| 研究生: |
陳郁婷 Chen, Yu-Ting |
|---|---|
| 論文名稱: |
應用Laplace Adomian分解法於變化輪廓環形鰭片之週期性溫度邊界的熱傳遞與熱應力分析 Laplace Adomian Decomposition Method for Analyses of Heat Transfer and Thermal Stress with the Periodic Base Temperature in Variable Profile Annular Fin |
| 指導教授: |
陳朝光
Chen, Chao-Guang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | Laplace Adomian分解法 、變化輪廓 、熱傳遞 、熱應力 、環形鰭片 |
| 外文關鍵詞: | Laplace Adomian decomposition method, LADM, heat transfer, variable fin, thermal stress, annular fin |
| 相關次數: | 點閱:127 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用Laplace Adomian 分解法解決變化輪廓環形鰭片之熱傳遞與熱應力問題。熱傳遞問題之參數包括變化傳導係數、變化對流係數與輻射常數,並給予環形鰭片底部有週期性溫度邊界,求解環形鰭片之溫度分布曲線,以該溫度分布曲線對照該溫度下之飽和水蒸氣壓,求解出環形鰭片之熱應力分布曲線(包含徑向應力與切向應力)。文中探討各熱傳遞參數與鰭片輪廓之變化對溫度分布與熱應力分布之影響,以及各熱傳遞參數與鰭片熱傳效率之關係曲線。
研究結果得知,溫度分布隨著傳導係數的降低,對流係數、輻射係數與鰭片厚度遞減率的提高而下降,然而改變各熱傳遞參數與鰭片輪廓對於熱應力分布幾乎沒有影響。
相對於傳導係數與對流係數,鰭片熱傳效率分布受輻射係數影響對曲線分布之影響劇烈,當三種熱傳遞參數非座落於微小區間時,鰭片熱傳效率會隨著熱傳遞參數增加而降低。相同熱傳遞參數下,凹形鰭片之鰭片熱傳效率略高於梯形鰭片與凸形鰭片。
In this article, the Laplace Adomian decomposition method (LADM) is used to solve the heat transfer and thermal stress analyses in variable profile annular fin. The heat transfer problem including the parameters of temperature-dependent conduction and convection, and the constant radiation coefficient, with the periodic temperature as boundary condition as well. Solving the temperature distribution in annular fin, and find out the saturated vapor pressure which is under the temperature meantime, to solve the thermal stress distribution, including the radial stress and the tangential stress. Investigating the effect of temperature distribution and thermal stress distribution by both heat transfer parameters and the diversification of fin profile and fin efficiency distribution with every heat transfer parameter.
The results show that temperature distribution lower by the lower conductivity, the higher convection coefficient, radiation coefficient and decline rate of fin thickness. But change any heat transfer coefficient and the fin profile would not change the thermal stress distribution. In the high temperature heat transfer process, there have obviously impact on having the radiation coefficient. Improve the radiation coefficient can dissipate heat quickly, make the fin cooling down.
[1] Adomian G. Solving frontier problems modelled by nonlinear partial differential equations 1991;22:91–4.
[2] Adomian G. Delayed Nonlinear Dynamical Systems 1995;22:77–9.
[3] Abbaoui K, Cherruault Y. Convergence of Adomian’s method applied to differential equations. Kybernetes 1994;28:103–9. doi:10.1108/03684929910277779.
[4] Cherruault Y, Adomian G. Decomposition methods: A new proof of convergence. Math Comput Model 1993;18:103–6. doi:10.1016/0895-7177(93)90233-O.
[5] Cherruault Y, Saccomandi G, Some B. New results for convergence of Adomian’s method applied to integral equations. Math Comput Model 1992;16:85–93.
[6] Cherruault Y. Convergence of Adomian ’ s Method. Kybernetes 1993;18:31–8.
[7] Hosseini MM, Nasabzadeh H. On the convergence of Adomian decomposition method. Appl Math Comput 2006;182:536–43. doi:10.1016/j.amc.2006.04.015.
[8] Abdelrazec A, Pelinovsky D. Convergence of the Adomian decomposition method for initial-value problems. Numer Methods Partial Differ Equasion 2007;23:904–22. doi:10.1002/num.
[9] Cordshooli GA, Vahidi a. R. Phase synchronization of Van der Pol-Duffing oscillators using decomposition method. Adv Stud Theor Phys 2009;3:429–37.
[10] Wazwaz A-M, El-Sayed SM. A new modificatio of the Adomian decomposition method for linear and nonlinear operators. Appl Math Comput 2001;122:393–405.
[11] Wazwaz A-M. A new algorithm for calculating adomian polynomials for nonlinear operators. Appl Math Comput 2000;111:33–51.
[12] Ghosh S, Roy a., Roy D. An adaptation of adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators. Comput Methods Appl Mech Eng 2007;196:1133–53. doi:10.1016/j.cma.2006.08.010.
[13] Hasan YQ, Zhu LM. Modified Adomian decomposition method for singular initial value problems in the second-order ordinary differential equations. Surv Math Its Appl 2008;3:183–93.
[14] Ramana P V., Raghu Prasad BK. Modified Adomian decomposition method for Van der Pol equations. Int J Non Linear Mech 2014;65:121–32. doi:10.1016/j.ijnonlinmec.2014.03.006.
[15] Khuri SA. A Laplace decomposition algorithm applied to a class of nonlinear differential eequations. Appl Math Comput 2001;4:141–55.
[16] Singh N, Kumar M. Adomian decomposition method for solving higher order boundary value problems. Math Theory Model 2011;2:11–23.
[17] Tsai P-Y, Chen C-K. Free vibration of the nonlinear pendulum using hybrid Laplace Adomian decomposition method. Int J Numer Method Biomed Eng 2011;27:262–72. doi:10.1002/cnm.
[18] Yang YT, Chien SK, Chen CK. A double decomposition method for solving the periodic base temperature in convective longitudinal fins. Energy Convers Manag 2008;49:2910–6. doi:10.1016/j.enconman.2008.03.003.
[19] Yang Y-T, Chang C-C, Chen C-K. A double decomposition method for solving the annular hyperbolic profile fins with variable thermal conductivity. Heat Transf Eng 2010;31:1165–72. doi:10.1080/01457631003689294.
[20] Aziz a. Periodic Heat Transfer in Straight Fins. J Heat Transfer 1972:310–4.
[21] Antar M a. Steady and transient numerical analysis of the performance of annular fins. Int J Energy Res 2001;25:1197–206. doi:10.1002/er.748.
[22] Allan D. Kraus, Abdul Aziz JW. Extended Surface Heat Transfer. 2002.
[23] Mokheiner EMA. Performance of annular fins with different profiles subject to variable heat transfer coefficient. Int J Heat Mass Transf 2002;45:3631–42.
[24] Coşkun SB, Atay MT. Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method. Appl Therm Eng 2008;28:2345–52. doi:10.1016/j.applthermaleng.2008.01.012.
[25] Arslantürk C. Analysis of thermal performance of annular fins with variable thermal conductivity by homotopy analysis method. Therm Sci Technol 2010;30:1–7.
[26] Wu S. Analysis on Transient Thermal Stresses in an Annular Fin. J Therm Stress 1997;20:591–615. doi:10.1080/01495739708956120.
[27] Chiu C-H, Chen C-K. Application of the decomposition method to thermal stresses in isotropic circular fins with temperature-dependent thermal conductivity. Acta Mech 2002;157:147–58.
[28] Chiu C-H, Chen C-K. Thermal stresses in annular fins with temperature-dependent conductivity under periodic boundary condition. J Therm Stress 2002;25:475–92. doi:10.1080/01495730252890195.
[29] Mehdi Bayat, M. Saleem, B.B. Sahari, A.M.S.Hamouda EM. Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int J Press Vessel Pip 2009;79:493–7.
[30] Chung BTF, Zhou Y, Wang Y, Yeh LT. A new look at optimum design for convecting-radiating annular fins of trapezoidal profile. Open Thermodyn J 2011;5:93–103.
[31] Torabi M, Yaghoobi H, Aziz a. Analytical solution for convective-radiative continuously moving fin with temperature-dependent thermal conductivity. Int J Thermophys 2012;33:924–41. doi:10.1007/s10765-012-1179-z.
[32] Zhang G, Chung BTF. Design charts for circular fins of arbitrary profile subject to radiation and convection with wall resistances. Open Thermodyn J 2012:15–24. doi:10.2174/1874396X01206010015.
[33] Ishak Gokhan AKSOY. Adomian decomposition method for heat conduction in an annular fin of hyperbolic profile with temperature dependent thermal conductivity. Therm Sci Technol 2013;33:1–8.
[34] Moradi A, Rafiee R. Analytical solution to convection-radiation of a continuously moving fin with temperature-dependent thermal conductivity. Therm Sci 2013;17:1049–60. doi:10.2298/TSCI110425005M.
[35] Goodier SPTJN, Timoshenko SP, Goodier JN. Theory of elasticity. Eng Soc Monogr 1970;v. 7.