簡易檢索 / 詳目顯示

研究生: 張雅智
Chang, Ya-Chih
論文名稱: 以羅吉斯迴歸分析連續生產機台非週期性預防保養時機
Logistic regression analysis for aperiodic preventive maintenance in continuous manufacturing processes
指導教授: 翁慈宗
Wong, Tzu-Tsung
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 44
中文關鍵詞: 分類連續性生產預防性設備保養二分類羅吉斯迴歸預防保養
外文關鍵詞: Classification, continuous manufacturing process, binary logistic regression, preventive maintenance.
相關次數: 點閱:119下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在連續性生產模式的製程中,生產設備的可靠與穩定性關係著產品的品質狀況,因此設備的維護保養工作相當的重要。若能在最適切的時間點進行設備保養,將可以維持設備穩定性、延長設備使用壽命,更可以降低相關品質成本。因此,有許多學者求解預防性保養適切時機,可以讓執行預防性保養的程序能夠更有效及確實。
    假設機台設備的狀況由可控狀態轉換成不可控是可以由許因子來解釋及反應的,羅吉斯迴歸模型可以用來分類預測出設備失效的概率,提供設備是否將會產生異常的警示,讓相關設備維護保養單位進行預防保養時機決策使用。
    本研究使用八個機台的製程檢測資料導入模型進行分類,二分類羅吉斯迴歸模型分類的結果正確率在0.93到0.98之間。表示可以利用此二分類羅吉斯迴歸模型分類出機台可能發生異常狀態,提供給機台維修保養的單位進行預防性機台保養維護工作的參考。

    In a continuous manufacturing process, the reliability and stability of machines is very critical to the quality of products. Many studies therefore investigate the period of preventive maintenance to enhance the reliability of continuous manufacturing processes. The state of a machine is assumed to be either under-control or out-of-control. The binary logistic regression can be used not only to predict the state of a machine, but also to find the critical factors for machines to be out-of-control.
    In this study, a continuous manufacturing process is assumed to be supervised by three shifts in one day, and every shift will collect inspection data from the products of the process. The statistics calculated from the inspection data obtained from the previous two shifts for a machine are employed to generate a binary linear regression model to predict whether the machine will be under-control in current shift.
    The experimental results on eight data sets show that the prediction accuracy of the binary linear regression model built by our method is between 0.93 and 0.98. The variance and the error rate of the inspection data obtained from the previous two shifts are the most important factors in identifying whether a machine is under-control or out-of-control.

    中文摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 2 第三節 研究目的 3 第四節 研究範圍與限制 4 第五節 研究架構 4 第二章 文獻探討 5 第一節、 設備維護 5 一、 設備維護的定義 5 二、 設備維護的策略 6 第二節、 預防性保養 8 一、 預防性保養定義 8 二、 預防性保養的分類 9 第三節、 資料探勘 10 一、 資料探勘分類器 11 二、 二分類羅吉斯迴歸分類 12 第三章 研究方法 15 第一節、 資料前置處理 16 一、 資料整理 16 二、 資料整合轉換 17 三、 資料屬性檢定 20 四、 資料正規化 21 第二節、 二分類羅吉斯迴歸模型 21 第三節、 分類結果評估 23 一、 分類正確率 24 二、 F-Measure 24 三、 迴歸係數分析 26 第四章 實證研究 27 第一節、 資料前置處理及說明 27 第二節、 二分類羅吉斯迴歸模型測試及評估 31 第三節、 小結 35 第五章 結論與建議 36 參考文獻 38

    中文
    鍾明鴻,設備管理-設備管理活動之理論基礎,運用步驟與保養推展-超越企管顧問股份有限公司,民國86年。
    鄭達才,設備維護管理現在與未來,中國生產力出版,民國89年。
    王濟川,郭志剛,Logistic迴歸模型-方法及應用,五南出版,民國92年。

    英文
    Amores, J., Sebe, N., & Radeva, P., 2006. Boosting the distance estimation. Pattern Recognition Letters. 27 (3), 201–209.
    Altman, N. S., 1992. An introduction to kernel and nearest neighbor
    nonparametric regression, The American Statistician, 46(3), 175-185.
    Akinci, S., Kaynak, E., Atilgan, E., & Aksoy, S., 2007. Where does the logistic regression analysis stand in marketing literature? European Journal of Marketing, 41(5/6), 537–567.
    Benedetti, J., 1977. On the nonparametric estimation of regression functions, Journal of the Royal Statistical Society, Series B, 39, 248-253.
    Cai, J. M., Liu, R. H., Sun, C., 2008. Logistic regression model for isoconversional kinetic analysis of cellulose pyrolysis. Energy & Fuels, 22, 867-870.
    Chen, B., Chen,X. , Li, B. ,He, Z. ,Cao, H. & Cai, G., 2011. Reliability estimation for cutting tools based on logistic regression model using vibration signals. Mechanical Systems and Signal Processing, 25, 2526-2537.
    Chen, Y.-S., Hung, Y.-P., Yen, T.-F., & Fuh, C.-S., 2007. Fast and versatile algorithm for nearest neighbor search based on a lower bound tree. Pattern Recognition ,40, 360–375.
    Chiang, J. H. & Yuan, J., 2000. Optimal maintenance policy for a production system subject to aging and shocks. Journal of Quality in Maintenance Engineering, 6, 200-216.
    Curt, H., 1995. The devil’s in the detail: techniques, tools, and applications for database mining and knowledge discovery-part 1, Intelligent Software Strategies, 6, 1-15.
    Cover, T.M., & Hart, P.E., 1967. Nearest neighbor pattern classification, IEEE Transactions on Information Theory, 3, 21-27.
    Cortes, C., & Vapnik, V. , 1995. Support-vector networks. Machine learning, 20, 273-297.
    Dhouib, K., Gharbi, A., Ben Aziza., & M. N., 2012. Joint optimal production control/preventive maintenance policy for imperfect process manufacturing cell. International Journal of Production Economics, 137, 126-136.
    Draper, N. R., Smith, H. & Pownell, E., 1966. Applied regression analysis, Wiley New York.
    El-ferik, S., & Ben-Daya, M., 2006. Age-based hybrid model for imperfect preventive maintenance. IEE Transactions, 38, 365-375.
    Fayyad, U., Piatetsky-shapiro, G., & Smyth, P., 1996. The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39, 27-34.
    Gardner B., Krieger A., Vachtsevanos G. & Litt B., 2006. One-class novelty detection for seizure analysis from intracranial EEG. Journal of Machine Learning Research,7,1025–1044.
    Greene, W., 2000. Econometric analysis, 4th Edition, Macmillan: NY.
    Greitzer, F. L., Stahlman, E. J., & Ferryman,T. A., 1999. Development of a framework for prediction life of mechanical systems: life extension analysis and prognostics. ,Sole 1999 Symposium, Las Vegas, NV, 30 August to 2 September.
    Gorjian ., Nima., Ma Lin., Mittinty., Murthy., Yarlagadda., Prasad., Sun., & Yong., 2009. A review on reliability models with covariates. In Proceedings of the 4th World Congress on Engineering Asset Management, 28-30.
    Han, J. & Kamber, M., 2000. Data Mining:Concepts and Techniques. San Francisco: Morgam Kaufmann Publishers.
    Hayton., 2007. Static and dynamic novelty detection methods for jet engine health monitoring. Philosophical Transactions of the Royal Society of London A, 1851,493-514.
    Islam H. Afefy., 2010. Reliability-Centered Maintenance Methodology and Application: A Case Study. Engineering, 2, 863-873
    Imad Alsyouf., 2007.The role of maintenance in improving companies’productivity and profitability. International Journal of Production Economics, 105,70–78.
    Iiritano, S., & Ruffolo, M., 2001. Managing the Knowledge Contained in Electronic Documents: a Clustering Method for Text Mining ,Proc.12Th International Workshop on Database and Expert System Applications,454-458
    Jain, A., & Palerar, U. S., 2005. Aggregate production planning for a continuous reconfigurable manufacturing process. Computers & Operations Research, 32, 1213-1236.
    Jalkanen, A., & Mattila, U., 2000. Logistic regression models for wind and snow damage in northern Finland based on the National Forest Inventory data. Forest Ecology and Management, 135, 315-330.
    Janzen, F. J., & Stenrn, H. S., 1998. Logistic regression for empirical studies of multivariate selection. Evolution, 1564-1571.
    Jaturonnatee, J., Murthy, D.N.P., & Boondiskulchok,R., 2006. Optimal preventive maintenance of leased equipment with corrective minimal repairs. European Journal of Operational Research, 174, 201-215.
    Kacprzynski, G.J., A. Sarlashkar, M.J., Roemer, A. Hess., & W. Hardman., 2004. Predicting Remaining Life by Fusing the Physics of Failure Modeling with Diagnostis, Journal of the Mineral, Metals, and Materials Society ,56 (3), 29 – 35.
    Lee, J., 1995. Machine performance monitoring and proactive maintenance in computer-integrated manufacturing: review and perspective. International Journal of Computer Integrated Manufacturing, 8(5), 370–380.
    Liao, H., Zhao, W. & Guo, H., 2006. Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model. 2006 Proceedings - Annual Reliability and Maintainability Symposium, Vols 1 and 2, 127-132.
    Liao, W., Pan, E., XI, L., 2010. Preventive maintenance scheduling for repairable system with deterioration. Journal of Intelligent Manufacturing, 21, 875-884.
    Lin, D. M., Zuo, M. J. & Yam, R. C. M., 2001. Sequential imperfect preventive maintenance models with two categories of failure modes. Naval Research Logistics, 48, 172-183.
    Lin, T.-W., Wang, C.-H., 2010. A new approach to minimize non-periodic preventive maintenance cost using importance measures of components. Journal of Scientific & Industrial Research, 69 ,667-671.
    Mobley, R. K., 1989. An Introduction to Predictive Maintenance (Van Nostrand Reinhold).
    Perez, G., Rivas, E. T., Echeverr A, F. R. & Echeverr A, C. R., 2006. Logistic regression model for determining risks factor for hypertensive disorders in pregnancy. WSEAS Transactions on Systems, 5, 2135-2139.
    Quinlan., 2004. Application of SVMs for colour classification and collision detection with AIBO robots. NIPS 2003.,16, 635-642.
    Rabaoui ., 2008. Using one-class svms and wavelets for audio surveillance. IEEE Trans. Inf. Forensic Secur, v3 i4, 763-775.
    Roemer,M.J., G.J. Kacprzyniski, & M.H. Schoeller., 2001. Improved Diagnostic and Prognostic Assessments using Health Management Information Fusion, IEEE Systems Readiness Technology Conference, 365 – 377
    Safari, E., Jafar Sadjadi, S., & Shahanaghi, K., 2009. Scheduling flowshops with condition-based maintenance constraint to minimize expected makespan. The International Journal of Advanced Manufacturing Technology, 46, 757-767.
    Salberg, A.-B. & Jenssen, R., 2012. Land-cover classification of partly missing data using support vector machines. International Journal of Remote Sensing, 33, 4471-4481.
    Seo, J. H. & Bai, D. S., 2004. An optimal maintenance policy for a system under periodic overhaul. Mathematical and Computer Modelling, 39, 373-380.
    Sortrakul, N., Nachtmann, H. L. & Cassady, C. R., 2005. Genetic algorithms for integrated preventive maintenance planning and production scheduling for a single machine. Computers in Industry, 56, 161-168.
    Spear, S. J., 2002. The essence of just-in-time: embedding diagnostic tests in work-systems to achieve operational excellence. Production Planning & Control, 13, 754-767.
    Steinbach, P., & Kumar, M., & Tan, V., 2006. Introduction to 6data mining. International Edition.–NY.: Addison Wesley.
    Suliman, S. M. A., & Jawad, S. H., 2012. Optimization of preventive maintenance schedule and production lot size. International Journal of Production Economics, 137, 19-28.
    Toyama, J., & Kudo, M., Imai, H., 2010. Probably correct k-nearest neighbor search in high dimnsions. Pattern Recognition 43, 1361–1372.
    Tran, V. T., Thom Pham, H., Yang, B.-S., & Tien Nguyen, T., 2012. Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine. Mechanical Systems and Signal Processing, 32, 320-330.
    Wang., C. H., 2006. Optimal production and maintenance policy for imperfect production systems. Naval Research Logistics, 53, 151-156.
    Wang, H. Z., 2002. A survey of maintenance policies of deteriorating systems. European Journal of Operational Research, 139, 469-489.
    Wang J., Neskovic P., & Cooper L., 2007. Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognit Lett, 28,207–213
    Wu, S. M., & Zuo, M. J., 2010. Linear and Nonlinear Preventive Maintenance Models. Ieee Transactions on Reliability, 59, 242-249.
    Yan, J. H., Koc, M., & Lee, J., 2004. A prognostic algorithm for machine performance assessment and its application. Production Planning & Control, 15, 796-801.
    Yan, J. H., & Lee, J., 2005. Degradation assessment and fault modes classification using logistic regression. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 127, 912-914.
    Yeh, R. H. Ho, W. T., & Tseng, S. T., 2000. Optimal production run length for products sold with warranty. European Journal of Operational Research, 120, 575-582.
    Yin , Chuanhuan Yin., Shengfeng Tian & Shaomin Mu., 2008. High-order Markov kernels for intrusion detection, Neurocomputing, 71,16-18.
    Zequeira, R. I., & Berenguer, C., 2006. Periodic imperfect preventive maintenance with two categories of competing failure modes. Reliability Engineering & System Safety, 91, 460-468.
    Zhou CY., & Chen YQ., 2006. Improving nearest neighbor classification with cam weighted distance. Pattern Recognition, 39,635–645

    下載圖示 校內:2018-08-06公開
    校外:2018-08-06公開
    QR CODE