簡易檢索 / 詳目顯示

研究生: 陳信利
Chen, Hsin-Li
論文名稱: 操作參數及流道板型式對氫燃料電池系統電功率表現之探討
Investigation on the operating parameters and the patterns of flow channels for the electric power performed from the hydrogen fuel cell system
指導教授: 吳文騰
Wu, Wen-Tung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 59
中文關鍵詞: 質子交換膜燃料電池奈米碳管流道開孔率
外文關鍵詞: proton exchange membrane, fuel cells, carbon nanotube, channel, open ratio
相關次數: 點閱:125下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃料電池被視為具發展潛力的潔淨能源之一。本研究藉自製白金觸媒並應用於質子交換膜燃料電池中,探討不同操作條件及流道板設計下對其效能的影響。白金觸媒之製備是以奈米碳管為擔體,採用乾式含浸法 (dry impregnation) 將碳管含浸於氯鉑酸 (dihydrogen hexachloroplatinate (IV) hexahydrate) 溶液中,再以硼氫化鈉 (sodium borohydride) 還原。製備的觸媒以 XRD、SEM、TEM 等儀器進行特性分析。
    將觸媒配成漿料塗佈於 50% 疏水碳紙上,與 Nafion® 117 熱壓成膜電極組 (membrane electrode assembly, MEA) 後,即進行單電池系統測試。藉由改變操作參數 (電池操作溫度、流量、陰極氧氣進料濃度、鎖合扭矩等) 及流道板設計 (開孔率、流道樣式等),以燃料電池的極化曲線 (V-I curve) 與功率曲線 (P-I curve) 的結果作為電池性能的依據。
    實驗結果顯示,陰極供應高濃度氧氣、增加陽極氫氣與陰極空氣流量,可提升單電池性能;不同流道面積會影響開孔率,當開孔率太高會減少其電子收集效果,而開孔率太低會使觸媒無法充分利用,在63% 的性能最好。最後,蛇形流道不易在陰極堆積水而有較小的擴散阻抗,使得蛇形流道的性能優於平行流道。透過本研究,以空氣作為氧化劑,所得到最佳參數之最大功率為176.3 mW/cm2。

    The fuel cell is considered to be one of the potential clean energy. In this study, the platinum catalyst was made and applied to the proton exchange membrane fuel cell, to investigate the effects of different operating conditions and manifold design its efficacy. The preparation of platinum catalyst is based on the carbon nanotube as a carrier, using the dry impregnation method to impregnate it in the solution of dihydrogen hexachloroplatinate (IV) hexahydrate, then reduced by sodium borohydride. The catalyst prepared was characterized with XRD, SEM, TEM and other instruments. The catalyst slurry was formulated on the 50% hydrophobic of carbon paper. After thermoforming it with the Nafion® 117, the so-called membrane electrode assembly was under a series of single cell test. By changing the operating parameters (cell operating temperature, flow rate, cathode oxygen feed concentration, locking torque, etc.) and manifold design (open ratio, flow patterns, etc.), the results of the fuel cell polarization curves (VI curve) and power curve (PI curve) can be the basis of battery performance. Experimental results show that supplying high oxygen concentration to the cathodes, increasing the flow rate of hydrogen to the anode and air to the cathode, can improve the performance of a single cell. Different channel areas affect the open ratio: it too high will reduce its effect of electronic collection, while it too low will not make full use of the catalyst, and the optimum value is 63% in the experimental. Finally, the serpentine channel is not easy to accumulate water in the cathode, having a small diffusion resistance, allowing a superior performance of it over that of the parallel channel. This study use air as oxidant to achieve the best performance 176.3 mW/cm2.

    中文摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 燃料電池研究背景 1 1-2-1 簡介與發展 1 1-2-2 優點 3 1-2-3 種類 3 1-3 文獻回顧 7 1-4 研究動機與目的 8 第二章 質子交換膜燃料電池製作與分析原理 9 2-1 工作原理 9 2-2 電池結構分析 10 2-2-1 質子交換膜 (Proton exchange membrane) 10 2-2-2 觸媒催化層 (Catalyst layer) 12 2-2-3 氣體擴散層 (Gas diffusion layer) 12 2-2-4 膜電極組 (Membrane electrode assembly, MEA) 12 2-2-5 雙極板 (Bipolar plates) 13 2-2-6 集電板 (Current collector) 14 2-3 燃料電池組設計要點 14 2-4 觸媒製備方式 15 2-5 分析方法與原理 16 2-5-1 極化現象與極化曲線 16 2-5-2 循環伏安法之量測原理 18 第三章 實驗方法、材料與儀器 21 3-1 Pt/CNT 觸媒之製備 21 3-1-1 碳材 MWCNT (multi-wall carbon nanotube) 之前處理 21 3-1-2 合成 Pt/CNT 觸媒之製備 21 3-2 觸媒特性分析 21 3-2-1 X-ray 繞射分析 (XRD, X-ray diffractometer) 21 3-2-2 掃描式電子顯微鏡 (SEM, Scanning electronic microscope) 分析 22 3-2-3 穿透式電子顯微鏡 (TEM, Transmission electronic microscope) 分析 22 3-2-4 傅立葉轉換紅外線光譜儀 (FT-IR, Fourier transform infrared spectrometer) 分析 22 3-2-5 循環伏安法 (CV, cyclic voltammetry) 分析 23 3-3觸媒漿料與單電池電極之製備 23 3-3-1 觸媒漿料之製備 23 3-3-2 質子交換膜 Nafion® 之前處理 23 3-3-3 膜電極組 (MEA, Membrane electrode assembly) 之熱壓處理 24 3-3-4 單一電池之組裝 24 3-5 單電池放電之測試 24 3-5-1工作平台的啟動步驟 24 第四章 結果與討論 28 4-1 觸媒特性分析 28 4-1-1 X 光繞射分析 (XRD) 28 4-1-2 穿透式電子顯微鏡 (TEM) 圖與粒徑分析 30 4-1-3 掃描式電子顯微鏡 (SEM) 圖分析 32 4-2 電極表面結構分析 34 4-3 單電池效能分析 38 4-3-1 螺栓鎖合扭矩的影響 38 4-3-2 陰極氧氣進料濃度的影響 41 4-3-3 電池進氣溫度的影響 42 4-3-4 電池操作溫度的影響 44 4-3-5 陰、陽極氣體流量對電池的影響 46 4-3-5 氣體擴散層的影響 49 4-4 流道形式對燃料電池性能的影響 51 4-4-1 開孔率大小的影響 51 4-4-2 流道樣式的影響 53 第五章 結論 55 參考文獻 56

    [1]. M. Ehsani, Y. Gaoi, A. Emadi, Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design, Taylor & Francis, 2nd Ed., 2009.
    [2]. J.M. Andújar, F. Segura, Fuel cells: history and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews, 13, 2309−2322, 2009.
    [3]. P.G. Grimes, Historical pathways for fuel cells, Aerospace and Electronic Systems, 7−10, 2000.
    [4]. 黃鎮江,燃料電池,第三版,滄海書局,台灣,2008。
    [5]. 許寧逸,顏溪成,由碳能朝向氫能的燃料電池,科學發展,367期,2003。
    [6]. L. Carrette, K.A. Friedrich, U. Stimming, Fuel cell: principles, types, fuels, and applications, ChemPhysChem, 1, 162−193, 2001.
    [7]. B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature, 414, 345−352, 2001.
    [8]. J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, M.G. Klett, Fuel Cell Handbook, 4th Ed., Parsons, USA, 1998.
    [9]. 鄭耀宗,徐耀昇,燃料電池技術進展的現況分析,經濟部能源委員會,燃料電池論文集,15−27,1999。
    [10]. E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua, Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC, Journal of Power Sources, 77, 136−142, 1999.
    [11]. D. Chu, R.Z. Jiang, Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks: Part I. Evaluation and simulation of an air-breathing PEMFC stack, Journal of Power Sources, 83, 128−133, 1999.
    [12]. A.S. Aricò, P. Cretì, V. Baglio, E. Modica, V. Antonucci, Influence of flow field design on the performance of a direct methanol fuel cell, Journal of Power Sources, 91, 202−209, 2000.
    [13]. R. O'Hayre, S.J. Lee, S.W. Cha, F.B. Prinz, A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading, Journal of Power Sources, 109, 482−493, 2002.
    [14]. R.G. Reddy, A. Kumar, Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells, Journal of Power Sources, 113, 11−18, 2003.
    [15]. S.S. Hsieh, C.F. Huang, J.K. Kuo, H.H. Tsai, S.H. Yang, SU−8 flow field plates for a micro PEMFC, Journal of Solid State Electrochemistry, 9, 121−131, 2005.
    [16]. S.S. Hsieh, S.H. Yang, J.K. Kuo, C.F. Huang, H.H. Tsai, Study of operational parameters on the performance of micro PEMFCs with different flow fields, Energy Conversion and Management, 47, 1868−1878, 2006.
    [17]. Q. Yan, H. Toghiani, J. Wu, Investigation of water transport through membrane in a PEM fuel cell by water balance experiments, Journal of Power Sources, 158, 316−325, 2006.
    [18]. S. Jia, H. Liu, Cold pre-compression of membrane electrode assembly for PEM fuel cells, International Journal of Hydrogen Energy, 37, 13674−13680, 2012.
    [19]. S. Shimpalee, S. Greenway, J.W. Van Zee, The impact of channel path length on PEMFC flow-field design, Journal of Power Sources, 160, 398−406, 2006.
    [20]. S. Basu, Recent trends in fuel cell science and technology, Springer, 1st Ed., 2007.
    [21]. Z. Ogumi, T. Kuroe, Z. Takehara, Gas Permeation in SPE Method, Thermal Behavior of Electrolyzer, 132, 2601−2605, 1985.
    [22]. Y. Wanga, K.S. Chen, J. Mishler , S.C. Cho , X.C. Adroher, A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research, Applied Energy, 88, 981−1007, 2011.
    [23]. V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez, Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells, Journal of Applied Electrochemistry, 26, 297−304, 1996.
    [24]. Y.G. Chun, C.S Kim, D.H Peck, D.R Shin, Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes, Journal of Power Sources, 71, 174−178, 1998.
    [25]. N. Cunningham, D. Guay, J.P. Dodelet, Y. Meng, A.R. Hlil, A.S. Hay, New Materials and Procedures to Protect Metallic PEM Fuel Cell Bipolar Plates, Journal of The Electrochemical Society, 149, 905−911, 2002.
    [26]. H. Yang, T.S. Zhao, Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells, Electrochimica Acta, 50, 3243−3252, 2005.
    [27]. F. Barbir, H. Gorgun, X. Wang, Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells, Journal of Power Sources, 141, 96−101, 2005.
    [28]. J. Scholta, G. Escher, W. Zhang, L. Küppers, L. Jörissen, W. Lehnert, Investigation on the influence of channel geometries on PEMFC performance, Journal of Power Sources, 155, 66−71, 2006.
    [29]. F.B. Weng, A. Su, C.Y. Hsu, C.Y. Lee, Study of water-flooding behaviour in cathode channel of a transparent proton-exchange membrane fuel cell, Journal of Power Sources, 157, 674−680, 2006.
    [30]. N. Rajalakshmi, T.T. Jayanth, R. Thangamuthu, G. Sasikumar, P. Sridhar, K.S. Dhathathreyan, Water transport characteristics of polymer electrolyte membrane fuel cell, International Journal of Hydrogen Energy, 29, 1009−1014, 2004.
    [31]. J.J. Hwang, M.L. Zou, Development of a proton exchange membrane fuel cell cogeneration system, Journal of Power Sources, 195, 2579−2585, 2010.
    [32]. S.S. Hsieh, C.F. Huang, C.L. Feng, A novel design and micro-fabrication for copper (Cu) electroforming bipolar plates, Micron, 39, 263−268, 2008.
    [33]. A.J. Dicknson, L.P.L. Carrette, J.A. Collins, K.A. Friedrich, U. Stimming, Performance of methanol oxidation catalysts with varying Pt: Ru ratio as a function of temperature, Journal of Applied Electrochemistry, 34, 975−980, 2004.
    [34]. S.A. Lee, K.W. Park, J.H. Choi, B.K. Kwon, Y.E. Sung, Nanoparticle Synthesis and Electrocatalytic Activity of Pt Alloys for Direct Methanol Fuel Cells, Journal of The Electrochemical Society, 149, 1299−1304, 2002.
    [35]. M. Götz, H. Wendt, Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas, Electrochimica Acta, 43, 3637−3644, 1998.
    [36]. X. Zhang, K.Y. Chan, Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties, Chemistry of Materials, 15, 451−459, 2003.
    [37]. Z. Liu, L.M. Gan, L. Hong, W. Chen, J.Y. Lee, Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells, Journal of Power Sources, 139, 73−78, 2005.
    [38]. D.L. Boxall, G.A. Deluga, E.A. Kenik, W.D. King, Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation: A DMFC anode catalyst of high relative performance, Chemistry of Materials, 13, 891−900, 2001.
    [39]. W.H. Lizcano-Valbuena, D.C. de Azevedo, E.R. Gonzalez, Supported metal nanoparticles as electrocatalysts for low-temperature fuel cells, Electrochimica Acta, 49, 1289−1295, 2004.
    [40]. H.E. Van Dam, H. Van Bekkum, Preparation of platium on activated carbon, Journal of Catalysis, 131, 335−349, 1991.
    [41]. R. Yeetsorn, M.W. Fowler, C. Tzoganakis, Nanocomposites with unique properties and applications in midicine and industry,1st Ed., Intech, Croatia, 2011.
    [42]. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, John Wiley & Sons, 2nd Ed., 2001.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE