簡易檢索 / 詳目顯示

研究生: 張振遠
Chang, Chen-Yuan
論文名稱: 基於多通道慣性傳感器之混合式神經網路應用於籃球裁判手勢辨識
A Hybrid Deep Learning Network for Basketball Referee Signal Recognition Based on Multi-channel IMU Sensors
指導教授: 胡敏君
Hu, Min-Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 41
中文關鍵詞: 訓練系統手勢辨識慣性傳感器混合式神經網路
外文關鍵詞: Training System, Gesture Recognition, IMU, Hybrid Neural Network
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們提出一套創新的運動裁判訓練系統,此系統基於穿戴式傳感器與一套可即時識別官方裁判手勢的方法,在ORS-1資料集的65種籃球裁判手勢中達到96.6%的準確率。為了透過慣性傳感器訊號識別裁判手勢,我們設計了一套混合式神經網路-ORSNet,ORSNet結合了卷積層與遞歸層,卷積層幫助模型學習更多代表性的局部特徵,而遞歸層則學習訊號在時域上的關聯性。我們提出一個新穎的損失函數與權重共享策略,使得裁判手勢辨識模型更加強健可靠。此外,論文中也探討了半監督式學習對於ORSNet的影響。最後,我們利用ORSNet建構了一個即時識別系統,並能成功的在連續動作中辨識出籃球裁判手勢。

    In this work, we propose a novel sports referee training system based on wearable sensors and a real-time Official Referee Signal (ORS) segmentation/recognition method which can recognize 65 kinds basketball ORSs with the accuracy of 96.6% in ORS-1 dataset. A hybrid neural network named ORSNet is designed for recognizing gestures based on IMU signals. The proposed ORSNet involves convolution layers and recurrent layers to learn more representative features and correlations in temporal domain, respectively. A novel loss function and a weight sharing strategy are proposed to learn a more robust ORS recognition model. Moreover, we investigate the influence of applying a semi-supervised network in the proposed ORSNet. Finally, we build a real-time ORS recognition system based on ORSNet, and it can recognize basketball ORSs in continuous motion successfully.

    Abstract (Chinese) i Abstract (English) ii Table of Contents iii List of Tables v List of Figures vi Chapter 1. Introduction 1 Chapter 2. Related Work 5 2.1 Computer-aided Training System . . . . . . . . . . . . . . . . . . . . . 5 2.2 Deep Model for Wearable Sensor Technology . . . . . . . . . . . . . . 6 2.3 Sports Referee Gesture Recognition . . . . . . . . . . . . . . . . . . . . 7 Chapter 3. Data Collection 9 Chapter 4. The Proposed ORS Recognition Model 12 4.1 Low-level Convolutional Layers . . . . . . . . . . . . . . . . . . . . . 14 4.2 Merge-level Convolutional Layers . . . . . . . . . . . . . . . . . . . . 15 4.3 Recurrent Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.4 Output Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.5 Semi-supervised ORSNet . . . . . . . . . . . . . . . . . . . . . . . . . 18 Chapter 5. Experimental Results 20 5.1 ORS-1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.1 Input Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.2 The Number of Fragments . . . . . . . . . . . . . . . . . . . . . 21 5.1.3 Partial Weight Sharing Strategies . . . . . . . . . . . . . . . . . 22 5.1.4 Recurrent Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1.5 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1.6 Comparisons with the State-of-the-art Methods . . . . . . . . . . 25 5.2 MHEALTH Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3 ORS-2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Chapter 6. Real-time Recognition 31 Chapter 7. Discussion 33 7.1 Overfitting Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.2 Comparison of Different Semi-supervised Learning Methods . . . . . . 34 Chapter 8. Conclusion 37 References 38

    [1] Leap motion. https://www.leapmotion.com/.
    [2] Mhealth dataset. http://archive.ics.uci.edu/ml/datasets/mhealth+dataset.
    [3] Mircosoft kinect. https://developer.microsoft.com/zh-tw/windows/kinect.
    [4] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-person 2d pose
    estimation using part affinity fields. In CVPR, volume 1, page 7, 2017.
    [5] J. C. Chan, H. Leung, J. K. Tang, and T. Komura. A virtual reality dance training
    system using motion capture technology. IEEE Transactions on Learning
    Technologies, 4(2):187–195, 2011.
    [6] S. Duffner, S. Berlemont, G. Lefebvre, and C. Garcia. 3d gesture classification
    with convolutional neural networks. In Acoustics, Speech and Signal
    Processing (ICASSP), 2014 IEEE International Conference on, pages 5432–
    5436. IEEE, 2014.
    [7] C. et al. Gesture recognition-based wireless intelligent judgment system.
    https://patents.google.com/patent/CN101667059A/en, 2008.
    [8] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber.
    Lstm: A search space odyssey. IEEE Transactions on Neural Networks and
    Learning Systems, 28(10):2222–2232, 2017.
    [9] S. Ha and S. Choi. Convolutional neural networks for human activity recognition
    using multiple accelerometer and gyroscope sensors. In Neural Networks
    (IJCNN), 2016 International Joint Conference on, pages 381–388. IEEE,
    2016.
    [10] S. Ha, J.-M. Yun, and S. Choi. Multi-modal convolutional neural networks
    for activity recognition. In Systems, Man, and Cybernetics (SMC), 2015 IEEE
    International Conference on, pages 3017–3022. IEEE, 2015.
    [11] J. Han, L. Shao, D. Xu, and J. Shotton. Enhanced computer vision with microsoft
    kinect sensor: A review. IEEE transactions on cybernetics, 43(5):
    1318–1334, 2013.
    [12] M.-C. Hu, C.-W. Chen, W.-H. Cheng, C.-H. Chang, J.-H. Lai, and J.-L. Wu.
    Real-time human movement retrieval and assessment with kinect sensor. IEEE
    transactions on cybernetics, 45(4):742–753, 2015.
    [13] Y. Li, X. Chen, X. Zhang, K. Wang, and Z. J. Wang. A sign-componentbased
    framework for chinese sign language recognition using accelerometer
    and semg data. IEEE Transactions on Biomedical Engineering, 59(10):2695–
    2704, 2012.
    [14] Y. Li, D. Shi, B. Ding, and D. Liu. Unsupervised feature learning for human
    activity recognition using smartphone sensors. In Mining Intelligence and
    Knowledge Exploration, pages 99–107. Springer, 2014.
    [15] C. Lo, Q. Cao, X. Zhu, and Z. Zhang. Gesture recognition system based on acceleration
    data for robocup referees. In Natural Computation, 2009. ICNC’09.
    Fifth International Conference on, volume 2, pages 149–153. IEEE, 2009.
    [16] Y. Miao, L. Wang, C. Xie, and B. Zhang. Gesture recognition based on deep
    belief networks. In Chinese Conference on Biometric Recognition, pages 439–
    446. Springer, 2017.
    [17] P. Muneesawang, N. M. Khan, M. Kyan, R. B. Elder, N. Dong, G. Sun, H. Li,
    L. Zhong, and L. Guan. A machine intelligence approach to virtual ballet
    training. IEEE MultiMedia, 22(4):80–92, 2015.
    [18] F. J. Ordóñez and D. Roggen. Deep convolutional and lstm recurrent neural
    networks for multimodal wearable activity recognition. Sensors, 16(1):115,
    2016.
    [19] T.-Y. Pan, L.-Y. Lo, C.-W. Yeh, J.-W. Li, H.-T. Liu, and M.-C. Hu. Real-time
    sign language recognition in complex background scene based on a hierarchical
    clustering classification method. In Proceedings of the IEEE International
    Conference on Multimedia Big Data, pages 64–67. IEEE, 2016.
    [20] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko. Semisupervised
    learning with ladder networks. In Advances in Neural Information
    Processing Systems, pages 3546–3554, 2015.
    [21] S. Shin and W. Sung. Dynamic hand gesture recognition for wearable devices
    with low complexity recurrent neural networks. In Circuits and Systems
    (ISCAS), 2016 IEEE International Symposium on, pages 2274–2277. IEEE,
    2016.
    [22] P. Trigueiros, F. Ribeiro, and L. P. Reis. Vision based referee sign language
    recognition system for the robocup msl league. In Robot Soccer World Cup,
    pages 360–372. Springer, 2013.
    [23] P. Trigueiros, F. Ribeiro, and L. P. Reis. Hand gesture recognition system
    based in computer vision and machine learning. In Developments in Medical
    Image Processing and Computational Vision, pages 355–377. Springer, 2015.
    [24] J. Vales-Alonso, D. Chaves-Diéguez, P. López-Matencio, J. J. Alcaraz, F. J.
    Parrado-García, and F. J. González-Castaño. Saeta: A smart coaching assistant
    for professional volleyball training. IEEE Transactions on Systems, Man, and
    Cybernetics: Systems, 45(8):1138–1150, 2015.
    [25] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu. Deep learning for sensor-based
    activity recognition: A survey. arXiv preprint arXiv:1707.03502, 2017.
    [26] S. B. Wang, A. Quattoni, L.-P. Morency, D. Demirdjian, and T. Darrell. Hidden
    conditional random fields for gesture recognition. In Computer Vision and
    Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2,
    pages 1521–1527. IEEE, 2006.
    [27] Z. Wang, M. Guo, and C. Zhao. Badminton stroke recognition based on body
    sensor networks. IEEE Transactions on Human-Machine Systems, 46(5):769–
    775, 2016.
    [28] J. Wu, L. Sun, and R. Jafari. A wearable system for recognizing american
    sign language in real-time using imu and surface emg sensors. IEEE Journal
    of Biomedical and Health Informatics, 20(5):1281–1290, 2016.
    [29] R. Xie and J. Cao. Accelerometer-based hand gesture recognition by neural
    network and similarity matching. IEEE Sensors Journal, 16(11):4537–4545.
    [30] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher. Deepsense: A unified
    deep learning framework for time-series mobile sensing data processing. In
    Proceedings of the 26th International Conference on World Wide Web, pages
    351–360. International World Wide Web Conferences Steering Committee,
    2017.
    [31] X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang, and J. Yang. A framework
    for hand gesture recognition based on accelerometer and emg sensors. IEEE
    Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans,
    41(6):1064–1076, 2011.
    [32] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao. Time series classification
    using multi-channels deep convolutional neural networks. In International
    Conference on Web-Age Information Management, pages 298–310. Springer,
    2014.

    無法下載圖示 校內:2023-07-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE