Table Motions. 2012.
    19. Vecchio, F.J., Towards Cyclic Load Modeling of Reinforced Concrete. ACI Structural Journal, 1999. 96(2).
    20. Li, Z. and G. Hatzigeorgiou, Seismic damage analysis of RC structures using fiber beam-column elements. Soil Dynamics and Earthquake Engineering, 2012. 32: p. 103-110.
    21. Lee, J. and G.L. Fenves, Plastic-Damage Model for Cyclic Loading of Concrete Structures. Journal of Engineering Mechanics, 1998. 124(8): p. 892-900.
    22. Hickman, M. and P. Basu, Stochastic Multiscale Characterization of Short-Fiber Reinforced Composites. Technische Mechanik, 2016. 36: p. 13-31.
    23. Xiao, Y., et al., Concrete plastic-damage factor for finite element analysis: Concept, simulation, and experiment. Advances in Mechanical Engineering, 2017. 9: p. 168781401771964.
    24. Zienkiewicz, O.C., R.L. Taylor, and J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, in The Finite Element Method: its Basis and Fundamentals (Seventh Edition). 2013, Butterworth-Heinemann: Oxford. p. iii.
    25. Santana, G. and A.C.I. Committee, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary. 2014.
    26. Agency, C., General Rules for Revision of Design Code for Concrete Structures. 2019.
    27. Abdeldjelil, B. and T.C.H. Thomas, Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened By Concrete. ACI Structural Journal, 1994. 91(4): p. 465-474.
    28. Ministry of Housing and Urban-Rural Development, B., China, Code for design of concrete structures (GB50010-2010). 2011: China.
    29. Aydin Demir, H.O., Kemal Edip, Marta Stojmanovska, A Bogdanovic, E Seismology, Effect of viscosity parameter on the numerical simulation of reinforced concrete deep beam behavior. The Online Journal of Science and Technology, 2018. 8(3): p. 50-56.
    30. Zhang Zhe, et al., Axial Tensile Behavior Test of Ultra High Performance Concrete. 2015.
    31. Yang, J. and Z. Fang, Flexural behaviors of ultra high performance concrete T beams prestressed with CFRP tendons. Tiedao Xuebao/Journal of the China Railway Society, 2009. 31: p. 94-103.
    32. Das Adhikary, S., B. Li, and K. Fujikake, Dynamic behavior of reinforced concrete beams under varying rates of concentrated loading. International Journal of Impact Engineering, 2013. 47: p. 24–38.
    33. Greg L. Orozco and S.A. Ashford, Effects of Large Velocity Pulses on Reinforced Concrete Bridge Columns, PEER Report 2002-23. 2002.
    34. Ghomi, S.K. and E. El-Salakawy, Seismic Behavior of Exterior GFRP-RC Beam–Column Connections: Analytical Study. Journal of Composites for Construction, 2018. 22(4): p. 04018022.
    35. Hamidia, M., A. Ganjizadeh, and K.M. Dolatshahi, Peak drift ratio estimation for RC moment frames using multifractal dimensions of surface crack patterns. Engineering Structures, 2022. 255: p. 113893.
    36. Tavallali, H., et al., Concrete Beams Reinforced with High-Strength Steel Subjected to Displacement Reversals. ACI Structural Journal, 2014. 111: p. 1037-1047.
    37. ACI Committee, Building Code Requirements for Structural Concrete (ACI 318-19): An ACI Standard ; Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19). American Concrete Institute, 2019.
    38. Chang, Z., et al., Selection of pulse-like ground motions with strong velocity-pulses using moving-average filtering. Soil Dynamics and Earthquake Engineering, 2023. 164: p. 107574.
    39. Yi, W.-J., et al., Cyclic loading test for circular reinforced concrete columns subjected to near-fault ground motion. Soil Dynamics and Earthquake Engineering, 2018. 112: p. 8-17.
    40. Ariefta, R., Cyclic Loading Test for RC T-beams Strengthened in the Negative Moment Region with Steel Rod-Thin UHPC Composite Subjected to Pulse-like Ground Motion. 2023, National Cheng Kung University.
    41. Erdemlı Gunaslan, S., A. Karasin, and M. Öncü, Properties of FRP Materials for Strengthening. 2014. 1.
    42. Gudonis, E., et al., FRP reinforcement for concrete structures: State-of-the-art review of application and design. Engineering Structures and Technologies, 2013. 5.
    43. Haryanto, Y., et al., Structural behavior of negative moment region NSM-CFRP strengthened RC T-beams with various embedment depth under monotonic and cyclic loading. Composite Structures, 2022. 301: p. 116214.
    44. Nugroho, L., et al., NSM-CFRP rods with varied embedment depths for strengthening RC T-beams in the negative moment region: Investigation on high cyclic response. Composite Structures, 2024. 331: p. 117891.
    45. Mavroeidis, G., A Mathematical Representation of Near-Fault Ground Motions. Bulletin of The Seismological Society of America - BULL SEISMOL SOC AMER, 2003. 93: p. 1099-1131.
    46. Somerville, P., Characterizing Near Fault Ground Motion For The Design And Evaluation Of Bridges. Proceedings of the Third National Seismic Conference and Workshop on Bridges and Highways, 2002.
    47. Atkinson, G.M. and I.A. Beresnev, Compatible ground-motion time histories for new national seismic hazard maps. Canadian Journal of Civil Engineering, 1998. 25(2): p. 305-318.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE